J. Org. Chem., 1996, 61(23), 8186-8199, DOI:10.1021/jo961549c

## Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

## ACS Publications

## Supplementary Material for:

# The Synthesis of Novel Nucleic Acid Mimics via the Stereoselective Intermolecular Radical Coupling of $\mathbf{3}^{\prime}$-Iodo Nucleosides and Formaldoximes 

Balkrishen Bhat,* Eric E. Swayze, Patrick Wheeler, Stuart Dimock, Michel Perbost ${ }^{\dagger}$ and Yogesh S. Sanghvi Isis Pharmaceuticals, Medicinal Chemistry Department, 2292 Faraday Avenue, Carlsbad, CA 92008

## Experimental Section

$2^{\prime}, 3^{\prime}$-Dideoxy- $\mathbf{3}^{\prime}$-iodo-5-methyl- $5^{\prime}$ - $O$-(triphenylmethyl)cytidine ( 6 c ). To 1,2,4-triazole ( $2.38 \mathrm{~g}, 34.4 \mathrm{mmol}$ ) in dry MeCN ( 30 mL ) under argon at $0^{\circ} \mathrm{C}$ was added $\mathrm{POCl}_{3}(0.75 \mathrm{~mL}, 8 \mathrm{mmol})$ dropwise with vigorous stirring. $\mathrm{Et}_{3} \mathrm{~N}(5.56 \mathrm{~mL}, 40$ mmol ) was added dropwise over 0.5 h , and the thick suspension was stirred at $0^{\circ} \mathrm{C}$ for an additional $0.5 \mathrm{~h} .3^{\prime}$-Deoxy- $3^{\prime}$-iodo- $5^{\prime}$ - $O$-(triphenylmethyl)thymidine $1.19 \mathrm{~g}(2.0 \mathrm{mmol})$ was added in one portion, and the mixture allowed to warm to rt over 3 h . The mixture was then cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{Et}_{3} \mathrm{~N}(5.5 \mathrm{~mL})$ and water $(0.55 \mathrm{~mL})$ were added, the mixture allowed to warm to room temperature with stirring, then concentrated to a small volume. The residue was partitioned between $\mathrm{EtOAc}(50 \mathrm{~mL})$ and $5 \% \mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and the organic layer washed with $5 \% \mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL}$ ), water ( $2 \times 50 \mathrm{~mL}$ ), brine, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to a foam, which was azeotroped with toluene, then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This material was dissolved in dry 1,4-dioxane ( 25 mL ), saturated with anhydrous $\mathrm{NH}_{3}$ at rt , then stirred at rt under a balloon filled with anhydrous $\mathrm{NH}_{3}$ overnight. The solvent was removed, and the residue dissolved in EtOAc ( 25 mL ), washed with $5 \% \mathrm{NaHCO}_{3}(2 \times 25$ $\mathrm{mL})$, brine, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to a foam: $R_{f} 0.46(10 \%$
$\left.\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.20(\mathrm{~m}, 15 \mathrm{H}), 6.09(\mathrm{t}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{I}: \mathrm{C}, 58.69 ; \mathrm{H}, 4.76 ; \mathrm{N}, 7.08$. Found: C, $58.81 ; \mathrm{H}, 4.92 ; \mathrm{N}$, 6.76.
$3^{\prime}$-O-tert-Butyldiphenylsilyl-5'-O- (methyleneimino)thymidine (7a). $5^{\prime}$-O-Amino-3'-O-tert-butyldiphenylsilyl-thymidine ${ }^{1}$ ( $5.0 \mathrm{~g}, 10 \mathrm{mmol}$ ) was suspended in $\mathrm{EtOAc} / \mathrm{MeOH}(25 \mathrm{~mL}+25 \mathrm{~mL})$, formaldehyde ( $20 \% \mathrm{w} / \mathrm{w}$ aqueous, $1.60 \mathrm{~mL}, 10.5$ mmol) was added, and the mixture stirred 1 h at rt . The solution was concentrated, then chromatographed ( $50 \% \mathrm{EtOAc} / \mathrm{hexane}$ ) to afford $4.79 \mathrm{~g}(94 \%)$ of $7 \mathrm{a}: \mathrm{mp} 166-167^{\circ} \mathrm{C} ; R_{f}$ 0.51 (\% 50\% EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~m}, 4 \mathrm{H}), 7.45(\mathrm{~m}$, $6 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, 2 \mathrm{H}), 6.42(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{dd}$, 1H), 2.35 (ddd, 1H), $1.85(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 63.88 ; \mathrm{H}, 6.55 ; \mathrm{N}, 8.28$. Found: C, $63.77 ; \mathrm{H}, 6.50 ; \mathrm{N}, 8.20$.
$\mathbf{3}^{\prime}$-O-tert-Butyldiphenylsilyl-2'-deoxy-5'-O-phthalimidoadenosine. To $5^{\prime}-O$-phthalimido-2'-deoxyadenosine ${ }^{2} 0.40 \mathrm{~g}(1 \mathrm{mmol})$ and imidazole $(0.18 \mathrm{~g}, 2.6 \mathrm{mmol})$ in dry DMF ( 5 mL ) was added tert-butyldiphenylsilyl chloride ( $0.31 \mathrm{~mL}, 1.2 \mathrm{mmol}$ ), and the reaction mixture was stirred at rt for 18 h . The solution was partitioned between water $(50 \mathrm{~mL})$ and EtOAc ( 25 mL ), the organic layer washed with water ( $2 \times 25 \mathrm{~mL}$ ) and brine, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to afford $0.60 \mathrm{~g}(94 \%)$ of crude product (containing only traces of silyl by-products), which could be used directly for the next step. A portion of material so obtained was chromatographed ( 0 to $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to provide an analytical sample: $R_{f} 0.46\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~s}, 2 \mathrm{H})$, $7.85-7.60(\mathrm{~m}, 8 \mathrm{H}), 7.40(\mathrm{~m}, 6 \mathrm{H}), 6.57(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 2 \mathrm{H}), 4.83(\mathrm{~m}, 1 \mathrm{H})$, $4.28(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{dd}, 1 \mathrm{H}), 3.94(\mathrm{dd}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Si}^{\bullet} 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 63.43 ; \mathrm{H}, 5.48 ; \mathrm{N}, 13.05$. Found: C, 63.24; H, 5.29; N, 13.03.

