J. Org. Chem., 1997, 62(4), 788-789, DOI:10.1021/jo962417m

## Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

## ACS Publications

# 1,5-Asymmetric Induction in Methyl Ketone Aldol Addition Reactions. Diastereoselective Double Stereodifferentiating Aldol Fragment Coupling Processes. 

David A. Evans, Paul J. Coleman, and Bernard Côté<br>Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138.

## Supplementary Material

General Information: Melting points are uncorrected. Optical rotations were measured on a Jasco DIP0181 digital polarimeter with a sodium or mercury lamp and reported as follows: $[\alpha]_{\lambda}^{\mathrm{T}}{ }^{\circ} \mathrm{C}(c \mathrm{~g} / 100 \mathrm{~mL}$ solvent $)$. Infrared spectra were recorded on a Perkin Elmer model $1600 \mathrm{FT}-\mathrm{IR}$ spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker AM-500 ( 500 MHz ), AM- $400(400 \mathrm{MHz}$ ), or AM-300 ( 300 MHz ) spectrometers. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform: $\delta 7.26 \mathrm{ppm}$ ). Data are reported as follows: chemical shift, multiplicity ( $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet ), coupling constants $(\mathrm{Hz})$, integration, and assignment. 1:C NMR spectra were recorded on Bruker AM-500 ( 125 MHz ) or AM-400 ( 100 MHz ) spectrometers with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent as the internal standard (deuterochloroform: $\delta 76.9 \mathrm{ppm}$ ). Mass spectra were obtained on a JEOL AX-505 or SX-102 high resolution magnetic sector mass spectrometer by the Harvard University Mass Spectrometry Laboratory.

Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel $60-\mathrm{F}$ plates. Flash chromatography was performed as previously described ${ }^{1}$ on EM silica gel 60 ( $230-240$ mesh). Solvents for extraction and chromatography were HPLC grade. High performance liquid chromatography was performed on a Hew let-Packard 1090 and 1050 Series HPIC with UV detector using either Chiracel -OD or Zorbax normal phase colurnns ( 4.6 mm ID X 25 cm ).

All experiments were carried out under a nitrogen atmosphere in oven or flame-dried glassware. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was distilled from $\mathrm{CaH}_{2}$ under an inert atmosphere of nitrogen. Diethylether ( Et 2 O ) and tetrahydrofuran (THF) were distilled from potassium/benzophenone ketyl. Hydrocinnamaldehyde, isobutyraldehyde, isovaleraldehyde and benzaldehyde were distilled from anhydrous $\mathrm{CaSO}_{4}$. All other commercially obwned reagents were used as received. 9-Borabicyclo[3.3.1]nonyl trifluoromethanesulfonate ${ }^{2}$ (9-BBN triflate), di-n-butylboryl trifluoromethanesulfonate. ${ }^{2}$ chlorodicyclohexylborane, ${ }^{3}$ and freshly prepared samarium(II) iodide ${ }^{-1}$ were prepared according to literature procedures.

$\longrightarrow$


1-ketone
4-[4-(Methoxybenzyl)oxy]-6-phenyl-2-hexanone (1-ketone). To a solution of 18.4 g (51.5 mmol) of amide ${ }^{5}$ in 250 mL of THF at $-78^{\circ} \mathrm{C}$ was added $20.6 \mathrm{~mL}(61.8 \mathrm{mmol}$ ) of a 3.0 M solution of MeMgCl in THF in one portion. The reaction was warmed to $0^{\circ} \mathrm{C}$ over 3 h followed by the addition of 0.1 equivalent of MeMlgCl at $-10^{\circ} \mathrm{C}$. After 1 h at $0^{\circ} \mathrm{C}$ the solution was cooled to $-50^{\circ} \mathrm{C}$ and diluted with 500 mL of $\mathrm{Et}_{2} \mathrm{O}$ and 50 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated and the aqueous phase was extracted twice with 50 mL of $\mathrm{Et}_{2} \mathrm{O}$. Combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}$ and brine, dried over anhydrous $\mathrm{MgSO}_{4}$ and concentrated in vacuo. Purification by flash chromatography ( $10-20 \% \mathrm{EtOAc}$ in hexanes) provided $14.5 \mathrm{~g}(90 \%)$ of the title compound as a colorless oil: $\mathbb{R}$ (thin film) $v 3025,2934,1714,1612,1513$, $1454,1358,1301,1248,1174,1034,822,751,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.14(\mathrm{~m}, 7 \mathrm{H}$, $\mathrm{ArH}), 6.88-6.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.45(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH} 2 \mathrm{Ar}), 3.94$ (quint, $J=6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOPMB}$ ), $3.79(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OCH}_{3}$ ), $2.78\left(\mathrm{dd}, \mathrm{J}=16,7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COCH}_{3}\right), 2.74-2.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.53(\mathrm{dd}, \mathrm{J}=16,5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COCH}_{3}$ ), $2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.92-1.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 207.3,159.1,141.7,130.4,129.3,128.3,128.2,125.7,113.7 .74 .5,71.1,55.1,48.4,36.0,31.3,31.0$ ppm. $\mathrm{Rf}_{f} \mathrm{O} .30$ ( $20 \%$ EtOAc/hexanes); Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3}: 312.1725$. Found: 312.1735 (ED).


3-tert-Butyldimethylsilyloxy-5-phenyl- $N$-methoxy- $N$-methyl-pentanamide. To a solution of $803 \mathrm{mg}(3.38 \mathrm{mmol})$ of the alcohol ${ }^{5}$ and $512 \mu \mathrm{~L}(4.40 \mathrm{mmol})$ of 2,6 -lutidine in 11 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ was added $933 \mu \mathrm{~L}$ ( 4.06 mmoL ) of tert-butyldimethylsilyl trifluoromethanesulfonate. After $30 \mathrm{~min}, 25 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}$ was added to quench and the mixture was extracted with two 25 mL portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with 25 mL of $\mathrm{H}_{2} \mathrm{O}$ and 25 mL of brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by MPLC (Michel-Miller column size C, $25 \%$ EtOAc in hexanes) afforded 1.15 g ( $96 \%$ ) of the title compound as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.25(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.21-7.16(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{ArH}), 4.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOTBS}), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.17\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.83-2.61\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH} \mathrm{Ch}^{2} \mathrm{Ph}\right.$ and $\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$ ), $2.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.92-1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.10(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{SiCH}_{3}$ ), $0.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 172.2,142.3,128.4,128.2,125.6,69.0$, $61.2,39.6,39.5,31.8,31.4,25.8,25.7,18.0,-4.7,-4.8 \mathrm{ppm}$.



4-tert-Butyldimethylsilyloxy-6-phenyl-2-hexanone (3b). To a solution of 575 mg ( 1.64 mmol ) of annide in 8 mL of THF at $-78^{\circ} \mathrm{C}$ was added $709 \mu \mathrm{~L}(2.13 \mathrm{mmol})$ of a 3.0 M solution of MeMgCl in THF in one portion. The reaction was warmed to $0{ }^{\circ} \mathrm{C}$ over 3 h followed by the addition of 0.1 equivalent of MeMgCl at $-10^{\circ} \mathrm{C}$. After 1 h at $0^{\circ} \mathrm{C}$ the solution was cooled to $-50^{\circ} \mathrm{C}$ and diluted with 20 mL of $\mathrm{Et}_{2} \mathrm{O}$ and 5 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated and the aqueous phase was extracted twice with 5 mL of $\mathrm{Et}_{2} \mathrm{O}$. Combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}$ and brine, dried over anhydrous $\mathrm{MgSO}_{4}$ and concentrated in vacuo. Purification by flash chromatography ( $5 \%$ EtOAc in hexanes) provided 393 mg ( 78 $\%$ ) of the title compound as a colorless oil: $\mathbb{R}$ (thin film) $v 2954,2929,2857,1718,1603,1496,1471,1360$, $1255,1093,836,776,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.32-7.19(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 4.27$ (quint, $J=6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHOTBS}$ ), $2.74-2.64\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CH}_{2} \mathrm{COCH}_{3}\right.$ ), 2.56 (dd, $J=15,5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COCH}_{3}$ ), $2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.89-1.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 0.94\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH} 3), 0.08$ (s, $3 \mathrm{H}, \mathrm{SiCH}_{3}$ ) ppm; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 207.3,141.9,128.2,128.1,125.6,68.4,50.6,39.2$, $31.4,31.2,25.7,17.8,-4.8,-4.9 \mathrm{ppm}$. Rf 0.3 ( $5 \% \mathrm{EtOAc} /$ hexanes); Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{SiO}_{2}$ : 307.2094. Found: 307.2097 (CI, $\mathrm{NH}_{3}$ atmosphere).


3-[4-(Methoxybenzyl)oxy]-4-methyl- $N$-methoxy- $N$-methyl-pentanamide. Lithium diisopropylamide (LDA) was generated by addition of 15.6 mL ( 39 mmol ) of $n$-butyllithium ( 2.5 M solution in hexanes) to a solution of 5.4 mL ( 39 mmol ) of diisopropylamine in 50 mL of THF at $-78^{\circ} \mathrm{C}$. After 10 min , a solution of 4.0 g ( 39 mmol ) of the Weinreb amide in 10 mL of THF was added dropwise ( 1 mL THF rinse) and the resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . Isobutyraldehyde $3.9 \mathrm{~mL}(42.9 \mathrm{mmol})$ was added dropwise and the solution was stirred at $-78^{\circ} \mathrm{C}$ for 50 min . The reaction was quenched at $-78^{\circ} \mathrm{C}$ by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was warmed to ambient temperature. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed once with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous washings were extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}$ and brine, dried over anhydrous $\mathrm{MgSO}_{4}$, and concentrated in vacuo. Purification by flash chromatography ( $60 \%$ EtOAc in hexanes) provided $5.73 \mathrm{~g}(84 \%)$ of the 3-hydroxy-4-methyl- $N$-methoxy- $N$-methyl-pentanamide. To a solution of $5.7 \mathrm{~g}(32.5 \mathrm{mmol})$ of this alcohol and $10.4 \mathrm{~g}(36.8 \mathrm{mmol})$ of the 4-methoxybenzyloxy acetimidate in 100 mL of $\mathrm{Et}_{2} \mathrm{O}$ at room temperature was added 86 $\mu \mathrm{L}$ of trifluromethanesulfonic acid. After 30 min , the reaction was diluted with 10 mL of saturated aqueous $\mathrm{NaHCO}_{3}$ and 100 mL of $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated and the organic extract was washed with brine, dried over anhydrous $\mathrm{MgSO}_{4}$ and concentrated in vacuo. The residue was dissolved in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and was stirred 10 min at $-78^{\circ} \mathrm{C}$. The heterogeneous cold solution was quickly filtered and rinsed two times with 5 mL of
cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Solvent was removed in vacuo and the residue was purified by flash chromatography (3-7 \% EtOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to provide $5.8 \mathrm{~g}(60 \%)$ of the desired benzyl ether as a colorless oil: $\mathbb{R}$ (thin film) $v 3462$, 2960, 2937, 2804, 1661, 1612, 1513, 1465, 1385, 1248, 1174, 1071, 1036, $822 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.85-6.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.50(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} 2 \mathrm{Ar}), 4.46(\mathrm{~d}, J$ $=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ar}$ ), 3.84 (quint, $J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOPMB}$ ), $3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NOCH}_{3}\right)$, 3.18 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$ ), 2.78 (dd, $J=15,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CON}(\mathrm{OMe}) \mathrm{Me}$ ), 2.41 (dd, $J=15,3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CON}(\mathrm{OMe}) \mathrm{Me}\right), 1.95-1.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.94\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7,158.6,130.8,128.9,113.2,80.3,71.9,60.8,54.8,33.7,31.7,31.4,17.7,17.6 \mathrm{ppm}$. Rf 0.2 (30 \% EtOAc/hexanes); Exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{4}: 295.1784$. Found: 295.1783 (EI).


