J. Org. Chem., 1997, 62(6), 1580-1581, DOI:10.1021/jo962416u

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

Experimental Procedures

2-(o-Nitrobenzenesulfonyl)-2-azabicyclo[2.2.1]hept-5-
en-3-one (3a)
To a solution of 2-azabicyclo[2.2.1]hept-5-en-3-one (2) (1.09 $\mathrm{g}, 10 \mathrm{mmol}$) in THF (31 ml) at $-78{ }^{\circ} \mathrm{C}$ was added BuLi-n-hexane solution (1.56 M) ($6.41 \mathrm{ml}, 10 \mathrm{mmol}$ of BuLi) under Ar atmosphere with stirring. The mixture was stirred for 30 min at the same temperature. To the resulting solution was added a solution of o-nitrobenzenesulfonyl chloride ($2.44 \mathrm{~g}, 11 \mathrm{mmol}$) in THF (4 ml) during the period of 1 h at $-75--70^{\circ} \mathrm{C}$ with stirring. After being stirred for 2 h at $-75^{\circ} \mathrm{C}$, the reaction mixture was neutralized with $\mathrm{AcOH}(0.12 \mathrm{~g}, 2 \mathrm{mmol})$. The mixture was diluted with toluene (50 ml), washed with 10% brine (50 ml), and dried over MgSO_{4}. The solvent was removed in vacuo to give 2.44 g (83%) of $\mathbf{3 a}, \mathrm{mp} 94^{\circ} \mathrm{C}$ (from AcOEt-hexane); exact mass (EI) calcd for $\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}+\mathrm{H}\right)+295.0389$, found 295.0353.

2-(Diphenylphosphoryl)-2-azabicyclo[2.2.1]hept-5-en-3one (3b)

To a solution of $2(1.05 \mathrm{~g}, 9.6 \mathrm{mmol})$ in THF (20 ml) was added BuLi-n-hexane solution (1.56 M) $(6.73 \mathrm{ml}, 10.5 \mathrm{mmol}$ of BuLi$)$ at $-78^{\circ} \mathrm{C}$ with stirring. The mixture was stirred for 30 min at the same temperature. The resulting solution was added to a solution of diphenyl chlorophosphate ($2.17 \mathrm{ml}, 10.5 \mathrm{mmol}$) in THF (10 ml) with stirring under ice-cooling. The mixture was stirred under ice-cooling for 5 min . To the resulting reaction mixture was added saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted with EtOAc, and the organic layer was dried over MgSO_{4}. After evaporation of the solvent in vacuo, the residue was submitted to silica gel column chromatography. Elution with hexane-EtOAc (3:1) afforded a crystalline substance, which was purified by recrystallization from hexane-EtOAc to give $2.12 \mathrm{~g}(88 \%)$ of $\mathbf{3 b}$, $\mathrm{mp} 51^{\circ} \mathrm{C}$, exact mass (EI) calcd for $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{4} \mathrm{P}\right)+341.0817$, found 341.0825.

6-Chloro-9-[c-4-(N-o-nitrobenzenesulfonyl)carbamoyl-cyclopent-2-en-r-1-yl]-9H-purine

To a solution of $\mathrm{Pd}\left[\mathrm{P}\left(\mathrm{O}^{\mathrm{iPr}}\right)_{3}\right]_{4}(0.1 \mathrm{mmol})$ prepared from $\mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{P}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}_{3}\right)_{3}(0.148 \mathrm{ml}, 0.6 \mathrm{mmol})$ in THF (5 ml) was added a solution of 6 -chloropurine tetrabutylammonium salt ($395 \mathrm{mg}, 1 \mathrm{mmol}$) in THF (5 ml) and a solution of 3a ($294 \mathrm{mg}, 1 \mathrm{mmol}$) in THF (5 ml) with stirring at room temperature. The mixture was stirred for 2.5 h at room
temperature. After removal of the solvent in vacuo, the residue was submitted to silica gel column chromatography. Elution with CHCl_{3}-iso-PrOH-AcOH (10:1:0.1) gave 267 mg (60%) of $6, \mathrm{mp}$ $212^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$), exact mass (EI) calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClN}_{6} \mathrm{O}_{5} \mathrm{~S}\right)^{+} 448.0356$, found 448.0360 .