## $3^{\prime}$-O - tert-Butyldiphenylsilyl-2'-deoxy-5'-O-

(methyleneimino)adenosine (7b). 3'-O-tert-Butyldiphenylsilyl-2'-deoxy-5'-Ophthalimidoadenosine ( $1.05 \mathrm{~g}, 1.65 \mathrm{mmol}$ ) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$, cooled to 0 ${ }^{\circ} \mathrm{C}$, and methylhydrazine ( $0.11 \mathrm{~mL}, 1.98 \mathrm{mmol}$ ) was added dropwise. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h , filtered, and the solid washed twice with cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrates were diluted with toluene ( 6 mL ), then concentrated and combined with an additional portion ( $0.95 \mathrm{~g}, 1.88 \mathrm{mmol}$ ) of $5^{\prime}-\mathrm{O}$-amino- $3^{\prime}$-O-tert-butyldiphenylsilyl-2'deoxyadenosine prepared in a similar manner. This solid was suspended in $\mathrm{EtOAc} / \mathrm{MeOH}$ $(17 \mathrm{~mL}+17 \mathrm{~mL})$, formaldehyde ( $20 \% \mathrm{w} / \mathrm{w}$ aqueous, $0.53 \mathrm{~mL}, 3.53 \mathrm{mmol}$ ) was added, and the mixture stirred 1 h at $40^{\circ} \mathrm{C}$. The solution was concentrated, then chromatographed ( $80 \% \mathrm{EtOAc} / \mathrm{hexane}$ to $5 \% \mathrm{MeOH}$ in $80 \% \mathrm{EtOAc} /$ hexane) to afford $1.33 \mathrm{~g}(73 \%)$ of $7 \mathrm{~b}: R_{f}$ $0.47(5 \% \mathrm{MeOH}$ in $80 \% \mathrm{EtOAc} / \mathrm{hexane}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H})$, $7.65(\mathrm{~m}, 4 \mathrm{H}), 7.41(\mathrm{~m}, 6 \mathrm{H}), 6.88(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 2 \mathrm{H}), 4.65(\mathrm{dd}, 1 \mathrm{H}), 4.28(\mathrm{dd}, 1 \mathrm{H}), 4.15(\mathrm{dd}, 1 \mathrm{H}), 3.92$ (dd, $1 \mathrm{H}), 2.51(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 62.77$; H, 6.24; N, 16.27. Found: C, 62.77; H, 6.11; N, 15.94.

