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1. Synchronization of speed with redox state 

To clarify the relationship between the redox state and speed, a return map of the phase 

difference was constructed (Figure S1) where the phase difference was defined using the times of 

the peak in brightness (tb(n)) and speed (ts(n)) as follows: 
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This analysis indicates that the speed of the self-propelled motion is synchronized in phase with 

the redox state of the aqueous phase. 

 

 

Figure S1.  (a) Time series of the (solid black line) speed of the self-propelled motion and 

(broken blue line) brightness of the blue color, which indicates the redox state of the droplet. The 

inset images show the color change during oscillation.  (b) Return map of the phase difference 

between the speed and brightness.  This map indicates that the peak times of the speed have 

almost the same values as those of the brightness.  The components of the BZ solution were 

[BrO3
−] (0.40 M), [H2SO4] (0.60 M), [CH2(COOH)2] (0.20 M), [Br−] (0.030 M), and [Fe(phen)3

2+] 

(2.0 mM).  The diameter of the droplet was 690 m. 

 

  



2. Relationship between speed u and reaction rate s 

The amplitude equations for a self-propelled droplet driven by Marangoni flow has been 

reported.16  Using this theoretical approach, we can consider the relationship between the speed 

of the droplet and the reaction rate of a surfactant.  The theoretical approach in Ref. 16 

considered that the surfactant adsorbs on the oil/water interface and decomposes after 

characteristic time s
−1.  The interfacial tension is assumed to linearly decrease with the surface 

concentration of the adsorbed surfactant ().  The adsorption and decomposition of the 

surfactant generates inhomogeneity in the spatial distribution and induces Marangoni flow.  

Considering the above factors, Ref. 16 derived the following reaction–diffusion equation for 

surface concentration (): 
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where v is the  component of the velocity field; R is the droplet size; Do, Di, and Ds are the 

diffusion constant for the outer, inner, and surface of the droplet, respectively; and c is the bulk 

concentration of the surfactant.  In addition, Ref. 16 considered the reaction–diffusion equation 

for the bulk concentration of the surfactant where it focused only on the surfactant concentration 

in the outer fluid as follows: 
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The boundary conditions of this equation are the constant value c∞ at infinity and its proportion 

to surface concentration () at the interface.  The proportional constant of () and c(R,) is , 

which is the inverse of the Henry’s constant.  Reference 16 expanded surface concentration () 

using the Legendre polynomials and derived the amplitude equations by focusing only at n = 0 

and n = 1 modes where the speed of droplet motion u can be expressed as u = u1A1.  Using a 

weak nonlinear analysis, Ref. 16 obtained the critical point of drift bifurcation u1
* as follows {Eq. 

(21) in Ref. 16}: 
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where  is the typical length scale to relax the surfactant concentration in the bulk (= D ), 

12 is the coefficient, and A0 is the amplitude at n = 0 mode.  For R >> , A0 can be expressed as 
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In addition, Ref. 16 showed the steady-state velocity of the droplet u under the condition  << 

s/D as follows {Eq. (22) in Ref. 16}: 
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where RDu 0
 for R >>  > 0.01 R. 

In our system, the surfactant reacts with Br2, and the interfacial tension increases.  Assuming 

that this chemical reaction is linear, the reaction rate can be expressed as ki[Br2].  Thus, s can 

be expressed as ki[Br2] and is proportional to the Br2 concentration.  To clarify the relationship 

between u and s, we focus on u1
* because u0 and u1 are independent of s.  Using Eq. (S4), Eq. 

(S3) can be rewritten as a function of s. 
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where a, b, and  are constant.  Figure S1 shows that u1
* has a minimum value at s = s

* 

( a ).  Therefore, according to Eq. (S5), droplet speed u increases with s (Figure S2b), i.e., 

corresponding to the Br2 concentration, for D/ << s < s
*. 

 

 

 

Figure S2.  Plot of u1
* and u/u0 against s.  The parameters are a = 0.001, b = 0.001, and  = 

0.00001. 

  



3. Numerical calculation using the modified Oregonator model 

The original version of the Oregonator is given by 

A + Y  X + P (O1) 

X + Y  2P (O2) 

A + X  2X + 2Z (O3) 

2X  A + P (O4) 

Z  fY (O5) 

In addition to these chemical equations, the following chemical equations concerning Br2 (= U) 

were considered:36 

P  Y, (O6) 

Y + P ↔ U, (O7) 

U  atmosphere. (O8) 

Equation (O8) indicates the physical removal of Br2.  In our BZ droplet system, instead of such 

physical removal process, the interfacial reaction of the surfactant (MO) with Br2 was considered.  

Therefore, Eq. (O8) was replaced by the following interfacial chemical reaction: 

U + MO  Q. (O8)' 

where MO is the surfactant and Q is the product of the interfacial chemical reaction.  Based on 

these eight chemical equations, we developed ordinary differential equations for five variables, 

namely, X, Y, Z, P, and U. 
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We numerically calculated the above equations using the following constants: A = 0.40, B = 0.20, 

H = 1.20, f = 1.5, k1 = 2H2, k2 = 3 × 106H, k3 = 48H, k4 = 3 × 103, k5 = B, k6 = 0.5B, k7 = 8 × 109, 

k−7 = 2 × 10−2, and k8 = 2 × 10−2.  The initial conditions were set as follows: [X] = 2 × 10−7, [Y] 

= 2 × 10−6, [Z] = 1 × 10−4, [P] = 1 × 10−7, and [U] = 1 × 10−7.  As a result, oscillation in the Br2 

concentration was observed (Figure S3). 



 

Figure S3.  Result of the numerical calculation using the modified Oregonator.  The solid line 

indicates the Br2 concentration, and the broken line indicates the oxidized catalyst. 

 

 

 