3-[4-(Methoxybenzyl)oxy]-5-methyl-2-hexanone (3a). To a solution of 4.19 g ( 14.2 mmol ) of amide in 70 mL of THF at $-78{ }^{\circ} \mathrm{C}$ was added $5.67 \mathrm{~mL}(17.0 \mathrm{mmol})$ of a 3.0 M solution of MeMgBr in THF in one portion. The reaction was warmed to $0^{\circ} \mathrm{C}$ over 3 h followed by the addition of 0.1 equivalent of MeMgBr at $-10^{\circ} \mathrm{C}$. After 1 h at $0^{\circ} \mathrm{C}$ the solution was cooled to $-50^{\circ} \mathrm{C}$ and diluted with 100 mL of $\mathrm{Et}_{2} \mathrm{O}$ and 10 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated and the aqueous phase was extracted twice with 20 mL of $\mathrm{Et}_{2} \mathrm{O}$. Combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}$ and brine, dried over anhydrous $\mathrm{MgSO}_{4}$ and concentrated in vacuo. Purification by flash chromatography ( $15 \%$ EtOAc in hexane) provided 1.7 g ( $50 \%$ ) of the title compound as a colorless oil: IR (thin film) $2960,2874,1716,1613,1586,1514,1465,1355,1248$, $1076,822 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.22(\mathrm{dt}, J=9,2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.85(\mathrm{dt}, J=9,2 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Ar} H), 4.46\left(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} \mathrm{OAr}_{2}, 4.41\left(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 3.78-3.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOPMB})\right.$, 3.77 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$ ), 2.67 (dd, $J=16,9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COCH}_{3}$ ), 2.43 (dd, $J=16,4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COCH}_{3}$ ), $2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COCH}_{3}\right), 1.96-1.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.91\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.0,158.9,130.6,129.1,113.5,79.8,71.6,55.0,44.8,31.0,30.8,18.0,17.3$. $\mathrm{Rf}_{f} 0.3(20$ $\%$ ErOAc/hexanes); Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}: 250.1569$. Found: 250.1558 (EI).

General procedure for the boron aldol reaction. To a solution of the methyl ketone ( 1.00 mmol ) in 9 mL . of $\mathrm{Et}_{2} \mathrm{O}$ was added 1.10 mmol of $i-\mathrm{Pr}_{2} \mathrm{NEt}$. The solution was cooled to $-78^{\circ} \mathrm{C}$ and 1.05 mmol of $\mathrm{Bu}_{2} \mathrm{BOTf}$ was added dropwise. The resulting white heterogeneous mixture was stirred 30 minutes at $-78^{\circ} \mathrm{C}$ followed by the slow addition of 1.1 mmol of a 1.0 M solution of aldehyde in $\mathrm{Et}_{2} \mathrm{O}$ over a period of 15 minutes. The mixture was stirred 2 h at $-78^{\circ} \mathrm{C}$ and 7 mL of a $\mathrm{pH}=7$ buffer $/ \mathrm{MeOH}(1 / 6, \mathrm{v} / \mathrm{v})$ solution was added. This resulting clear solution was placed at $0^{\circ} \mathrm{C}$ followed by the addition of 3 mL of a $30 \% \mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{MeOH}(1 / 2, \mathrm{v} / \mathrm{v})$ solution. The ice bath was removed and the reaction was stirred 1 h at room temperature. The solution was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and water. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and combined organic layers were washed with saturated aqueous. $\mathrm{NaHCO}_{3}$, saturated aqueous. NaCl , dried over $\mathrm{MgSO}_{4}$ and concentrated under reduced pressure. Product alcohols were purified by flash chromatography.


anti-2

syn-2
( $3 R^{*}, 7 R^{*}$ )-1,9-Diphenyl-3-[4-(methoxybenzyl)oxy]-7-hydroxy-5-nonanone (anti-2). The following reagents were combined in the amount indicated according to the General Procedure for the boron aldol reaction (vide supra): 4-[4-(Methoxybenzyl)oxy]-6-phenyl-2-hexanone 1 -ketone ( $320.4 \mathrm{mg}, 1.03 \mathrm{mmol}$ ), $\mathrm{Bu}_{2} \mathrm{BOTf}(271 \mu \mathrm{~L}, 1.08 \mathrm{mmol})$, Hunig's base ( $197 \mu \mathrm{~L}, 1.13 \mathrm{mmol}$ ) and hydrocinnamaldehyde solution ( 1.13 $\mathrm{mL}, 1.13 \mathrm{mmol}$ ). Purification by flash chromatography ( $25 \% \mathrm{EtOAc}$ in hexane) provided $382 \mathrm{mg}(83 \%$ ) of the alcohol. HPLC analysis of the unpurified racemic product (Chiracel-OD, $20 \%$ ethanol in hexane, $1.0 \mathrm{~mL} / \mathrm{min}$, $220 \mathrm{~nm}, \mathrm{~T}_{\mathrm{r}}(\mathrm{Maj})=16.5 \mathrm{~min}$ and $58.5 \mathrm{~min}, \mathrm{~T}_{\mathrm{r}}(\mathrm{Min})=22.1$ and 35.1 min$)$ revealed a $94: 6$ ratio of diastereoisomers anti-2 and syn-2. These two isomeres were separated on HPLC using a preparative column (Zorbax, $21.2 \mathrm{~mm} \times 25 \mathrm{~cm}, 10 \% \mathrm{EtOAc} / 30 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} / 60 \%$ hexanes, $9 \mathrm{~mL} / \mathrm{min}, 100 \mu \mathrm{~L}$ injected of a 60 $\mathrm{mg} / \mathrm{mL}$ solution, $\mathrm{T}_{\mathrm{r}}(\mathrm{Maj})=44.8 \mathrm{~min}$ and $\left.\mathrm{T}_{\mathrm{r}}(\mathrm{Min})=48.4 \mathrm{~min}\right): \mathbb{R}($ thin film $) v 3452,3025,2932,1707,1612$, $1513,1454,1247,1064,1032,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.15(\mathrm{~m}, 12 \mathrm{H}, \mathrm{ArH}), 6.85(\mathrm{dt}$,
$J=9,3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 4.46(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} 2 \mathrm{Ar}), 4.39\left(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 4.06-4.00(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHOH}), 3.96-3.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOPMB}), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.04(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 2.80-2.48$ $\left(\mathrm{m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CH}_{2} \mathrm{COCH}_{2}\right), 1.94-1.74\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.68-1.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.7,159.2,141.7,141.6,130.1,129.4,128.3,128.3,128.2,125.8,125.7$, $113.7,74.6,71.2,66.7,55.2,50.4,48.2,37.9,35.8,31.6,31.3 \mathrm{ppm} . \mathrm{Rf}_{f} 0.2$ ( $30 \%$ EtOAc/hexanes); Exact mass calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{4}+\mathrm{NH}_{4}: 464.2801$. Found: 464.2793 (CI, $\mathrm{NH}_{3}$ atmosphere).
( $3 R^{*}, 7 S^{*}$ )-1,9-Diphenyl-3-[4-(methoxybenzyl)oxy]-7-hydroxy-5-nonanone (syn-2). IR (thin film) v 3462, 3026, 2932, 2861, 1707, 1612, 1514, 1454, 1248, 1069, 1032, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.15(\mathrm{~m}, 12 \mathrm{H}, \mathrm{ArH}), 6.85(\mathrm{dt}, J=9,3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 4.45\left(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ar}\right)$, $4.40(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} 2 \mathrm{Ar}), 4.03-3.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 3.96-3.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOPMB}), 3.78(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OCH}_{3}$ ), 3.10 (dd, $\left.J=4,1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}\right), 2.81-2.50\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CH}_{2} \mathrm{COCH}_{2}\right), 1.93-1.75(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{CH} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.68-1.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.8,159.2,141.8$, $141.6,130.1,129.5,128.4,128.3,128.2,125.8,125.7,113.8,74.6,71.2,66.9,55.2,50.4,48.3,38.0$, $35.8,31.6,31.3 \mathrm{ppm}$. $\mathrm{R}_{f} 0.2$ ( $30 \% \mathrm{FtOAc} /$ hexanes); Exact mass calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Na}: 469.2355$. Found: 469.2372 (FAB, MNBA, added NaI).

Stereochemical proof of (2): The stereochemistry of anti-2 and syn-2 was assigned by analysis of the derived triol.

( $3 R^{*}, 7 R^{*}$ )-1,9-Diphenyl-3,5,7-trihydroxy-nonane. To a solution of 1,9-diphenyl-3-[4-(methoxybenzyl)oxy]-7-hydroxy-5-nonanone (anti-2) ( $94.4 \mathrm{mg}, 0.211 \mathrm{mmol}$ ) in 1.5 mL of toluene at $-78{ }^{\circ} \mathrm{C}$ was added $634 \mu \mathrm{~L}(0.634 \mathrm{mmol})$ of a 1.0 M solution of DIBAL-H in hexane. The resulting clear solution was stirred 30 min at $-78^{\circ} \mathrm{C}$ and the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ followed by the addition of $500 \mu \mathrm{~L}$ of saturated aqueous Rochelle's salt. The resulting mixture was warmed to room temperature and stirred for 1 hour. Layers were separated and the aqueous phase was extracted with EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography ( $40 \% \mathrm{EtOAc}$ in hexane) to afford 94 mg ( $100 \%$ ) of the diol as a $1: 1$ mixture of isomers. This colorless oil was dissolved in methanol followed by the addition of 10 mg of the Pearlman's catalyst $\left(20 \% \mathrm{Pd}(\mathrm{OH})_{2}\right)$. The resulting mixture was purged with $\mathrm{H}_{2}$ and then stirred at room temperature under a 1 atmosphere pressure of $\mathrm{H}_{2}$. After 1 hour the reaction was filtered throught a short pad of Celite and rinsed with 25 mL of MeOH . The volatiles were removed under reduced pressure and the residue was purified by flash chromatography ( $60-70 \%$ EtOAc in hexanes) to afford 62.9 mg ( $91 \%$ ) of the triol as a white solid. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR analysis clearly indicate that this product was unsymmetrical as expected for a 1,5-anti relationship: $\operatorname{mp} 61-62{ }^{\circ} \mathrm{C} ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \vee 3541,3296,3025$, $2926,2902,2850,1602,1455,1117,1092,1050,1018,751,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-$ $7.14(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 4.36(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}, \mathrm{CHOH}), 4.17(\mathrm{~m}(\mathrm{br}), 1 \mathrm{H}, \mathrm{CHOH}), 3.95(\mathrm{~m}(\mathrm{br}), 1 \mathrm{H}, \mathrm{CHOH}), 3.88-$ $3.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 3.74(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}, \mathrm{CHOH}), 3.39(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}, \mathrm{CHOH}), 2.80-2.61\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH} 2 \mathrm{Ph}\right)$, 1.87-1.49 (m, 8H, $\left.\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2}\right)$ ppm; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.8$, $141.7,128.3,128.2,125.7,125.7,72.1,70.2,68.3,42.8,42.6,39.6,39.0,32.0,31.5 \mathrm{ppm} . \operatorname{Rf} 0.3$ ( $60 \%$ EtOAc/hexanes); Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{3}: 329.2117$. Found: 329.2125 (CI, $\mathrm{NH}_{3}$ atmosphere).