## $3^{\prime}$ - O-tert-Butyldiphenylsilyl-2'-deoxy-2-N-

(dimethylamino)methylene-5' $O$ - (methyleneimino)guanosine (7c). This material was prepared from $2^{\prime}$-deoxyguanosine according to the general procedures described for the $2^{\prime}-O$-methyl series in $61 \%$ overall yield: $R_{f} 0.38\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ) $\delta 11.34(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~m}, 4 \mathrm{H}), 7.42$ $(\mathrm{m}, 6 \mathrm{H}), 6.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{dd}, J=6.1,8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.57(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{dd}, 1 \mathrm{H}), 4.55(\mathrm{dd}, 1 \mathrm{H}), 3.96(\mathrm{dd}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H})$, $2.71(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{7} \mathrm{O}_{4} \mathrm{Si} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ : C, $60.84 ; \mathrm{H}, 6.38 ; \mathrm{N}, 16.55$. Found: C, $60.80 ; \mathrm{H}, 6.49 ; \mathrm{N}, 16.46$.
$3^{\prime}$ - De (oxyphosphinico)- $\mathbf{3}^{\prime}$-(methyleneimino)- $5^{\prime}$ - O -(triphenylmethyl)thymidylyl-( $\left.3^{\prime} \rightarrow 5^{\prime}\right)-3^{\prime}-\mathrm{O}$-(tert-
butyldiphenylsilyl)thymidine (9a). Method 1: From $0.59 \mathrm{~g}(1.0 \mathrm{mmol})$ of $3^{\prime}$ -deoxy- $3^{\prime}$-iodo- $5^{\prime}$ - $O$-(triphenylmethyl)thymidine ( 6 a ) and $1.52 \mathrm{~g}(3.0 \mathrm{mmol})$ of $3^{\prime}$-O-tert-butyldiphenylsilyl-5'-O-(methyleneimino)thymidine (7a) according to the general procedure was obtained unreacted oxime ( $0.84 \mathrm{~g}, 75 \%$ of unreacted material) upon elution of the column with $50 \% \mathrm{EtOAc} / \mathrm{hexane}$, and $0.80 \mathrm{~g}(82 \%)$ of the dimer 9 a upon elution with $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Method 2: From the $3^{\prime}$-iodide ( $713 \mathrm{mg}, 1.2 \mathrm{mmol}$ ), oxime ( $508 \mathrm{mg}, 1.0 \mathrm{mmol}$ ), and bis(trimethystannyl)benzopinacolate ( $2.08 \mathrm{~g}, 3.0 \mathrm{mmol}$ ) according to the general procedure was obtained 789 mg ( $81 \%$, based on oxime) of 9 a after chromatography as described for method 1. Method 3: A solution of $\mathrm{Bu}_{3} \mathrm{SnH}$ ( $0.19 \mathrm{~mL}, 0.7 \mathrm{mmol}$ ) and AIBN ( $30 \mathrm{mg}, 0.18 \mathrm{mmol}$ ) in degassed benzene ( 0.50 mL ) was added via syringe pump to a solution of the $3^{\prime}$-iodide ( $297 \mathrm{mg}, 0.50 \mathrm{mmol}$ ) and the oxime ( $762 \mathrm{mg}, 1.5 \mathrm{mmol}$ ) in degassed benzene ( 5 mL ) over 24 h at $80^{\circ} \mathrm{C}$. The mixture was cooled, treated with $\mathrm{EtOAc} / \mathrm{KF}$ as described in the general procedure, then chromatographed as described for method 1 to yield 623 mg of unreacted oxime $(88 \%$ of unreacted material), 66 mg ( $28 \%$ ) of $3^{\prime}$-deoxy- $5^{\prime}$-(triphenylmethyl)thymidine, and 232 mg ( $48 \%$ ) of 9a. Dimeric material obtained by each method was identical, and gave the following data: $R_{f} 0.30(70 \%$ EtOAc/hexane $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}$, $1 \mathrm{H}), 7.65-7.05(\mathrm{~m}, 27 \mathrm{H}), 6.32(\mathrm{t}, J=6.8,1 \mathrm{H}), 6.10(\mathrm{t}, J=5.5,1 \mathrm{H}), 5.30(\mathrm{t}, 1 \mathrm{H}), 4.26$ $(\mathrm{m}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{~m}, 2 \mathrm{H}), 2.53$ $(\mathrm{m}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}$, 9H). Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{61} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{Si}: \mathrm{C}, 68.90 ; \mathrm{H}, 6.30 ; \mathrm{N}, 7.17$. Found: C, 68.61; H, 6.31; N, 7.10.