6-Chloro-9-[c-4-(N-diphenylphosphoryl)carbamoyl-cyclopent-2-en-r-1-yl]-9H-purine

To a suspension of $\mathrm{NaH}(60 \%$ oil dispersion) ($22 \mathrm{mg}, 0.55 \mathrm{mmol}$) in N -methylpyrrolidone (NMP) (1 ml) was added a solution of 6 chloropurine ($85 \mathrm{mg}, 0.55 \mathrm{mmol}$) in NMP (1 ml) at $0^{\circ} \mathrm{C}$ with stirring. After being stirred for 1 h at $60^{\circ} \mathrm{C}$, to the solution were added a solution of $\operatorname{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 0.05 \mathrm{mmol})$ in THF $(0.5 \mathrm{ml})$, $\mathrm{P}\left(\mathrm{O}^{\mathrm{i} P r}\right)_{3}(0.074 \mathrm{ml}, 0.3 \mathrm{mmol})$, and a solution of $\mathbf{3 b}(63 \mathrm{mg}, 0.5$ mmol) in NMP (1 ml) with stirring under ice-cooling, successively. After being stirred at room temperature for 1 h , the resulting mixture was neutralized with AcOH . After evaporation of the solvent in vacuo, the residue was submitted to silica gel column chromatography. Elution with hexane-EtOAc (1:5) afforded 137 mg (55%) of 7. mp $187^{\circ} \mathrm{C}$ (from EtOAc); exact mass (EI) calcd for $\left(\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClN}_{5} \mathrm{O}_{4} \mathrm{P}\right)^{+}$495.0863, found 495.0870.

6-Chloro-2-formylamino-6-Chloro-9-[c-4-(N-o-nitrobenzenesulfonyl)carbamoylcyclopent-2-en-r-1-yl]$9 H$-purine (8)

To a solution of 2-formylamino-6-chloropurine tetrabutylammonium salt ($2.63 \mathrm{~g}, 6.0 \mathrm{mmol}$) in THF (20 ml) was added $\mathrm{Pd}(\mathrm{OAc})_{2}\left(56.0 \mathrm{mg}, 0.25 \mathrm{mmol}\right.$), and $\mathrm{P}\left(\mathrm{O}^{\mathrm{i} P r}\right)_{3}$ (360 mg , 1.73 mmol), successively. After being stirred at $50^{\circ} \mathrm{C}$ for 30 min , to the mixture was added a solution of $3 \mathrm{a}(1.47 \mathrm{~g}, 5.0 \mathrm{mmol})$ in THF (5 ml) during the period of 2 h at room temperature. After being stirred for 1 h at room temperature, the mixture was neutralized with AcOH , and concentrated in vacuo to give a residue, which was submitted to silica gel column chromatography. Elution with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(15: 1)$ afforded 1.36 g (55\%) of 8. mp $218-220^{\circ} \mathrm{C}$ (dec.) (from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$); exact mass (EI) calcd for $\left(\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClN}_{7} \mathrm{O}_{6} \mathrm{~S}\right)+491.0415$, found 491.0420 .

6-Chloro-9-[c-4-(N-methyl-N-o-nitrobenzene-sulfonyl)carbamoylcyclopent-2-en-r-1-yl]-9H-purine (10)

To a solution of 6 ($30 \mathrm{mg}, 0.067 \mathrm{mmol}$) in THF- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) (2 ml) was added $\mathrm{MeOH}(8.0 \mu \mathrm{l}, 0.20 \mathrm{mmol}), \mathrm{PPh}_{3}(53 \mathrm{mg}, 0.20 \mathrm{mmol})$, and diethyl azodicarboxylate ($90 \%, 0.036 \mathrm{ml}, 0.21 \mathrm{mmol}$) under Ar atmosphere with stirring at room temperature. After being stirred
for 30 min , the solvent was evaporated in vacuo to give a crystalline residue, which was submitted to silica gel column chromatography. Elution with hexane-EtOAc (1:2) gave 30 mg (97%) of 10. mp $215-217^{\circ} \mathrm{C}$ (from hexane-AcOEt-CHCl 3): ${ }^{1} \mathrm{HNMR}$ $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MH}_{\mathrm{z}}\right) \delta 2.30(\mathrm{dt}, \mathrm{J}=3.71,14.56 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99 ($\mathrm{dt}, \mathrm{J}=9.07$, $14.56 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.27(\mathrm{~m}, 1 \mathrm{H}), 5.85-5.93(\mathrm{~m}, 1 \mathrm{H}), 6.08(\mathrm{dt}$, $\mathrm{J}=2.20,5.77 \mathrm{~Hz}, 1 \mathrm{H}$), $6.30(\mathrm{dt}, \mathrm{J}=2.20,5.22 \mathrm{~Hz}, 1 \mathrm{H}$), $7.74-7.88$ (m, $3 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 8.34-8.41(\mathrm{~m}, 1 \mathrm{H}), 8.73(\mathrm{~s}, 1 \mathrm{H})$; exact mass (EI) calcd for $\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClN}_{6} \mathrm{O}_{5} \mathrm{~S}\right)^{+} 462.0513$, found 462.0532 .