( $3 R^{*}, 7 S^{*}$ )-1,9-Diphenyl-3,5,7-trihydroxy-nonane. To a solution of $38.9 \mathrm{mg}(0.087 \mathrm{mmol})$ of hydroxy ketone syn-2 in 1.4 mL of THF and $350 \mu \mathrm{~L}$ of MeOH at $0^{\circ} \mathrm{C}$ was added $261 \mu \mathrm{~L}$ of a 1.0 M solution of $\mathrm{Et}_{2} \mathrm{~B}$ OMe in THF. After 15 min of stirring, $\mathrm{NaBH}_{4}(33 \mathrm{mg})$ was added in one portion. The reaction was warmed to room temperature and after $6 \mathrm{~h}, \mathrm{MeOH}(2 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ followed by $500 \mu \mathrm{~L}$ of 6 N NaOH and $500 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)$. The ice bath was removed and the solution was stirred for 45 min at room temperature. The solution was diluted with 40 mL of $\mathrm{EtOAc} / \mathrm{Et}_{2} \mathrm{O}$ and 10 mL of water. The layers were separated and the aqueous phase was extracted with EtOAc ( 2 X 10 mL ). The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography ( $40 \%$ EtOAc in hexane) to produce $36 \mathrm{mg}(92 \%)$ of the diol as $10: 1$ mixture of isomers. This
mixture was dissolved in 1 mL of MeOH followed by the addition of 10 mg of the Pearlman's catalyst ( $20 \%$ $\mathrm{Pd}(\mathrm{OH})_{2}$ ). The resulting mixture was purged with $\mathrm{H}_{2}$ and then stirred at room temperature under a 1 atmosphere pressure of $\mathrm{H}_{2}$. After 1 hour the reaction was filtered throught a short pad of Celite and rinsed with 25 mL of MeOH . The volatiles were removed under reduced pressure and the residue was purified by flash chromatography ( $40 \%$ EtOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford $18 \mathrm{mg}\left(85 \%\right.$ ) of the triol as a white solid. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR showed signals for a symmetric triol indicating a $1,5-s y n$ relationship: mp $87.6-88.3^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) v 3464$, $3010,2928,2856,1602,1496,1454,1118,790,701 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.17(\mathrm{~m}$,
$10 \mathrm{H}, \operatorname{ArH}), 4.32\left(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}, \quad \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH})\right.$ ) $10 \mathrm{H}, \mathrm{ArH}), 4.32\left(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}, \quad \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH})\right), 4.13-4.08(\mathrm{~m}, \quad 1 \mathrm{H}$, $\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}), 3.91\left(\mathrm{~m}(\mathrm{br}), 2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH})\right.$ ), $3.09(\mathrm{~s}(\mathrm{br}), 2 \mathrm{H}$, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH})\right), 2.79-2.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.86-1.52(\mathrm{~m}, 8 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 141.7,128.4,128.3$, $125.8,73.6,72.1,43.5,39.6,31.6 \mathrm{ppm}$. $\mathrm{Rf}_{f} 0.3$ ( $60 \%$ EtOAc/hexanes); Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Na}$ : 351.1936 . Found: 351.1931 (FAB, MNBA, added Nal).


( $3 R^{*}, 7 R^{*}$ )-1-Phenyl-3-[4-(methoxybenzyl)oxy]-7-hydroxy-9-methyl-5-decanone. The following reagents were combined in the amount indicated according to the General Procedure for the boron aldol reaction: 4-[4-(Methoxybenzyl)oxy]-6-phenyl-2-hexanone ( $319.4 \mathrm{mg}, 1.02 \mathrm{mmol}$ ), $\mathrm{Bu}_{2} \mathrm{BOTf}$ ( $270 \mu \mathrm{~L}, 1.07$ mmol), Hunig's base ( $196 \mu \mathrm{~L}, 1.12 \mathrm{mmol}$ ) and isovaleraldehyde solution ( $1.12 \mathrm{~mL}, 1.12 \mathrm{mmol}$ ). Purification by flash chromatography ( $20 \%$ EtOAc in hexanes) provided $358 \mathrm{mg}(88 \%$ ) of the alcohol contaminated with $<10 \%$ of the syn isomer. HPLC analysis of the unpurified product (Zorbax Silica, $12 \%$ EtOAc in hexane, $1.0 \mathrm{~mL} / \mathrm{min}$, $\left.\mathrm{T}_{\mathrm{r}}(\mathrm{Maj})=49 \mathrm{~min}, \mathrm{~T}_{\mathrm{r}}(\mathrm{Min})=54.5 \mathrm{~min}\right)$ revealed a $90: 10$ ratio of anti and syn diastereoisomers respectively. $\mathbb{R}$ (thin film) v 3462, 3026, 2954, 2932, 2868, 1708, 1613, 1514, 1455, 1249, 1069, 1035, 822, $700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.15(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar} H), 6.86(\mathrm{dt}, J=9,3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 4.46(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.41\left(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} \mathrm{O}_{2} \mathrm{Ar}\right), 4.13-4.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 3.98-3.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOPMB}), 3.79$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.94(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 2.78\left(\mathrm{dd}, J=16,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COCH}_{2}\right), 2.74-2.62(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$ ), 2.58-2.43 (m, 3H, $\left.\mathrm{CH}_{2} \mathrm{COCH}_{2}\right), 1.94-1.71\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CH}\left(\mathrm{CH}_{3}\right) 3\right), 1.46-1.40(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.12-1.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.91\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}(\mathrm{CH})_{2}\right), 0.90(\mathrm{~d}, J=7$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.6,159.2,141.6,130.2,129.3,128.3,128.2$, $125.8,113.7,74.6,71.2,65.5,55.1,50.9,48.2,45.4,35.8,31.2,24.2,23.1,21.9 \mathrm{ppm}$. Rf 0.4 ( $30 \%$ EtOAc/hexanes); Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{4}: 398.2457$. Found: 398.2474 (EI).

Stereochemical proof of anti-diastereomer. The stereochemistry of the anti-diastereomer was assigned by analysis of the derived benzylidine acetal.

$\left(3 R^{*}, 5 R^{*}, 7 R^{*}\right)$-1-Phenyl-3-[4-(methoxybenzyl)oxy]-5-hydroxy-7-benzoyl-9-methyl-decane. To a solution of 140 mg ( 0.351 mmol ) of 1 -phenyl-3-[4-(Methoxybenzyl)oxy]-7-hydroxy-9-methyl-5decanone anti-diastereomer in 1 mL of THF was added $142 \mu \mathrm{~L}(1.4 \mathrm{mmol})$ of benzaldehyde and the solution was cooled to $-10^{\circ} \mathrm{C}$. To this resulting clear solution was added 1.0 mL of a 0.1 M solution of SmI in THF. The reaction was monitored by TLC and an additional portion of the $\mathrm{SmI}_{2}$ solution ( 2.0 mL ) was added after 1 h . The reaction was warmed to room temperature and was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and saturated aqueous $\mathrm{NaHCO}_{3}$. Layers were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}$ and brine, dried over $\mathrm{MgSO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography ( $15 \%$ EtOAc in hexanes) to afford $107 \mathrm{mg}(60 \%$ ) of the desired alcohol: IR (thin film) v $3500,3062,3026,3000,2954,2869,1714,1612,1514,1452,1276,1249,1112,1070,1028,821,713,700$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08-8.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.58(\mathrm{tt}, J=7,1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.47-7.44(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}), 7.25-7.09(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}), 6.77(\mathrm{dt}, J=9,3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.48-5.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOBz}), 4.47(\mathrm{~d}, \mathrm{~J}=$ $\left.11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} \mathrm{O}_{2} \mathrm{Ar}\right), 4.36(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} 2 \mathrm{Ar}), 3.78-3.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.74$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{CHOH}), 3.67-3.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 2.64-2.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH} 2 \mathrm{Ph}\right), 1.91-1.58(\mathrm{~m}, 8 \mathrm{H}$,
$\left.\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OPMB}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OBz}) \mathrm{CH}_{2} \mathrm{CH}\right), 1.45-1.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.94(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.93\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.2,159.0$, $142.0,132.9,130.2,130.1,129.6,129.3,128.3,128.2,128.2,125.6,113.7,76.7,70.7,70.0,65.8,55.1$, $44.1,43.5,40.9,35.3,31.0,24.7,23.1,22.0 \mathrm{ppm}$. Rf 0.3 ( $15 \%$ EtOAc/hexanes); Exact mass calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Na}$ : 527.2773 . Found: 527.2759 ( $\mathrm{FAB}, \mathrm{MNBA}$, added NaI ).



(4R*)-5-[2-(4-Methoxyphenyl)-4-( $R^{*}$ )-(2-phenyleth-1-yl)-1,3-dioxan-6-( $R^{*}$ )-yl]-4-ben-zoyl-2-methyl-pentane. To a suspension of 50 mg of molecular sieves ( $3 \AA$ ) and $24 \mathrm{mg}(0.104 \mathrm{mmol}$ ) of DDQ in $500 \mu \mathrm{~L}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $44 \mathrm{mg}(0.087 \mathrm{mmol})$ of the alcohol as a solution in $400 \mu \mathrm{~L}$ of THF (200 $\mu \mathrm{L}$ rinse). This mixture was stirred 1 h at room temperature and then was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and saturated aqueous $\mathrm{NaHCO}_{3}$. Layers were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed four times with saturated aqueous $\mathrm{NaHCO}_{3}$ and brine, dried over $\mathrm{MgSO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography ( $7 \%$ EtOAc in hexane) to produce 35.5 mg ( $83 \%$ ) of benzylidene acetal. The illustrated NOE measurements established the $1,3-s y n$ relationship between the benzylidene oxygen and confirmed the 1,5 -anti relationship of the parent compound, 1 -phenvl-3-[4-(methoxybenzyl)oxyl-7-hydroxy-9-methyl-5-decanone (anti-11): $\mathbb{R}$ (thin film) v 3062, 3028, 2953, 2867, $1715,1615,1517,1452,1272,1111,1027,828,713 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05-8.03(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{ArH}), 7.56-7.53(\mathrm{~m} .1 \mathrm{H}, \mathrm{ArH}), 7.49-7.41(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.18-7.15(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH})$, $6.39(\mathrm{dt}, J=9,3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.59-5.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOBz}), 5.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHPMP}), 3.91-3.86(\mathrm{~m}, 1 \mathrm{H}$, CHOCHPMP ), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76-3.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOCHPMP}), 2.84-2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.02-$ $1.43\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OBz}) \mathrm{CH}_{2} \mathrm{CH}\right), 0.94\left(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}(\mathrm{CH})_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ MMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.9,159.5,141.8,132.6,131.3,130.6,129.4,128.4,128.2,127.1,125.7$, $113.4,99.9,75.2,73.3,70.2,55.2,44.2,41.3,37.3,37.2,31.1,24.6,23.0,22.3 \mathrm{ppm} . \quad \mathrm{Rf}_{f} 0.2$ (5 \% E:OAc/hexanes); Exact mass calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{Na}$ : 525.2617 . Found: 525.2618 (FAB, MNBA, added NaI).