## $3^{\prime}$-De(oxyphosphinico)-3'-(methyleneimino)-5' $\boldsymbol{-}$-(tert-

butyldiphenylsilyl)thymidylyl-( $3^{\prime} \rightarrow 5^{\prime}$ )-3'-O-(tert-
butyldiphenylsilyl)thymidine (9b). From $0.59 \mathrm{~g}(1.0 \mathrm{mmol})$ of $5^{\prime}$-O-tert-butyldiphenylsilyl-3'-deoxy- $3^{\prime}$-iodo-thymidine ( $\mathbf{6 b}$ ) and $1.52 \mathrm{~g}(3.0 \mathrm{mmol})$ of $3^{\prime}$-O-tert-butyldiphenylsilyl-5'-O-(methyleneimino)thymidine (7a) according to the general
procedure was obtained unreacted oxime $(1.10 \mathrm{~g}, 99 \%$ of unreacted material) upon elution of the column with $50 \% \mathrm{EtOAc} /$ hexane, and $0.78 \mathrm{~g}(81 \%)$ of 9 b upon elution with $10 \%$ $\mathrm{MeOH} / 1: 1 \mathrm{EtOAc} /$ hexane: $R_{f} 0.36(10 \% \mathrm{MeOH} / 1: 1 \mathrm{EtOAc}-$ hexane $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $8.58(\mathrm{bs}, 2 \mathrm{H}), 7.66(\mathrm{~m}, 8 \mathrm{H}), 7.41(\mathrm{~m}, 13 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{t}, J=6.8,1 \mathrm{H}), 6.10(\mathrm{t}$, $J=6.1,1 \mathrm{H}), 5.34(\mathrm{t}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 4.10-3.25(\mathrm{~m}, 5 \mathrm{H}), 2.82(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.10$ $(\mathrm{m}, 3 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 18 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{53} \mathrm{H}_{65} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{Si}_{2} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 64.28 ; \mathrm{H}, 6.82 ; \mathrm{N}, 7.07$. Found: C, 64.08; H, 6.81; N, 6.95 .
$3^{\prime}$-De(oxyphosphinico)-2'-deoxy-5-methyl-3'-(methyleneimino)-5'-O-(triphenylmethyl)cytidylyl-( $3^{\prime} \rightarrow 5^{\prime}$ )-3'-O-(tert-butyldiphenylsilyl)thymidine (9c). From $297 \mathrm{mg}(0.5 \mathrm{mmol})$ of $\mathbf{6 c}$ and 760 mg ( 1.5 mmol ) of 7 a according to the general procedure was obtained unreacted oxime $(0.59 \mathrm{~g}, 97 \%$ of unreacted material) upon elution of the column with $50 \% \mathrm{EtOAc} /$ hexane, and $0.29 \mathrm{~g}(58 \%)$ of 9 c upon elution with $7 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}: R_{f} 0.30\left(7 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~s}, 1 \mathrm{H})$, 7.70-7.20 (m, 25H), $7.16(\mathrm{~s}, 1 \mathrm{H}), 6.31$ (dd, $J=6.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.25(\mathrm{bs}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~m}$, $2 \mathrm{H}), 2.76(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.20(\mathrm{~m}, 4 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.07$ (s, 9H). Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{62} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{Si} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} \cdot 0.15 \mathrm{EtOAc}$ (EtOAc evident in ${ }^{1} \mathrm{H}$ NMR): C, 68.16; H, 6.49; N, 8.43. Found: C, 68.41; H, 6.31; N, 8.06.

## $3^{\prime}$ - De (oxyphosphinico)- $\mathbf{3}^{\prime}$-(methyleneimino)- $\mathbf{5}^{\prime}$ - $O$ -

(triphenylmethyl)thymidylyl-( $3^{\prime} \rightarrow 5^{\prime}$ )-3'-O-(tert-butyldiphenylsilyl)-2'deoxyguanosine (9e). From $297 \mathrm{mg}(0.5 \mathrm{mmol})$ of $\mathbf{6 b}$ and $880 \mathrm{mg}(1.5 \mathrm{mmol})$ of 7 c according to the general procedure was obtained a mixture of products after elution of the column with $20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. TLC analysis of this mixture $\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 3\right.$ developments) indicated the presence of four major nucleosidic products, presumably resulting from partial loss of the dimethylformamidine protecting group. The mixture was dissolved in 1,4-dioxane ( 5 mL ), concentrated aqueous ammonia ( 5 mL ) was added, and the mixture was stirred at $55^{\circ} \mathrm{C}$ in a sealed vessel for 2 h . The resulting clear solution was
cooled in an ice bath, and the solvent removed in vacuo. The solid residue was triturated with EtOAc ( $25 \mathrm{~mL}, 1 \mathrm{~h}$ at $40^{\circ} \mathrm{C}$, with stirring), filtered, washed with EtOAc, and dried to provide 0.54 g of $3^{\prime}$-O-tert-butyldiphenylsilyl-2'-deoxy-5'- $O$ - (methyleneimino)guanosine ( $81 \%$ based on unreacted oxime). This material could be converted back to the dimethylformamidine protected starting material in nearly quantitative yield. ${ }^{3}$ The combined filtrates were concentrated and chromatographed ( $5 \% \mathrm{MeOH}$ in 7:3 $\mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to provide an additional 80 mg of the deblocked oxime ( $8 \%$, total recovery $91 \%$ ), and $230 \mathrm{mg}(46 \%)$ of $9 \mathrm{e}: R_{f} 0.63(10 \%$ $\left.\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.13(\mathrm{~s}, 1 \mathrm{H}), 9.67(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.60(\mathrm{~m}, 5 \mathrm{H})$, $7.57(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.10(\mathrm{~m}, 21 \mathrm{H}), 6.24(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{bs}, 2 \mathrm{H}), 6.02(\mathrm{t}, J=5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.68(\mathrm{bs}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~m}, 3 \mathrm{H}), 3.19$ $(\mathrm{m}, 1 \mathrm{H}), 2.72(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~m}, 3 \mathrm{H}), 2.12(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 164.25,158.85,153.49,151.25,150.52,143.44,143.33,136.36$, 135.77, 135.72, 133.22, 133.07, 130.06, 128.64, 127.94, 127.86, 127.27, 117.46, $110.41,87.05,86.00,85.35,84.26,83.28,77.21,73.71,73.40,63.92,53.24,40.11$, 37.47, 36.99, 26.88,19.07, 12.08. Anal. Calcd for $\mathrm{C}_{59} \mathrm{H}_{64} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{Si}: \mathrm{C}, 67.18 ; \mathrm{H}, 6.04$; N, 11.19. Found: C, $67.57 ; H, 6.00 ; N, 11.23$.