6-Chloro-9-(c-4-hydroxymethylcyclopent-2-en-r-1-yl)$9 H$-purine (11)

To a solution of 10 ($30 \mathrm{mg}, 0.065 \mathrm{mmol}$) in MeOH (2 ml) was added NaBH_{4} ($25 \mathrm{mg}, 0.66 \mathrm{mmol}$) under ice-cooling with stirring. The mixture was stirred at room temperature for 5 min , and neutralized with AcOH . After evaporation of the solvent, the residue was submitted to silica gel column chromatography. Elution with AcOEt gave $15 \mathrm{mg}(92 \%)$ of 11 and 13 mg (93%) of 12. 11: ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MH}_{\mathrm{z}}\right) \delta 1.96$ (dt, J=5.22, $14.29 \mathrm{~Hz}, 1 \mathrm{H}$), 2.91 (dt, J=9.20, $14.29 \mathrm{~Hz}, 1 \mathrm{H}$), 3.10-3.20 (m, 1H), 3.74 (dd, J=4.26, $10.58 \mathrm{~Hz}, 1 \mathrm{H}), 3.89$ (dd, J=4.26, $10.58 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.86$ (m, 1H), 5.92 (dt, J=2.27, $5.77 \mathrm{~Hz}, 1 \mathrm{H}$), 6.25 (dt, J=2.06, $5.77 \mathrm{~Hz}, 1 \mathrm{H}$), 8.34 (s, $1 \mathrm{H}), 8.75(\mathrm{~s}, 1 \mathrm{H}) .12:{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}_{\mathrm{z}}\right) \delta 2.80(\mathrm{~d}, \mathrm{~J}=5.22 \mathrm{~Hz}$, $1 \mathrm{H}), 5.19-5.29(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.93(\mathrm{~m}, 1 \mathrm{H}), 8.11-$ 8.19 (m, 1H).

2-Amino-6-chloro-9-(c-4-hydroxymethylcyclopent-2-en-$r-1-\mathrm{yl})-9 \mathrm{H}$-purine (15)

To a suspension of $\mathrm{NaH}(60 \%$ oil dispersion) $(0.44 \mathrm{~g}, 11 \mathrm{mmol})$ in THF (50 ml) was added $8(2.46 \mathrm{~g}, 5.0 \mathrm{mmol})$ portionwise under ice-cooling with stirring. After being stirred with ice-cooling for 1 h , to the mixture was added di-tert-butyl dicarbonate (2.18 g , $10.0 \mathrm{mmol})$. The resulting mixture was stirred for 2 h at room temperature, and then stirred for 3 h at $50^{\circ} \mathrm{C}$. After cooling, methyl iodide ($7.1 \mathrm{~g}, 50 \mathrm{mmol}$) was added to the mixture. The reaction mixture was stirred overnight at room temperature, and poured into water. The resulting mixture was extracted with AcOEt. The organic layer was washed with saturated brine, dried over anhydrous MgSO_{4}, and condensed in vacuo to give 2.90 g of 13. Without further purification, the crude 13 was used for the next reaction. To a solution of crude 13 in MeOH (100 ml) was added $\mathrm{NaBH}_{4}(0.19 \mathrm{~g}, 5.0 \mathrm{mmol})$ portionwise with stirring at $-20^{\circ} \mathrm{C}$. During this period, the internal temperature was kept below $0^{\circ} \mathrm{C}$. The mixture was then stirred at room temperature for 8 h . After the reaction mixture was neutralized with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$, the solvent was evaporated off in vacuo. To the residue was added
water. The mixture was extracted with AcOEt. The extract was dried over MgSO_{4}, and condensed in vacuo to give 2.8 g of 14. Without further purification, the crude 14 was used for the next reaction. The crude 14 was dissolved in 90% aqueous AcOH (10 $\mathrm{ml})$. The solution was heated at $50^{\circ} \mathrm{C}$ for 8 h . After removal of the solvent, the residue was submitted to silica gel column chromatography. Elution with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(40: 1)$ afforded 0.96 g (72% from 8) of $15 . \mathrm{mp} 160-162^{\circ} \mathrm{C}$ (lit. ${ }^{2 \mathrm{am}} \mathrm{mp} 145-147^{\circ} \mathrm{C}$ for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClN}_{5} \mathrm{O} \cdot 3 / 4 \mathrm{H}_{2} \mathrm{O}$); ${ }^{1} \mathrm{HNMR}$ (DMSO- $\mathrm{d}_{6}, 300 \mathrm{MHz}$) $\delta 1.88$ (dt, $\mathrm{J}=13.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dt}, \mathrm{J}=13.7,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~m}, 1 \mathrm{H}), 3.44$ $(\mathrm{m}, 2 \mathrm{H}), 4.78(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~m}, 1 \mathrm{H}), 5.89(\mathrm{~m}, 1 \mathrm{H}), 6.13(\mathrm{~m}$, $1 \mathrm{H}), 6.86$ (brs, 2 H), 7.38 (d, J=8.0 Hz, 2H), 7.78 (d, J=8.0 Hz, 2H), 8.02 (s, 1H); ${ }^{13}$ CNMR (DMSO-d $6,75 \mathrm{MHz}$) $\delta 160.0,154.0,149.7$, 141.6, 139.2, 129.6, 123.9, 64.1, 59.5, 48.1, 34.3.

chiku phosphine-4

$$
1+x
$$