(3R*, 7S*)-1-Phenyl-3-[4-(methoxybenzyl)oxy]-7-hydroxy-8-methyl-5-nonanone. The folicwing reagents were combined in the amount indicated according to the General Procedure for the boron aidol reaction (vide supra): 4-[4-(Methoxybenzyl)oxy]-6-phenyl-2-hexanone ( $321.3 \mathrm{mg}, 1.03 \mathrm{mmol}$ ), Bu_BOTf ( $271 \mu \mathrm{~L}, 1.08 \mathrm{mmol}$ ), Hunig's base ( $197 \mu \mathrm{~L}, 1.13 \mathrm{mmol}$ ) and isobutyraldehyde solution ( $1.13 \mathrm{~mL}, 1.13 \mathrm{mmol}$ ). Purification by flash chromatography ( $20 \%$ EtOAc in hexanes) provided $332 \mathrm{mg}(84 \%)$ of the alcohol contaminate $\pm$ with $<6 \%$ of the syn isomer. HPLC analysis of the unpurified product (Zorbax Silica, $10 \%$ EtOAc in hexane, $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{r}}(\mathrm{Maj})=59.6 \mathrm{~min}, \mathrm{~T}_{\mathrm{r}}(\mathrm{Min})=65.3 \mathrm{~min}\right)$ and ${ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Maj}=\right.$ $210.79 \mathrm{ppm}, \mathrm{Min}=210.98 \mathrm{ppm}$ ) revealed a $94: 6$ ratio of anti and $s y n$ diastereoisomers respectively. IR (thin film) $v 3472,3026,2959,2934,2872,1709,1613,1514,1455,1249,1076,1035,822,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.15(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar} H), 6.86(\mathrm{dt}, J=9,3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 4.46(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.41\left(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 3.98-3.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOPMB}), 3.81-3.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 3.79$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.92(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 2.80\left(\mathrm{dd}, J=16,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COCH}_{2}\right), 2.74(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$ ), $2.58-2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COCH}_{2}\right), 2.47\left(\mathrm{dd}, \mathrm{J}=17,10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COCH}_{2}\right), 1.94-1.80(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.67-1.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.90\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.87(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.9,159.1,141.6,130.2,129.3,128.3,128.2,125.7$, $113.7,74.5,72.0,71.2,55.1,48.3,47.4,35.8,32.8,31.2,18.1,17.6 \mathrm{ppm}$. $\operatorname{Rf}_{f} 0.3$ ( $30 \%$ EtOAc/hexanes); Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4}: 384.2301$. Found: 384.2300 (ED).

Stereochemical proof of anti-diastereomer. The stereochemistry of the anti-diastereomer was assigned by analysis of the derived benzylidine acetal.

( $3 R^{*}, 5 R^{*}, 7 S^{*}$ )-1-Phenyl-3-[4-(Methoxybenzyl)oxy]-5-hydroxy-7-benzoyl-8-methylnonane. To a solution of $125 \mathrm{mg}(0.325 \mathrm{mmol})$ of 1-phenyl-3-[4-(methoxybenzyl)oxy]-7-hydroxy-8-methyl-5nonanone in 1 mL of THF was added $132 \mu \mathrm{~L}(1.3 \mathrm{mmol})$ of benzaldehyde and the solution was cooled to $-10^{\circ} \mathrm{C}$.
To this resulting clear solution was added $975 \mu \mathrm{~L}$ of a 0.1 M solution of $\mathrm{SmI}_{2}$ in THF. The reaction was monitored by TLC and after 1 h the solution was warmed to room temperature. The solution was stirred 30 min and then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and saturated aqueous $\mathrm{NaHCO}_{3}$. Layers were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}$ and brine, dried over $\mathrm{MgSO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography ( $20 \% \mathrm{EtOAc}$ in hexane) to afford $149 \mathrm{mg}(94 \%)$ of the desired alcohol: $\mathbb{R}$ (thin film) $v 3500,3062,3027,2961,2874,2836,1714$, $1612,1514,1452,1277,1249,1111,1070,1028,822,713,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09-$ $8.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.24-7.08(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}), 6.77(\mathrm{dt}, J=$ $9,3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.25-5.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOBz}), 4.46\left(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} \mathrm{O}_{2} \mathrm{Ar}\right), 4.35(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 3.79-3.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.70(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 3.67-3.61(\mathrm{~m}, 1 \mathrm{H}$, $\left.{ }^{C} H^{r} \mathrm{O}\right), 2.60\left(\mathrm{dd}, J=10,6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \mathrm{H}_{2} \mathrm{Ph}\right), \quad 2.00-1.59(\mathrm{~m}, \quad 7 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OPMB}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OBz}) \mathrm{CH}\right), 1.01\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.98(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.1,159.0,142.0,132.9,130.2,130.1,129.6,129.3$, $128.3,128.2,128.1,125.6,113.7,76.8,76.1,70.0,66.0,55.1,41.0,39.7,35.2,32.2,30.9,18.6,17.5$ ppm. $\mathrm{Rf}_{f} 0.3$ (20 \% EtOAc/hexanes); Exact mass calcd for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{Na}: 513.2617$. Found: 513.2623 (FAB, MNBA, added Na ).



(3S*)-4-[2-(4-methoxyphenyl)-4-( $R^{*}$ )-(2-phenyleth-1-yl)-1,3-dioxan-6-( $R^{*}$ )-yl]-3-ben-zoyl-2-methyl-butane. To a suspension of 50 mg of molecular sieves ( 3 A ) and 31.1 mg ( 0.137 mmol ) of DDQ in $500 \mu \mathrm{~L}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $56.1 \mathrm{mg}(0.114 \mathrm{mmol}$ ) of the alcohol as a solution in $400 \mu \mathrm{~L}$ of THF (200 $\mu \mathrm{L}$ rinse). This mixture was stirred 1 h at room temperature and then was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and saturated aqueous $\mathrm{NaHCO}_{3}$. Layers were separated and the aqueous phase was exrracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed four times with saturated aqueous $\mathrm{NaHCO}_{3}$ and brine, dried over $\mathrm{MgSO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography ( $10 \%$ EtOAc in hexanes) to produce 42.4 mg ( $76 \%$ ) of benzylidene acetal. The illustrated NOE measurements established the $1,3-5 y n$ relationship of the disubstituted benzylidene acetal and confirmed the 1,5-anti relationship of the parent compound, 1-phenyl-3-[4-(methoxybenzyl)oxy]-7-hydroxy-8-methyl-5-nonanone: $\mathbb{R}$ (thin film) $v 3062,3026,2961,2858,1715,1615$, $1517,1452,1272,1110,1027,825,713 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 88.07-8.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArF}), 7.58-$ $7.42(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.28-7.15(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 6.91-6.89(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 5.44-5.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOBz}), 5.40(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CHPMP}$ ), $3.86-3.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOCHPMP}\right.$ ), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.75-3.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOCHPMP})$, 2.84-2.68 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$ ), 2.04-1.42 (m, $\left.7 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OBZ}) \mathrm{CH}\right), 1.00(\mathrm{~d}, \mathrm{~J}=7$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.97\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} ;{ }^{15} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.0,159.5$, $141.7,132.7,131.3,130.5,129.5,128.4,128.2,128.2,127.1,125.7,113.3,99.9,75.2,75.1,73.3,55.2$, 37.7, 37.3, 37.2, 32.1, 31.0, 18.3, 17.3 ppm . $\mathrm{R}_{f} 0.3$ ( 10 \% EtOAc/hexanes); Exact mass calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Na}: 511.2461$. Found: $511.2453(\mathrm{FAB}, \mathrm{MNBA}$, added Na$)$.

( $3 R^{*}, 7 S^{*}$ )-1-Phenyl-3-[4-(methoxybenzyl)oxy]-7-hydroxy-8,8-dimethyl-5-nonanone. The following reagents were combined in the amount indicated according to the General Procedure for the boron aldol reaction (vide supra): 4-[4-(Methoxybenzyl)oxy]-6-phenyl-2-hexanone ( $322.6 \mathrm{mg}, 1.03 \mathrm{mmol}$ ), Bu $\mathrm{B}_{2}$ BOTf $(272 \mu \mathrm{~L}, 1.08 \mathrm{mmol})$, Hunig's base ( $198 \mu \mathrm{~L}, 1.14 \mathrm{mmol}$ ) and pivalaldehyde solution ( $1.14 \mathrm{~mL}, 1.14 \mathrm{mmol}$ ). Purification by flash chromatography ( $15 \%$ EtOAc in hexanes) provided 336.6 mg ( $82 \%$ ) of the alcohol contaminated with $<5 \%$ of the syn isomer. HPLC analysis of the unpurified product (Zorbax Silica, $8 \%$ EtOAc
in hexanes, $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{r}}(\mathrm{Maj})=52.5 \mathrm{~min}, \mathrm{~T}_{\mathrm{r}}(\mathrm{Min})=59.2 \mathrm{~min}\right)$ and ${ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Maj}=\right.$ 211.00 and $33.96 \mathrm{ppm}, \mathrm{Min}=211.28$ and 34.02 ppm ) revealed a $95: 5$ ratio of anti and syn diastereoisomers respectively. $\mathbb{R}$ (thin film) $v 3499,3026,2954,2868,1709,1613,1514,1248,1082,1035,822,701 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.15(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}), 6.86(\mathrm{dt}, J=9,3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 4.47(\mathrm{~d}, J=11 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 4.41\left(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 3.99-3.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOPMB}), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, O C H_{3}\right), 3.70$ (d, $J=10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 2.88(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}, \mathrm{CHOH}), 2.81\left(\mathrm{dd}, J=16,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COCH}_{2}\right), 2.77-2.62(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$ ), 2.60-2.52 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COCH}_{2}$ ), 2.44 (dd, $J=17,10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COCH}_{2}$ ), 1.94-1.80 (m,
 $129.2,128.2,128.1,125.6,113.6,74.5,74.5,71.0,54.9,48.3,45.4,35.7,33.9,31.1,25.4 \mathrm{ppm} . \mathrm{R}_{f} 0.4$ ( $20 \%$ EtOAc/hexanes); Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{4}: 398.2457$. Found: 398.2450 (EI).


(1S*, 5R*)-1,7-Diphenyl-5-[4-(methoxybenzyl)oxy]-1-hydroxy-3-heptanone. The following reagents were combined in the amount indicated according to the General Procedure for the boron aldol reaction (vide supra): 4-[4-(Methoxybenzyl)oxy]-6-phenyl-2-hexanone ( $321.8 \mathrm{mg}, 1.03 \mathrm{mmol}$ ), Bu $\mathrm{BO}_{2} \mathrm{BOTf}(272 \mu \mathrm{~L}, 1.08$ mmol), Hunig's base ( $197 \mu \mathrm{~L}, 1.13 \mathrm{mmol}$ ) and benzaldehyde solution ( $1.13 \mathrm{~mL}, 1.13 \mathrm{mmol}$ ). Purification by flash chromatography ( $20 \%$ EtOAc in hexanes) provided $379.6 \mathrm{mg}(88 \%$ ) of the alcohol contaminated with < 4 \% of the syn isomer. HPLC analysis of the unpurified product (Zorbax Silica. $13 \%$ EtOAc in hexane, 1.0 $\left.\mathrm{mL} / \mathrm{min}, \mathrm{T}_{\mathrm{r}}(\mathrm{Maj})=43.5 \mathrm{~min}, \mathrm{~T}_{\mathrm{r}}(\mathrm{Min})=48.2 \mathrm{~min}\right)$ revealed a $96: 4$ ratio of anti and syn diastereoisomers respectively. IR (thin film) v 3448, 3027, 2933, 2863, 1710, 1612, 1514, 1454, 1248, 1065, 1033, 822, 753, $701 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.33-7.14(\mathrm{~m}, 12 \mathrm{H}, \mathrm{ArH}), 6.85(\mathrm{dt}, J=9,3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.09(\mathrm{dt}$, $J=9,3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 4.44(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} 2 \mathrm{Ar}), 4.38\left(\mathrm{~d}, J=11 \mathrm{~Hz} .1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 3.97-3.91$ (m, $1 \mathrm{H}, \mathrm{CHOPMB}$ ), $3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.39(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 2.8+2.59\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH} 2 \mathrm{Ph}\right.$, $\mathrm{CH}_{2} \mathrm{COCH}_{2}$ ), $2.51\left(\mathrm{dd}, J=16,5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COCH}_{2}\right), 1.93-1.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.7,159.1,142.6,141.5,130.1,129.3,128.3,128.3,128.1,127.4,125.7,125.4,113.6$, $74.4,71.1,69.6,55.0,52.3,48.2,35.8,31.1 \mathrm{ppm}$. $\mathrm{Rf}_{f} 0.3$ ( $30 \%$ EtOAc/hexanes); Exact mass calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}: 441.2042$. Found: 441.2034 ( $\mathrm{FAB}, \mathrm{MNBA}$, added NaI ).