6-N-[1-(Dimethylamino)ethylene]-2'-O-methyladenosine (10c) $2^{\prime}-O-$ methyladenosine ( $\mathbf{1 0 b}, 5.0 \mathrm{~g}, 17.8 \mathrm{mmol}$ ) was dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ at $40^{\circ} \mathrm{C}$ for 24 h . It was then azeotroped with anhydrous pyridine ( $20 \mathrm{~mL} \times 2$ ) and the residue dried under reduced pressure for 1.5 h . After taking up in anhydrous MeOH ( 20 mL ), dimethylacetamide dimethylacetal ( $8.48 \mathrm{~g}, 63.6 \mathrm{mmol}$ ) was added, and the reaction mixture was stirred at room temperature for 36 h . It was concentrated to an oil, dissolved in EtOAc ( 100 mL ) and washed with water ( $2 \times 20 \mathrm{~mL}$ ). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. It was purified by column chromatography on silica gel (5-7\% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to provide $5.6 \mathrm{~g}(90 \%)$ of 10 c as a colorless foam: ${ }^{1} \mathrm{H}$ NMR(DMSO- $\left.d_{6}\right) \delta$ $8.50(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}) 6.07(\mathrm{~d}, J=5.3,1 \mathrm{H}), 5.32\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 4.43-
$4.28(\mathrm{~m}, 2 \mathrm{H}), 4.01-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.55(\mathrm{~m}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~s}, 6 \mathrm{H}), 2.07$
(s, 3H); MS ( $\mathrm{FAB}^{+}$) m/e $351(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 50.77$;
H, 6.39; N, 23.68. Found: C, 50.58; H, 6.50; N, 23.38.
2- $\boldsymbol{N}$-Isobutyryl-2'-O-methylguanosine (10e). Dried 10 d ( $5.0 \mathrm{~g}, 16.8$ mmol ) was azeotroped with anhydrous pyridine ( 30 mL ). After dissolving the residue in anhydrous pyridine ( 80 mL ), $\mathrm{TMSCl}(14.0 \mathrm{~mL}, 110 \mathrm{mmol})$ was added and the reaction mixture was allowed to stir at room temperature for 17 h . To this was added isobutyryl chloride ( $9.35 \mathrm{~g}, 89.5 \mathrm{mmol}$ ) and the stirring was continued for an additional 5 h . It was quenched with water ( 20 mL ) and cooled to $0^{\circ} \mathrm{C}$. To this was added $\mathrm{NH}_{4} \mathrm{OH}(25 \mathrm{~mL})$. It was stirred at this temperature for 30 m , and the separated solid was removed by filtration, then washed with hexane ( $3 \times 20 \mathrm{~mL}$ ). The mother liquor was concentrated to a small volume, water ( 15 mL ) and EtOAc ( 30 mL ) were added, and the residue and left overnight at rt . The precipitate was filtered and the combined solid was recrystallized from $\mathrm{CH}_{3} \mathrm{CN}$ to give $4.1 \mathrm{~g}(68 \%)$ of a colorless solid: ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{DMSO}-d_{6}$ ) $\delta 12.05(\mathrm{~s}, 1 \mathrm{H}) ; 11.70(\mathrm{~s}$, $1 \mathrm{H}) ; 8.28(\mathrm{~s}, 1 \mathrm{H}) ; 5.82(\mathrm{~d}, \mathrm{~J}=6.02 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.22(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.88(\mathrm{~m}, 1 \mathrm{H})$, 3.55-3.50(m, 2H); $3.27(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}) ; 1.06-1.03(\mathrm{~d}, 6 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / e 368$ $(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 46.75 ; \mathrm{H}, 6.02 ; \mathrm{N}, 18.17$. Found: C, 46.90; H, 6.13; N, 18.52.

2- $N$-(Dimethylamino)methylene- $\mathbf{2}^{\prime}$ - $O$-methylguanosine (10f). A mixture of dry $2^{\prime}-O$-methylguanosine $(5.0 \mathrm{~g}, 16.8 \mathrm{mmol}), N, N^{\prime}$-dimethylformamide diethylacetal ( $9.87 \mathrm{~g}, 67 \mathrm{mmol}$ ) in anhydrous $\mathrm{MeOH}(100 \mathrm{~mL})$ was stirred at room temperature for 24 h ., when the TLC $\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ indicated the reaction was complete. Solvent was removed under reduced pressure and the light brown syrup was azeotroped with acetonitrile ( $3 \times 20 \mathrm{~mL}$ ). Finally, trituration of the residue with $\mathrm{CH}_{3} \mathrm{CN}$ ( 50 $\mathrm{ml})$ furnished a solid which was filtered and dried. The mother liquor was concentrated to a smaller volume and left overnight to furnish additional solid which was filtered. The total yield of 10 f was $5.7 \mathrm{~g}(96 \%): \mathrm{mp} 198-201^{\circ} \mathrm{C} ;{ }^{1} \mathrm{HNMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 11.36(\mathrm{~s}, 1 \mathrm{H})$,
$8.53(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=5.86 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=4.90 \mathrm{~Hz}, 1 \mathrm{H}), 5.0-5.2$ $(\mathrm{m}, 1 \mathrm{H}), 4.1-4.4(\mathrm{~m}, 2 \mathrm{H}), 3.8-4.0(\mathrm{~m}, 1 \mathrm{H}), 3.4-3.7(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H})$, $3.02(\mathrm{~s}, 3 \mathrm{H})$; MS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / e 351(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{5} .0 .5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 46.53; H, 5.86; N, 23.26. Found: C, 46.18; H, 5.93; N, 23.07. $5^{\prime}$ - $O$-(4,4'-Dimethoxytriphenylmethyl)-6-N-[1-
(dimethylamino)ethylene]- $\mathbf{2}^{\prime}$ - $\boldsymbol{O}$-methyladenosine (11b). A solution of 10 c ( 6.0 $\mathrm{g}, 17.16 \mathrm{mmol}), \mathrm{DMTCl}(7.1 \mathrm{~g}, 21 \mathrm{mmol}$ and $\operatorname{DMAP}(0.7 \mathrm{~g}, 5.7 \mathrm{mmol})$ in anhydrous pyridine ( 50 mL ) was stirred at room temperature for 4 h . It was poured into ice water ( 100 mL ) and extracted with EtOAc ( $150 \mathrm{~mL} \times 2$ ). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification by flash chromatography on silica gel using 5-7\% $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave 7.5 g (67.5\%) of 11b as a light yellow foam: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $8.55(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.19(\mathrm{~m}, 9 \mathrm{H}), 6.82-6.78(\mathrm{~m}, 4 \mathrm{H}), 6.19(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.52-4.41 (m, 2 H$), 4.26-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.70(\mathrm{~m}, 8 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.14$ (bs, $6 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$; $\mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / e 653(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{6} .0 .5 \mathrm{H}_{2} \mathrm{O}$ : C, $65.34 ; \mathrm{H}, 6.24 ; \mathrm{N}, 12.70$. Found: C, $65.37 ; \mathrm{H}, 6.20 ; \mathrm{N}, 12.35$.
$5^{\prime}$ - O -(4,4'-Dimethoxytriphenylmethyl $)-2-N$-isobutyryl- $\mathbf{2}^{\prime}$ - O methylguanosine (11c). A solution of $10 \mathrm{e}(2.12 \mathrm{~g}, 5.01 \mathrm{mmol})$ in anhydrous pyridine ( 20 mL ) was azeotroped under reduced pressure. It was re-dissolved in anhydrous pyridine ( 18 mL ) and after adding DMTCl ( $2.11 \mathrm{~g}, 6.2 \mathrm{mmol}$ ) and DMAP ( 9.21 $\mathrm{g}, 1.7 \mathrm{mmol}$ ), the reaction mixture was stirred at room temperature for 6 h . The reaction mixture was poured into cold water $(60 \mathrm{~mL})$ and it was extracted with EtOAc ( $2 \times 60 \mathrm{~mL}$ ). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent removed under reduced pressure at $35^{\circ} \mathrm{C}$. The residual oil thus obtained was purified by column chromatography using 3-7\% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (trace of $\mathrm{Et}_{3} \mathrm{~N}, 5$ drops $/ \mathrm{L}$ ). Appropriate fractions were collected and concentrated which after drying overnight under reduced pressure furnished $2.94 \mathrm{~g}(82 \%)$ 11c as a light yellow foam: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ) $\delta 12.13(\mathrm{~s}, 1 \mathrm{H}), 11.65$ $(\mathrm{s}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}, 7.39-7.23(\mathrm{~m}, 9 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 4 \mathrm{H}), 5.99(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30$
(d, $J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.31(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H})$, 3.31-3.20 (m, 2H), 2.84-2.66(m, 1H), 1.16-1.13(m, 6H); MS (FAB+) m/e $670(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{8} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 63.71 ; \mathrm{H}, 5.94 ; \mathrm{N}, 10.32$. Found: C, 63.84; H, 6.10; N, 10.13 .
$5^{\prime}-O$-(4,4'-Dimethoxytriphenylmethyl)-2- $N$-(dimethylamino)methylene-2'-O-methylguanosine (11d). A mixture of $10 \mathrm{f}(3.0 \mathrm{~g}, 8.2 \mathrm{mmol}) \mathrm{DMTCl}(3.46 \mathrm{~g}, 12.2$ $\mathrm{mmol})$ and DMAP ( $0.35 \mathrm{~g}, 2.86 \mathrm{mmol}$ ) in anhydrous pyridine ( 20 mL ) was stirred at room temperature for 5 h , at which point $\operatorname{TLC}\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ on silica gel indicated the reaction was complete. It was poured into cold water ( 100 mL ) and extracted with EtOAc $(2 \times 60 \mathrm{~mL})$. The Organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification by flash chromatography using $3-5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{Et}_{3} \mathrm{~N}, 5\right.$ drop/L) and after concentrating the appropriate fractions followed by drying under high vacuum gave $3.5 \mathrm{~g}(63 \%)$ of 11 d as a light yellow foam: ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6}$ ) $\delta 11.42(\mathrm{~s}, 1 \mathrm{H}), 8.52$ $(\mathrm{s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.22(\mathrm{~m}, 9 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 4 \mathrm{H}), 5.98(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.31(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.27(\mathrm{~m}, 2 \mathrm{H}), 4.15-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{bs}, 2 \mathrm{H}), 3.74(\mathrm{~s}$, $6 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H})$; MS ( $\mathrm{FAB}^{+}$) m/e $655(\mathrm{M}+\mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{7} \bullet 1.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 61.66 ; \mathrm{H}, 6.06 ; \mathrm{N}, 12.33$. Found: $\mathrm{C}, 61.95 ; \mathrm{H}$, 5.81; 12.19 .
$5^{\prime}-O$-tert-Butyldiphenylsilyl-2'-O-methyl-5-methyluridine (11e). A solution of $\mathbf{1 0 a}(2 \mathrm{~g}, 7.34 \mathrm{mmol})$, tert-butyldiphenylsilyl chloride ( $1.73 \mathrm{~g}, 6.29 \mathrm{mmol}$ ) and DMAP ( $0.01 \mathrm{~g}, 0.15 \mathrm{mmol}$ ) in anhydrous pyridine ( 7 mL ) was stirred for 18 h . After the reactions was complete, it was concentrated to a smaller volume and diluted with EtOAc ( 50 mL ), washed with water ( $2 \times 10 \mathrm{~mL}$ ), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed under reduced pressure and the residue purified by column chromatography using $2-5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Appropriate fractions were pooled and concentrated to give 3.0 g (80\%) of 11 e as a colorless foam: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ) $\delta 11.44(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.42(\mathrm{~m}$, $10 \mathrm{H}), 5.95(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{bs}, 1 \mathrm{H}), 4.28(\mathrm{bs}, 1 \mathrm{H}), 3.98-3.80(\mathrm{~m}, 3 \mathrm{H}), 3.39(\mathrm{~s}$,