(3R*, 7S*)-1-Phenyl-3-hydroxy-7-[4-(methoxybenzyl)oxy]-8-methyl-5-nonanone (anti4a). The following reagents were combined in the amount indicated according to the General Procedure for the borcn aldol reaction (vide supra): 4-[4-(Methoxybenzyl)oxy]-5-methyl-2-hexanone ( $252.5 \mathrm{mg}, 1.01 \mathrm{mmol}$ ), $\mathrm{Bu}_{2} \mathrm{BOTf}(266 \mu \mathrm{~L}, 1.06 \mathrm{mmol})$, Hunig's base ( $193 \mu \mathrm{~L}, 1.11 \mathrm{mmol}$ ) and hydrocinnamaldehyde solution ( 1.11 $\mathrm{mL}, 1.11 \mathrm{mmol}$ ). Purification by flash chromatography ( $25 \% \mathrm{EtOAc}$ in hexanes) provided $346 \mathrm{mg}(89 \%$ ) of the alcohol contaminated with $<5 \%$ of the syn isomer. ${ }^{13} \mathrm{C} \mathrm{NMR}$ analysis ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Maj}=66.6,44.2$ and $37.7 \mathrm{ppm}, \mathrm{Min}=66.8,44.3$ and 37.8 ppm ) of the unpurified product revealed a $95: 5$ ratio of diastereoisomers anti-4a and syn-4a. IR (thin film) v 3463, 3026, 2958, 2933, 2873, 1709, 1612, 1514, 1248, 1071, 1035, 822, $750,701 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.28-7.15(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}), 6.82(\mathrm{dt}, J=9,3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 4.47$ $\left(\mathrm{d}, j=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 4.35\left(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 4.05-4.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 3.78-3.75(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHOPMB}$ ), $3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.18(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 2.79-2.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.68-$ $2.58\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CH}_{2} \mathrm{COCH}_{2}\right.$ ), 2.51 (dd, $J=18,9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COCH}_{2}$ ), 2.37 (dd, $J=16,3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COCH}_{2}\right), 1.98-1.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.80-1.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~Pb}\right), 1.66-1.59(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 0.90\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.4,159.0,141.7$, $130.3,129.2,128.2,128.2,125.6,113.6,80.0,71.6,66.6,55.0,50.6,44.4,37.8,31.5,30.5,18.1,17.0$ $\mathrm{ppm} . \mathrm{Rf}_{f} 0.2$ ( $20 \%$ EtOAc/hexanes); Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4}+\mathrm{NH}_{4}: 402.2645$. Found: 402.2665 (CI, $\mathrm{NH}_{3}$ atmosphere).

Stereochemical proof of (4a): The stereochemistry of anti-4a was assigned by analysis of the derived diol.

( $3 R^{*}, 7 S^{*}$ )-1-Phenyl-3,7-dihydroxy-8-methyl-5-nonanone. To a solution of 92.2 mg of 1-phenyl-3-[4-(methoxybenzyl)oxy]-7-hydroxy-8-methyl-5-nonanone anti-4a in 2 mL of MeOH was added 10 mg of Pearlman's catalyst ( $20 \% \mathrm{Pd}(\mathrm{OH})_{2}$ ). The resulting mixture was purged with $\mathrm{H}_{2}$ and then stirred at room temperature under a 1 atmosphere pressure of $\mathrm{H}_{2}$. After 4 hour the reaction was filtered throught a short pad of Celite and rinsed with 25 mL of MeOH . The volatiles were removed under reduced pressure and the residue was purified by flash chromatography ( $40 \%$ EtOAc in hexanes) to afford $62 \mathrm{mg}(98 \%$ ) of the diol as a white solid. Following the same procedure, 1 -phenyl-3-hydroxy-7-[4-(Methoxybenzyl)oxy]-8-methyl-5-nonanone anti-12 was found to produce the same diol in $98 \%$ yield as shown by TLC, ${ }^{1} \mathrm{H} N M R$ and ${ }^{13} \mathrm{C}$ NMR: mp $52-53{ }^{\circ} \mathrm{C}$; IR v $\left(\mathrm{CHCl}_{3}\right) 3473,3024,3013,2963,2933,2877,1701,1603,1454,1386,1058,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.29-7.16 (m, $5 \mathrm{H}, \mathrm{ArH}$ ), 4.11-4.07 (m. $1 \mathrm{H}, \mathrm{CHOH}$ ), 3.87-3.82 (m, $1 \mathrm{H} . \mathrm{CHOH}$ ), $3.34(\mathrm{~d}, J=3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHOH}$ ), $3.06(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 2.83-2.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.70-2.49\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH} 2 \mathrm{Ph}\right.$, $\mathrm{CH}_{2} \mathrm{COCH}_{2}$ ), 1.86-1.77 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$ ), 1.74-1.62 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.92(\mathrm{~d}, J=7 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.90\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.5,141.6$, $128.2,125.7,72.1,66.6,50.1,46.9,38.0,33.1,31.6,18.1,17.5 \mathrm{ppm} . \mathrm{Rf}_{f} 0.3$ (40 6 EtOAc/hexanes); Exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}+\mathrm{NH}_{4}: 282.2069$. Found: 282.2083 ( $\mathrm{CI}, \mathrm{NH}_{3}$ atmosphere).


1,9-Diphenyl-3-tert-butyldimethylsilyloxy-7-hydroxy-5-nonanone (syn-4b). The following reagents were combined in the amount indicated according to the General Procedure for the boron aldol reaction (vide supra): 4-tert-Butyldimethylsilyloxy-6-phenyl-2-hexanone ( 3 b ) ( $54.2 \mathrm{mg}, 0.177 \mathrm{mmol}$ ), Bu${ }_{2}$ BOTf ( $46.6 \mu \mathrm{~L}, 0.185 \mathrm{mmol}$ ), Hunig's base ( $34 \mu \mathrm{~L} .0 .195 \mathrm{mmol}$ ) and hydrocinnamaldehyde ( $25.6 \mu \mathrm{~L}, 0.195 \mathrm{mmol}$ ). ${ }^{1} \mathrm{H}$ NMR analysis ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, Maj: $0.92,0.11$ and 0.06 ppm , Min: $0.90,0.10$ and 0.03 ppm ) revealed a 40:60 ratio of diastereoisomers (anti)-4b and (sun)-4b. IR (thin film) v 3464, 3027, 2929, 2857, 1707, 1603, $1454,1255,1090,836,777,735,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.18(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 4.28-$ $4.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOTBS}), 4.09-4.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 3.20(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}$ (Maj.) ), 3.17 (d, $J=3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHOH}(\mathrm{Min}$.$) ), 2.87-2.50\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CH}_{2} \mathrm{COCH}_{2}\right.$ ), $1.89-1.66$ (m. $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$ ), 0.92 (s, $9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$ (Maj.)), 0.90 (s, $9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{C}_{3}\right)_{3}(\mathrm{Min}$.$) ), 0.11$ (s, $3 \mathrm{H}, \mathrm{SiCH}_{3}$ (Maj.)), 0.10 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}$ (Min.)), 0.06 (s, 3H, SiCH (Maj.)), 0.03 (s, 3H, SiCH (Min.)) ppm; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 210.9$, $210.8,141.8,141.7,141.7,128.3,128.3,128.1,125.7,68.5,68.3,66.6,66.5,50.9,50.7,50.5,50.4,39.2$, $39.1,37.9,37.8,31.6,31.6,31.2,31.2,25.7,25.7,17.9,17.8,-4.7,-4.8,-4.8 \mathrm{ppm} . \operatorname{Rf} 0.3$ (15 \% EtOAc/hexanes); Exact mass calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{SiO}_{3}: 441.2825$. Found: 441.2807 (CI, $\mathrm{NH}_{3}$ atmosphere).

Stereochemical proof of ( $\mathbf{4 b} \mathbf{b}$ : The stereochemistry of anti- $\mathbf{4 b}$ and syn- $\mathbf{4 b}$ was assigned by comparison with authentic anti-4b prepared from anti-2 (TBSCl, Imidazol; Pearlman's catalyst, $\mathrm{H}_{2}$ ).


3c

anti-4c
( $3 R^{*}, 7 R^{*}$ )1-Phenyl-3-hydroxy-7,9-bis-[4-(methoxybenzyl)oxy]-5-nonanone (anti-4c). The following reagents were combined in the amounts indicated according to the General Procedure for the boron
aldol reaction (vide supra): methyl ketone ( 3 c ) ( $0.213 \mathrm{~g}, 0.612 \mathrm{mmol}$ ), $\mathrm{Bu}_{2} \mathrm{BOTf}(160 \mu \mathrm{~L}, 0.642 \mathrm{mmol}$ ), Hunig's base ( $116 \mu \mathrm{~L}, 0.685 \mathrm{mmol}$ ), and hydrocinnamaldehyde solution ( $0.685 \mathrm{~mL}, 0.685 \mathrm{mmol}$ ). Purification by flash chromatography ( $30 \%$ EtOAc in hexanes) provided $0.227 \mathrm{~g}(77 \%$ ) of the product as a mixture of diastereomers. HPLC analysis of the unpurified product (Zorbax silica, $30 \%$ EtOAc in hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{Tr}$ $(\mathrm{min})=28.3 \mathrm{~min}, \operatorname{Tr}(\mathrm{maj})=30.3 \mathrm{~min})$ indicated a $88: 12 \mathrm{mixture}$ of isomers. $\operatorname{IR}$ (thin film) $v 3472,3030,2930$, $2859,1704,1604,1512,1455,1362,1298,1248,1177,1091,1034,820 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.38-7.23 (m, 8H, ӐrH), 6.97-6.91 (m, 5H, ArH), 4.49-4.47 (m, 4H, OCH $\mathrm{OAr}_{2}$, 4.20-4.11 (m, $2 \mathrm{H}, \mathrm{CHOPMB}$ and CHOH ), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$ ), $3.62-3.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OPMB}\right.$ ), 3.21 (br s, $1 \mathrm{H}, \mathrm{CHOH}$ ), 2.89-2.54 (m, 6 H , $\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Ph}$ ), 1.98-1.67 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$, and $\mathrm{CH}_{2} \mathrm{CHOPMB}$ ) $\mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{( } 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 210.7,159.2,141.8,130.3,129.4,129.3,128.4,128.3,125.8,113.7,72.9,72.6,71.4,66.8,66.0,55.2$, $50.4,48.6,37.9,34.3,31.7 \mathrm{ppm} ; \mathrm{R}_{f} 0.20$ ( $20 \%$ EtOAc in hexanes); Exact mass calcd for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{Na}$ : 529.2566. Found 529.2568 (FAB, MNBA, added NaI ).

Stereochemical proof of anti-4c: The stereochemistry of anti-4c was assigned by analysis of the derived benzylidine acetal.