3H), $1.48(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$; $\mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / e 511(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}: \mathrm{C}, 63.51 ; \mathrm{H}, 6.71 ; \mathrm{N}, 5.49$. Found: C, $63.20 ; \mathrm{H}, 6.69 ; \mathrm{N}, 5.42$.
$5^{\prime}-O$-(tert-Butyldiphenylsilyl)-2'-O-methyladenosine (11f) A mixture of dried $10 \mathrm{~b}(5.0 \mathrm{~g}, 17.8 \mathrm{mmol})$, $\operatorname{TBDPSCl}(6.10 \mathrm{~g}, 22.2 \mathrm{mmol})$ and DMAP ( 0.4 mmol ) in anhydrous pyridine ( 15 mL ) was stirred at room temperature for 15 h when TLC ( $10 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) indicated the completion of the reaction. The reaction mixture was concentrated, taken up in EtOAc ( 100 mL ) and washed with water ( $2 \times 20 \mathrm{~mL}$ ). The organic layer was concentrated, and residue purified by flash chromatography (5-7\% $\left.\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give $8 \mathrm{~g}(86 \%)$ of the desired $5^{\prime}$-protected analog as colorless foam: ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$ ) $\delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.34(\mathrm{~m}, 10 \mathrm{H}), 6.07(\mathrm{~d}, J=4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.36(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.41(\mathrm{~m}, 2 \mathrm{H}), 4.10-3.75(\mathrm{~m}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}$ $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / e 520(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 62.40 ; \mathrm{H}, 6.40 ; \mathrm{N}, 13.48$. Found: C, 62.62; H, 6.49; N, 13.23.