(3R*,5R*,7R*)-1-Phenyl-3-acetoxy-5-hydroxy-7,9-bis-[4-(methoxybenzyl)oxy]-nonane. To a cooled solution of ketone $4 \mathrm{c}(0.126 \mathrm{gm}, 0.261 \mathrm{mmol})$ in THF ( 3.0 mL ) at $-10^{\circ} \mathrm{C}$ was added acetaldehyde ( $0.296 \mathrm{~mL}, 5.22 \mathrm{mmoL}$ ). A solution of samarium iodide ( 2.61 mL of a 0.1 M soln in THF) was added by syringe. After stirring for 15 min , saturated aqueous $\mathrm{NaHCO}_{3}$ solution was added and the mixture warmed to room temperature. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$. The combined organic solutions were washed with brine, dried over $\mathrm{MgSO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography ( $25 \%$ EtOAc in hexanes) to afford $88 \mathrm{mg}(64 \%$ ) of the desired alcohol. IR (thin film) $v 3484,2934,1732,1612$, $1513,1454,1373,1302,1248,1174,1034,820,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.24(\mathrm{~m}, 9 \mathrm{H}$, $\mathrm{Ar} H), 6.98-6.93(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 5.25-5.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOAc}), 4.53\left(\mathrm{ABq}, \mathrm{J}_{\mathrm{AB}}=11.0 \mathrm{~Hz}, \Delta \mathrm{~V}_{\mathrm{AB}}=12.4 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{PMPCH} \mathrm{OCH}_{2}\right), 4.51(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PMPCH} 2 \mathrm{O}), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right) .3 .88(\mathrm{~s} .3 \mathrm{H}, \mathrm{ArOCH} 3), 3.77(\mathrm{~m}, 1 \mathrm{H}$, CHOR ). $3.67-3.59(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHOR}), 2.78-2.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right.$ ), $2.13(\mathrm{~s} .3 \mathrm{H}, \mathrm{CH} 3 \mathrm{C}=\mathrm{O}), 2.10-1.64(\mathrm{~m}, 8$ $\mathrm{H}, \mathrm{CH} \mathrm{CH}_{2} \mathrm{CHOR}$ ) ppm; ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 171.6,159.2$, 141.1, $130.3,129.4,129.3,128.4,128.3$, $125.9,113.8,72.2,71.6,71.3,70.4,66.3,66.0,55.2,42.8,41.4,36.5,34.1,31.8,21.0 \mathrm{ppm} ; \mathrm{R}_{f} 0.45(2 \mathrm{x}$ $40 \%$ EtOAc in hexanes); Exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{Na}: 573.2828$. Found 573.2846 (FAB, MNBA. added NaI ).

(3R*,5R*,7R*)-4-[2-(4-Methoxyphenyl)-4-(methoxyphenyl)oxyethyl-1,3-dioxan-6-yl]-3-acetoxy-1-phenyl-butane. To a solution of the alcohol ( $33 \mathrm{mg}, 0.063 \mathrm{mmol}$ ) in dichloromethane ( 3 mL ) was added $3 \AA$ molecular sieves (ca. 50 mg ). After stirring for 20 min ., the mixture was treated with DDQ $(0.016 \mathrm{~g}$, 0.070 mmol ). After stirring for 30 min ., the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with saturated aqueous $\mathrm{NaH.CO}_{3}(3 \times 20 \mathrm{~mL})$ and brine. The organic solution was dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography ( $20 \%$ EtOAc in hexanes) to give 8 mg ( $27 \%$ ) of the product as a colorless oil. The illustrated NOE measurements established the 1,3-syn relationship of the disubstituted acetal and thereby confirmed the 1,5 anti relationship of the parent aldol compound $4 \mathbf{c}$. $\mathbb{R}$ (thin film) $v 3026,3001,2919$, $2858,1734,1613,1586,1514,1248,1102,1033,829,701 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.29-7.36$ (d, J=8.4 Hz, 2H, ArH), 7.27-7.24 (m, 5H, ArH), 7.20-7.14 (m, 3H, ArH), 6.88-6.85 (m, 3H, ArH), 5.42 (s, $\left.1 \mathrm{H}, \mathrm{ArCH}(\mathrm{OR})_{2}\right), 5.30-5.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOAc}), 4.49-4.41\left(\mathrm{ABq}, J \mathrm{AB}=11.6 \mathrm{~Hz}, \Delta \mathrm{~V}_{\mathrm{AB}}=7.88 \mathrm{~Hz}, 2 \mathrm{H}\right.$, CH 2 OPMB ), $4.00-3.96$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{CHOR}$ ), $3.86-3.74$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{CHOR}$ ), $3.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH} 3$ ), 3.78 ( $\mathrm{s}, 3 \mathrm{H}$, ArOCH3), 3.69-3.64 (m, 1H, CH2OPMB), 3.60-3.53 (m, $1 \mathrm{H}, \mathrm{CH} 2 \mathrm{OPMB}$ ), 2.68-2.60 (m, $2 \mathrm{H}, \mathrm{CH} 2 \mathrm{Ar}$ ), 2.04 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{CH} 3 \mathrm{CO} 2 \mathrm{R}$ ), 1.91-1.72 (m, $4 \mathrm{H}, \mathrm{CH} 2 \mathrm{CH} 2 \mathrm{OPMB}$ and $\mathrm{CH} 2 \mathrm{CH}(\mathrm{OAc}) \mathrm{CH} 2), 1.62-1.55(\mathrm{~m}, 2 \mathrm{H}$, PhCH2CH2), $1.55-1.51$ (dd, $J=2.2,10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} 2 \mathrm{CHOR}$ ), $1.46-1.37$ (q, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} 2 \mathrm{CHOR}$ )
ppm; ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl} 3$ ) $\delta 171.0,130.5,129.2,128.3,128.2,127.2,125.8,113.7,113.4,100.0$, $73.4,73.3,72.6,70.7,65.6,55.2,40.6,37.2,36.5,36.0,31.5,21.2 \mathrm{ppm}$; Rf 0.39 ( $20 \%$ EtOAc in hexanes); Exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{Na}$ : 571.2672 . Found 571.2690 (FAB, MNBA, added NaI ).

(3R*)-1-Phenyl-3-hydroxy-6-[2-(4-methoxyphenyl)-1,3-dioxan-6(R)-yl]-5-hexanone (anti-4d). The following reagents were combined in the amounts indicated according to the General Procedure for the boron aldol reaction (vide supra): methyl ketone $3 \mathrm{~d}\left(0.097 \mathrm{~g}, 0.388 \mathrm{mmol}\right.$ ), Bu $\mathrm{B}_{2} \mathrm{BOTf}$ ( $106 \mu \mathrm{~L}, 0.427$ mmol ), Hunig's base ( $79 \mu \mathrm{~L}, 0.466 \mathrm{mmol}$ ), and hydrocinnamaldehyde solution ( $0.466 \mathrm{~mL}, 0.466 \mathrm{mmol}$ ). Purification by flash chromatography ( $50 \%$ EtOAc in hexanes) provided $0.078 \mathrm{~g}(52 \%)$ of the product as a mixture of diastereomers. HPLC analysis of the unpurified product (Zorbax silica, $50 \% \mathrm{EtOAc}$ in hexanes, $0.5 \mathrm{~mL} / \mathrm{min}$, $\operatorname{Tr}(\min )=19.4 \mathrm{~min}, \operatorname{Tr}(\mathrm{maj})=20.5 \mathrm{~min})$ indicated a $93: 07$ mixture of isomers. $\operatorname{IR}$ (thin film) $v 3481,2926,2852$, $1717,1665,1558,1495,1455,1365,1249,1173,1098,1032,829,750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 7.47-7.45 (m, 2H, ArH ), 7.40-7.36 (m, 3H, ArH), 7.30-7.26 (m, 3H, ArH ), 6.98-6.95 (m, 2H, ArH), 4.474.41 (m, 1H, CHOR), $4.36-4.33$ (dd, $J=4.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOR}$ ), $4.20-4.13$ (heptet, $J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}$ ), $4.11-4.04$ (dt, $J=2.5,12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOR}$ ), $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 2.99-2.93(\mathrm{dd}, J=7.7,15.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$ ), 2.90-2.60 (m, $5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$ and $\mathrm{ArCH}_{2}$ ), 1.97-1.85 (m, $2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}$ ) , 1.81-1.73 (m, 1 H , ROCH ${ }_{2} \mathrm{CH}$ ), $1.70-1.67$ (dd, $J=13.2,1.3 \mathrm{~Hz}, \mathrm{ROCH}_{2} \mathrm{CH}$ ) ppm; ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{( } 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 209.6,159.9$, $141.7,130.8,12.4,128.3,127.2,125.8,113.6,101.1,73.3,66.8,66.7,55.2,50.7,49.3,37.9,31.7,31.0$ $\mathrm{ppm} ; \mathrm{R}_{f} 0.14$ ( $50 \%$ EtOAc in hexanes); Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{5}$ : 384.1937. Found 384.1956 (EI).


4S-[(Triphenylmethyloxy)-methyl]-6(R)-[1-phenyl-3R-hydroxy-5-hexanone]-2-phenyl-1,3-dioxane (anti-4e). The following reagents were combined in the amounts indicated according to the General Procedure for the boron aldol reaction (vide supra): methyl ketone $3 \mathrm{e}\left(0.030 \mathrm{~g}, 0.061 \mathrm{mmol}\right.$ ), Bu $\mathrm{u}_{2}$ BOTf ( $0.019 \mu \mathrm{~L}, 0.076 \mathrm{mmol}$ ), Hunig's base ( $16 \mathrm{vL}, 0.092 \mathrm{mmol}$ ), and hydrocinnamaldehyde solution ( 0.092 mL , 0.092 mmol ). Purification by flash chromatography ( $25 \% \mathrm{EtOAc}$ in hexanes) provided 0.040 g ( $70 \%$ ) of the product as a single isomer by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR ( $>95: 5$ anti). IR (thin film) $v 3500,3057,3025,2922$, $2871,1706,1591,1489,1450,1335,1258,1079,1021,900,740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl} 3$ ) $\delta 7.71-$ $7.68(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{ArH}), 7.24-7.07(\mathrm{~m}, 14 \mathrm{H}, \mathrm{ArH}), 5.84\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}(\mathrm{OR})_{2}\right), 4.19-4.16(\mathrm{~m}, 1 \mathrm{H}$, CHOR ), 3.99-3.95 (m, 1H, CHOR), 3.88-3.85 (m, 1H, CHOR), 3.35 (dd, $J=5.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}$, one of $\mathrm{TrOCH}_{2}$ ), $3.24-3.21$ (dd, $J=4.4 \mathrm{~Hz}, 9.5 \mathrm{~Hz}, 1 \mathrm{H}$, one of $\operatorname{TrOCH}$ ) , 2.93 (br S, $\left.1 \mathrm{H}, \mathrm{CHOH}\right), 2.82-2.75(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{PhCH}_{2}$ ), $2.67-2.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 2.47-2.41\left(\mathrm{dd}, J=7.7,16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=0\right.$ ), $2.00-1.95$ (dd, $J=4.4$, $\left.15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 1.74-1.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 1.52-1.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 1.39-1.31(\mathrm{q}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$, dioxane $\mathrm{CH}_{2}$-axial $H$ ), 1.27-1.23 (d, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}$, dioxane- $\mathrm{CH}_{2}$-equatorial $H$ ) ppm; ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 208.5,44.5,142.4,139.2,129.2,128.8,128.6,128.1,127.2,126.6,126.0$, $100.9,86.9,75.9,72.9,67.1,66.7,50.7 \mathrm{ppm} ; \mathrm{R}_{f} 0.26$ (30\% EtOAc in hexanes); Exact mass calcd for $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Na}$ : 649.2930. Found 649.2947 ( $\mathrm{FAB}, \mathrm{MNBA}$, added NaI ).


अ

anti-4it

Ketone ( 4 f ): The following reagents were combined in the amounts indicated according to the General Procedure for the boron aldol reaction (vide supra): methyl ketone $3 f\left(10 \mathrm{mg}, 0.031 \mathrm{mmol}\right.$ ), $\mathrm{Bu}_{2} \mathrm{BOTf}(8.2 \mu \mathrm{~L}$, 0.033 mmol ), Hunig's base ( $6 \mu \mathrm{~L}, 0.034 \mathrm{mmol}$ ), and hydrocinnamaldehyde ( $4.5 \mu \mathrm{~L}, 0.034 \mathrm{mmol}$ ). Purification by flash chromatography ( $40 \%$ EtOAc in hexanes) provided $7 \mathrm{mg}(70 \%$ ) of the product as a $89: 11$ mixture of isomers (HPLC : Zorbax, $20 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). Anti- 4 f was found to be the major isomer and the relative stereochemistry was prouved by X-ray cristalography.. $\mathrm{mp} 60-61^{\circ} \mathrm{C}$; $\mathbb{R}$ (thin film) $v 4368,3087,3056,3026$, $2927,2882,1708,1495,1453,1410,1360,1180,1146,1095,1069,1031,947,738,699 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.16(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar} H), 4.56\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.51(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH} \mathrm{H}_{2} \mathrm{O}\right), 4.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOR}), 4.12-4.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHOR}, \mathrm{CHOH}), 3.92\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 3.64(\mathrm{dd}$, $J=10.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OBn}$ ), 3.45 (dd, $\left.J=10.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.20(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.96$ (dd, $J=15.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ROCHCH} 2 \mathrm{C}=\mathrm{O}$ ), 2.79 (ddd, $J=13.7,9.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH} \mathrm{CH}_{2}$ ) $2.68-2.58$ (m, $3 \mathrm{H}, \mathrm{C}=\mathrm{OCH}_{2} \mathrm{CHOH}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}$ ), $2.62(\mathrm{dd}, J=15.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ROCHCH}, \mathrm{C}=\mathrm{O}), 1.88(\mathrm{dd}, J=13.4,4.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OR}) \mathrm{CH}_{2} \mathrm{C}=0$ ), $1.82-1.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 1.76$ (dd, $J=13.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OR}) \mathrm{CH}_{2} \mathrm{OBn}\right), 1.69-1.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 1.63$ (dd, $J=13.3,7.3 \mathrm{~Hz}, \mathrm{HH}$, $\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OR}) \mathrm{CH}_{2} \mathrm{OBn}$ ), 1.59 (dd, $J=13.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OR}) \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$ ) $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 210.4,142.0,128.5,128.4,127.8,127.7,125.9,106.4,77.3,73.4,71.4,70.2,68.0,66.9,64.5$, $50.5,47.1,38.6,38.2,36.2,31.9 \mathrm{ppm} ; \mathrm{R}_{f} 0.35$ ( $50 \%$ EtOAc in hexanes); Exact mass calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{Na}$ : 477.2253. Found 477.2258 ( $\mathrm{FAB}, \mathrm{MNBA}$, added NaI ).


5

( $R$ )-6


7
( $3 R, 5 S$ )-3-tert-Butyldimethylsilyloxy-5-hydroxy-8-[2-phenyl-4-( $R$ )-(triphenylmethyloxy)-methyl-1,3-dioxan-6(S)-yl]-octan-7-on-1-oic acid-2-(R)-napthylethanol ester (7). The following reagents were combined in the amounts indicated according to the General Procedure for the boron aldol reaction (vide supra): ketone $5\left(0.100 \mathrm{~g}, 0.203 \mathrm{mmol}\right.$ ), Bu $\mathrm{BO}_{2}$ BOTf ( $53 \mu \mathrm{~L}, 0.213 \mathrm{mmol}$ ), Hunig's base ( $41 \mu \mathrm{~L}, 0.244$ $\mathrm{mmol})$, and aldehyde $(R)-6^{6}(0.098 \mathrm{~g}, 0.244 \mathrm{mmol})$. Purification by flash chromatography ( $20 \% \mathrm{EtOAc}$ in hexanes) provided $0.154 \mathrm{~g}(85 \%)$ of the product as a mixture of diastereomers. HPLC analysis of the unpurified product (Zorbax silica, $20 \%$ EtOAc in hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, \operatorname{Tr}(\mathrm{min})=14.9 \mathrm{~min}, \mathrm{Tr}(\mathrm{maj})=15.8 \mathrm{~min})$ indicated a $91: 09$ mixture of isomers. IR (thin film) v 3600, 3057, 2928, 1733, 1490, 1449, 1265, 1080, 1019, 838, 739, $701,632 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.58(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 7.44-7.41(\mathrm{dd}, \mathrm{J}=1.5,8.5 \mathrm{~Hz}, \mathrm{H}$, $\operatorname{Ar} H), 7.29-7.01(\mathrm{~m}, 16 \mathrm{H}, \mathrm{ArH}) ; 6.18-6.14(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}(\mathrm{Me}) \mathrm{OR}), 5.43\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}(\mathrm{OR})_{2}\right)$, $4.53-4.48$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{CHOTBS}$ ), $4.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 4.16-4.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOR}), 3.84-3.82$ (m, $1 \mathrm{H}, \mathrm{CHOR}$ ), $3.44-3.41$ (dd, $J=5.6,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{TrOCH} 2), 3.18-3.15$ (dd, $J=4.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{TrOCH} 2), 3.08(\mathrm{~s}, 1 \mathrm{H}$, CHOH ), 2.65-2.55 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{R}$ ), $2.44-2.38$ (dd, $J=7.6,16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=0$ ), $2.21-2.09$ ( $\mathrm{m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$ ), $1.99-1.93$ (dd, $J=4.7,16.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}=0$ ), $1.81-1.74$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{CHOR}$ ), $1.60-1.54$ ( $\mathrm{m}, 1 \mathrm{H}$, CHCHOR ), $1.51-1.49$ ( $\mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{ArCHCH}_{3}$ ), $1.34-1.19$ (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHOR}$ ) 0.881 ( $\mathrm{s}, 9 \mathrm{H}$, $\left.\left.(\mathrm{CH})_{3}\right)_{3} \mathrm{CSi}\right), 0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.03\left(3,3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.0,170.5$, $144.6,139.3,133.5,129.2,128.7,128.6,128.2,128.1,127.8,127.2,126.6,126.3,125.7,124.5,100.9$, $86.9,76.0,72.8,72.5,67.8,67.2,65.1,51.0,49.2,44.0,42.6,33.6,25.9,22.2,18.0,-4.5,-4.6 \mathrm{ppm} ; \mathrm{R}_{f}$ 0.17 (20\% EtOAc in hexanes); Exact mass calcd for $\mathrm{C}_{56} \mathrm{H}_{64} \mathrm{O}_{8} \mathrm{Na}: 915.4268$. Found 529.4222 (FAB, MNBA, added Nal ).


(S)-6


8
(3S,5S)-3-tert-Butyldimethylsilyloxy-5-hydroxy-8-[2-phenyl-4-( $R$ )-triphenylmethyloxy)-methyl-1,3-dioxan-6-( $S$ )-yl]-octan-7-on-1-oic acid-2-(S)-napthylethanol ester (8). The following reagents were combined in the amounts indicated according to the General Procedure for the boron aldol reaction (vide supra): methyl ketone $5\left(0.100 \mathrm{~g}, 0.203 \mathrm{mmol}\right.$ ), Bu $\mathrm{a}_{2}$ BOTf ( $61 \mu \mathrm{~L}, 0.223 \mathrm{mmol}$ ), Hunig's base ( 42 $\mu \mathrm{L}, 0.250 \mathrm{mmol})$, and aldehyde ( $0.089 \mathrm{~g}, 0.223 \mathrm{mmol}$ ). Enolization was conducted at $-78^{\circ} \mathrm{C}$. The solution was cooled to $-115^{\circ} \mathrm{C}$ and the aldehyde $(S)-6$ added as a solution in $\mathrm{Et}_{2} \mathrm{O}$ Purification by flash chromatography ( $15 \%$

EtOA. in hexanes) provided $0.144 \mathrm{~g}(80 \%)$ of the product as a mixture of diastereomers. HPLC analysis of the unpurified product (Zorbax silica, $20 \%$ EtOAc in hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, \operatorname{Tr}(\mathrm{maj})=16.2 \mathrm{~min}, \operatorname{Tr}(\mathrm{~min})=19.2 \mathrm{~min}$ ) indicated a 96 : 04 mixture of isomers. $[\alpha]^{23} 589-3.30^{\circ}(c=1.47, \mathrm{CHCl} 3) ; \mathrm{IR}$ (thin film) $v 3507,3046,3015$, $2851,1728,1594,1492,1446,1379,1251,1215,754 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.61(\mathrm{~m}$, $11 \mathrm{H}, \mathrm{ArH}), 7.45(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.29-7.01(\mathrm{~m}, 15 \mathrm{H}, \mathrm{ArH}) ; 6.17(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}(\mathrm{Me}) \mathrm{OR})$, $5.44\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}(\mathrm{OR})_{2}\right), 4.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOTBS}), 4.41-4.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 4.18-4.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOR})$, 3.90-3.78 (m, 1H, CHOR), 3.46-3.43 (dd, J=5.6, $9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{TrOCH} 2$ ), 3.22 (br s, CHOH ), 3.21-3.17 (dd, $J=5.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{TrOCH} 2$ ), $2.64-2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{R}\right.$ ), $2.45-2.41$ (dd, $J=7.4,16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} 2 \mathrm{C}=\mathrm{O}$ ), 2.18-2.06 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$ ), $2.00-1.96$ (dd, $J=4.8,16.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$ ), 1.62-1.46 (m, 2H, CHCHOR), 1.511.49 (d, J=6.5 Hz, $3 \mathrm{H}, \mathrm{ArCHCH}_{3}$ ), $1.39-1.23$ (m, $2 \mathrm{H}, \mathrm{CH} 2 \mathrm{CHOR}$ ), 0.928 (s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 0.17(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{Si}$ ), 0.08 ( $3,3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}$ ) ppm; ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 208.0,169.9,144.6,139.5,139.4,133.8$, 133.7, 129.2., 128.7, 128.6, 128.4, 128.2, 128.1, 127.2, 126.6, 126.3, 126.1, 125.5, 124.6, 100.9, 87.0, $77.5,76.0,72.9,72.5,67.2,64.4,51.2,49.1,43.6,43.4,33.6,29.9,26.0,22.3,18.2,-4.66 \mathrm{ppm} ; \mathrm{R}_{f} 0.21$ ( $20 \%$ EtOAc in hexanes); Exact mass calcd for $\mathrm{C}_{56} \mathrm{H}_{64} \mathrm{O}_{8} \mathrm{Na}: 915.4268$. Found 529.4271 (FAB, MNBA, added NaI ).


Stereochemical Proof for 8. Methylation of the aldol adduct ( $\mathrm{Me}_{3} \mathrm{OBF}_{4}$, di-tert-butylmethylpyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) and spiroketalization ( $\mathrm{CSA}, \mathrm{MeOH}$ ) afforded the spiroketal. The illustrated coupling constants and NOE measurements established the 1,5 anti relationship of the parent aldol compound 8.



10


11
(3S,5S)-1-[(Phenyl)methoxy]-3-[4-(methoxybenzyl)oxy]-5-hydroxy-8-[2-phenyl-4-(R)-(triphenylmethoxy)methyl-1,3-dioxan-6-(S)-yl]-octa-7-one (11). The following reagents were combined in the amounts indicated according to the General Procedure for the boron aldol reaction (vide supra): methyl ketone 5 ( $0.065 \mathrm{~g}, 0.132 \mathrm{mmol}$ ), Bu ${ }_{2} \mathrm{BOTf}(343 \mu \mathrm{~L}, 0.125 \mathrm{mmol}$ ), Hunig's base ( $23 \mu \mathrm{~L}, 0.132 \mathrm{mmol}$ ), and aldehyde $10(0.032 \mathrm{~g}, 0.100 \mathrm{mmol})$. Purification by flash chromatography ( $35 \% \mathrm{EtOAc}$ in hexanes) provided $0.067 \mathrm{~g}(81 \%)$ of the product as a mixture of diastereomers. HPLC analysis of the unpurified product (Zorbax silica, $25 \%$ EtOAc in hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, \operatorname{Tr}(\mathrm{min})=32.5 \mathrm{~min}, \operatorname{Tr}($ maj $)=37.2 \mathrm{~min}$ ) indicated a $96: 04$ mixture of isomers: 1,5 anti 11 and 1,5 syn $11 .[\alpha]^{23} 589+21.43^{\circ}\left(\mathrm{c}=0.695, \mathrm{CHCl}_{3}\right)$; $\mathbb{R}$ (thin film) $v 3476$, $3059,3033,2922,2868,1713,1612,1586,1513,1248,1175,900,822,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.51-7.47(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 7.37-7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.52\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}(\mathrm{OR})_{2}\right), 4.49-4.44$ (m, $\mathrm{ArCH}_{2} \mathrm{OCH}_{2}, 2 \mathrm{H}$ ), $4.38-4.34$ (d, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{OCH}_{2}$ ), $4.23-4.20$ (m, $1 \mathrm{H}, \mathrm{CHOR}$ ), 4.12-4.10 (m, 1H, CHOR), 3.82-3.73 (m, $1 \mathrm{H}, \mathrm{CHOR}$ ), $3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.58-3.50(\mathrm{~m}, 3 \mathrm{H}$, one of CHOR and $\mathrm{CH}_{2} \mathrm{OBn}$ ), $3.36-3.32$ (dd, $J=5.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{TrOCH}$ ) , $3.09-3.06$ (dd, $J=4.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{TrOCH} 2$ ), 2.882.82 (dd, $J=7.2,16.3,1 \mathrm{H} \mathrm{CH} 2 \mathrm{C}=\mathrm{O}$ ), $2.61-2.48\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH} 2 \mathrm{C}=\mathrm{O}\right.$ ), $1.94-1.82$ (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHOPMB}$ ), 1.73$1.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{BnOCH}_{2} \mathrm{CH}_{2}\right), 1.61-1.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{TrOCH}(\mathrm{OR}) \mathrm{CH}_{2}\right.$ and $\left.\mathrm{BnOCH}_{2} \mathrm{CH}_{2}\right), 1.52-1.43(\mathrm{q}, J=11.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHOR}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 208.2,159.2,143.9,138.3,138.2,130.0,129.5$, $128.7,128.3,128.1,127.7,126.9,126.0,113.8,110.5,86.4,77.2,75.8,75.5,73.0,72.7,70.5,66.6,66.5$, $66.4,55.2,50.9,49.4,40.7,33.9,33.6,29.6 \mathrm{ppm} ; \mathrm{R}_{f} 0.16$ ( $30 \%$ EtOAc in hexanes). Exact mass calcd for $\mathrm{C}_{53} \mathrm{H}_{56} \mathrm{O}_{8} \mathrm{Na}: 843.3873$. Found 843.3837 (FAB, MNBA, added NaI ).

Stereochemical proof of 11 . The stereochemistry of 11 was assigned by analysis of the derived benzylidine acetal.


1-[4S--
(Phenylmethoxy)ethyl-2-(4-methoxyphenyl)-1,3-dioxan-6-(S)-yl]-3-[4-(2-phenyl-4-(R)-triphenylmethyloxymethyl-1,3-dioxan-6-(S)-yl]-2-propanone. To a solution of alcohol 11 ( 20 mg , 0.024 mmol ) in dichloromethane ( 3 mL ) was added $3 \AA$ molecular sieves (ca. 50 mg ). After stirring for 20 min ., the nixture was treated with DDQ ( $0.007 \mathrm{~g}, 0.029 \mathrm{mmol}$ ) After stirring for 30 min ., the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}(3 \times 20 \mathrm{~mL})$ and brine. The organic solution was dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography ( $20 \% \mathrm{EtOAc}$ in hexanes) to give $10 \mathrm{mg}(50 \%)$ of the product as a colorless oil. The illustrated NOE measurements established the 1,3 -syn relationship of the disubstituted acetal and thereby confirmed the 1,5 anti relationship of the parent aldol compound 9. $[\alpha]^{23} 589+6.470\left(\mathrm{c}=0.35, \mathrm{CHCl}_{3}\right) ; \mathbb{R}($ thin film $) ~ v 3055,2924,2856,1717,1615,1517,1490$, $1449,1265,1249,1126,1028,738,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $87.48-7.46(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 7.34-$ 7.21 (m, 19H, ArH$), 6.82-6.80(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.58\left(\mathrm{~s}, \mathrm{ArCH}(\mathrm{OR})_{2}\right), 5.46\left(\mathrm{~s}, \mathrm{ArCH}(\mathrm{OR})_{2}\right), 4.53-$ $4.46\left(\mathrm{ABq}, J_{\mathrm{AB}}=12.0 \mathrm{~Hz}, \Delta \mathrm{~V}_{\mathrm{AB}}=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.41-4.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHOR}), 4.12-4.07(\mathrm{~m}, 1 \mathrm{H}$, CHOR ), 4.04-4.01 ( $\mathrm{m}, \mathrm{1H}, \mathrm{CHOR}$ ), $3.74\left(\mathrm{~s}, \mathrm{ArOCH} \mathrm{H}_{3}\right), 3.68-3.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{BnOCH}_{2}\right), 3.58-3.53(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{BnOCH}_{2}$ ), $3.35-3.32$ (dd, $J=5.7,9.6 \mathrm{~Hz}, \operatorname{TrOCH} 2$ ), $3.08-3.04(\mathrm{dd}, J=4.9,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{TrOCH} 2$ ), 2.92-2.83 ( $\mathrm{dt}, \mathrm{J}=7.6,16.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$ ), $2.61-2.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} 2 \mathrm{C}=\mathrm{O}\right.$ ), 1.91-1.77 (m, $2 \mathrm{H}, \mathrm{BnOCH}_{2} \mathrm{CH}_{2}$ ), 1.73$1.70\left(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, dioxane $\mathrm{CH}_{2}$, equatorial $H$ ), $1.67-1.64\left(\mathrm{~d}, J=13.0 \mathrm{~Hz}\right.$, dioxane $\mathrm{CH}_{2}$, equatorial $H$ ), 1.51-1.32 (two overlapping quartets, $J=13.0 \mathrm{~Hz}$, dioxane $\mathrm{CH}_{2}$, axial $H$ ) $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $206.0,143.9,138.0,128.7,128.3,128.1,127.7,127.6,127.5,127.2,126.9 .126 .0,113.4,100.5,100.4$, $75.8,73.5,72.9,72.7,66.5,65.9,55.2,49.8,43.3,36.7,36.0,33.6 \mathrm{ppm} ; \mathrm{R}_{f} 0.37$ (40\% EtOAc in hexanes) Exact mass calcd for $\mathrm{C}_{53} \mathrm{H}_{54} \mathrm{O}_{8} \mathrm{Na:} 841.3716$. Found 841.3700 ( $\mathrm{FAB}, \mathrm{MNBA}$, added NaI ).



10


12
(3S,5R)-1-[(Phenyl)methoxy]-3-[4-(methoxybenzyl)oxy]-5-hydroxy-8-[2-phenyl-4-( $R$ )-(triphenylmethoxy)methyl-1,3-dioxan-6-(S)-yl]-octa-7-one (12). A solution of the silyl enol ether 9 ( $0.075 \mathrm{~g}, 0.104 \mathrm{mmol}$ ) in dichloromethane ( 2 mL ) was treated with a solution of the aldehyde $10(0.034 \mathrm{~g}, 0.106$ mmol) in dichloromethane ( 1 mL ). The solution was cooled to $-78^{\circ} \mathrm{C}$. A solution of $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(0.111 \mathrm{~mL}$ of a 1 M soln in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) was added. The solution was stirred for 90 min at $-78^{\circ} \mathrm{C}$. Triethylamine ( 0.5 mL ) and saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ were added and the mixture warmed to ambient temperature. The mixture was extracted with EtOAc ( $3 \times 20 \mathrm{~mL}$ ). The combined organic solutions were washed with saturated aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, satd aq $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, and brine ( 20 mL ). The solution was dried over $\mathrm{MgSO}_{4}$, filtered, and concentrated. The residue was redissolved in THF ( 2 mL ) and treated with $25 \mu \mathrm{~L}$ HF-pyridine (to cleave the silylated aldol adduct). After stirring for 30 min , the solution was quenched with saturated aq. $\mathrm{NaHCO}_{3}$ and worked up as before. The residue was purified by flash chromatography ( $35 \%$ EtOAc in hexanes) to give 57 mg ( $66 \%$ ) of the product 12 . HPLC analysis of the unpurified product (Zorbax silica, $25 \%$ EtOAc in hexanes, $1.0 \mathrm{~mL} / \mathrm{min}$, $\operatorname{Tr}$ (maj) $=31.6$ $\mathrm{min}, \operatorname{Tr}(\mathrm{min})=36.7 \mathrm{~min})$ indicated a $82: 18$ mixture of isomers. The major product diastereomer corresponded to the previously observed 1,5 syn aldol adduct ( $\mathbf{5} \rightarrow \mathbf{1 1}$; minor isomer) 12. $[\alpha]^{23} 589+9.91^{\circ}\left(\mathrm{c}=0.585, \mathrm{CHCl}_{3}\right)$ IR (thin film) $v 3479,3059,2922,2868,1711,1612,1586,1514,1491,1449,1412,1344,1302,1248,1079$, $901 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $87.51-7.47(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar} H), 7.35-7.19(\mathrm{~m}, 19 \mathrm{H}, \mathrm{Ar} H), 6.85-6.83(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.60\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}(\mathrm{OR})_{2}\right), 4.46-4.44\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{OCH}_{2}\right), 4.40-4.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHOR})$, $4.13-4.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOR}), 3.90-3.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOR}), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.59-3.49(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{BnOCH}_{2} \mathrm{CH}_{2}$ ), 3.37-3.31 ( $\mathrm{m}, 2 \mathrm{H}$, one of $\mathrm{TrOCH}_{2}$ and CHOH ), 3.10-3.06 (dd, $J=9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}$, one of $\mathrm{TrOCH}_{2}$ ), 2.89-2.83 (dd, $J=7.3,16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$ ), $2.65-2.51$ ( $\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=0$ ), 1.97-1.78 ( $\mathrm{m}, 2 \mathrm{H}$, $\mathrm{BnOCH}_{2} \mathrm{CH}_{2}$ ), $1.74-1.66$ (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHOR}$ ), $1.55-1.44$ ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHOR}$ ) ppm; ${ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 208.7,159.2,143.9,138.3,130.3,129.6,128.7,128.3,128.1,127.7,127.6,127.5,126.9,126.0$, $113.8,100.4,86.4,75.8,73.4,72.9,72.7,71.4,66.6,66.5,64.7,55.2,50.9,49.2,40.5,34.2,33.6,28.8$
ppm; $\mathrm{R}_{f} 0.35$ ( $50 \% \%$ EtOAc in hexanes); Exact mass calcd for $\mathrm{C}_{53} \mathrm{H}_{56} \mathrm{O}_{8} \mathrm{Na}: 843.3873$. Found 843.3864 (FAB, MNBA, added NaI ).

## References and Notes

(1) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
(2) (a) Inoue, T.; Mukaiyama, T. Bull. Chem. Soc. Jpn 1980, 53, 174-178. (b) Evans, D. A.; Vogel, E.; Nelson, J. V. J. Am. Chem. Soc. 1979, 101, 6120-6123.
(3) Brown, H. C.; Dhar, R. K.; Bakshi, R. K.; Pandiarajan, P. K.; Singaram, B. J. J. Am. Chem. Soc. 1989, 111, 3441- 3442.
(4) Girard, P.; Namy, J. K.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102, 2693-2698.
(5) Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G. J. Am. Chem. Soc. 1996, 118, 4322-4343.
(6) (R)-6 amd (S)-6 were prepared in analogy to the Heathcock procedure: a) Theisen, P. D.; Heathcock, C. H. J. Org. Chem. 1988, 53, 2374-2378. (b) We have found that commerically available 2(R)- and 2(S)naphthylethanol works well in this esterification process: Evans, D. A.; Black, W. C. J. Am. Chem. Soc. 1993, 115, 4497-4513.