6-N-[1-(Dimethylamino)ethylene]-5'-O-tert-butyldiphenylsilyl-2'-Omethyladenosine (11g). A solution of $\mathbf{1 0 c}(1 \mathrm{~g}, 2.8 \mathrm{mmol}), \operatorname{TBDPSCl}(1.1 \mathrm{~g}, 4$ mmol) and DMAP ( $0.020 \mathrm{~g}, 0.3 \mathrm{mmol}$ ) in anhydrous pyridine ( 5 mL ) was stirred at room temperature for 15 h . The solution was concentrated to a smaller volume and taken up in EtOAc $(30 \mathrm{~mL})$ and washed with water $(2 \times 10 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. It was flash chromatographed on silica gel using $80: 18: 2, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{COCH}_{3}: \mathrm{MeOH}$ mixture as the eluent. The product fractions were concentrated to a colorless foam to yield $1.2 \mathrm{~g}(72 \%)$ of $\mathbf{1 1 g}$ : ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ) $\delta 8.39$ $(\mathrm{s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.36(\mathrm{~m}, 10 \mathrm{H}), 6.10(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.52-4.47 (m, 2H), 4.10-3.75 (m, 1H), 3.38 (s, 3H), $3.12(\mathrm{bs}, 6 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 0.99$ ( $\mathrm{s}, 9 \mathrm{H}$ ).

## $5^{\prime}$ - O -tert-Butyldiphenylsilyl-6- N -(dimethylamino)methylene- $\mathbf{2}^{\prime}$ - O -

 methyladenosine (11h) A solution of $11 \mathrm{f}(5.0 \mathrm{~g}, 9.6 \mathrm{mmol})$ and $N, N^{\prime}-$ dimethylformamide diethylacetal ( $4.0 \mathrm{~g}, 27.7 \mathrm{mmol}$ ) in anhydrous $\mathrm{MeOH}(25 \mathrm{~mL})$ wasallowed to stir at room temperature for 15 h . After concentrating, it was taken up in EtOAc $(100 \mathrm{~mL})$ and washed with water ( $2 \times 20 \mathrm{~mL}$ ), and the organic layer separated, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the residue purified over silica gel to afford desired nucleoside $5.32 \mathrm{~g}(96 \%)$ as a colorless foam: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ) $\delta$ $8.91(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.32(\mathrm{~m}, 10 \mathrm{H}), 6.11(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.39(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.44(\mathrm{~m}, 2 \mathrm{H}), 4.09-3.70(\mathrm{~m}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H}), 3.21(2$, 3H), $3.14(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H})$; MS ( $\mathrm{FAB}^{+}$) m/e $575(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 62.69 ; \mathrm{H}, 6.66 ; \mathrm{N}, 14.62$. Found: C, $62.31 ; \mathrm{H}, 6.75 ; \mathrm{N}, 14.71$.
$5^{\prime}$-O-tert-Butyldiphenylsilyl-2'-O-methylguanosine (11i). A suspension of $2^{\prime}-O$-methylguanosine ( $5.0 \mathrm{~g}, 16.8 \mathrm{mmol}$ ) , $\operatorname{TBDPSCl}(5.8 \mathrm{~g}, 21.5 \mathrm{mmol})$ and DMAP ( $0.05 \mathrm{~g}, 0.4 \mathrm{mmol}$ ) in anhydrous pyridine ( 15 mL ) was stirred at room temperature for 20 $h$, at which time the reaction was complete. After concentrated to a small volume, water was added to the reaction mixture, and when colorless solid separated, it was collected by filtration, washed thoroughly with water ( $2 \times 20 \mathrm{~mL}$ ) and ether ( $3 \times 20 \mathrm{~mL}$ ) respectively. The solid nucleoside analog (11i) was dried under reduced pressure to yield 8.1 g (89\%) of 11i: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ) $\delta 10.69(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.37(\mathrm{~m}, 10 \mathrm{H}), 6.51$ (bs, 2H), $5.85(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4,41-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.16$ $(\mathrm{m}, 1 \mathrm{H}), 4.02-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H})$; $\mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / e 536(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 60.04 ; \mathrm{H}, 6.25 ; \mathrm{N}, 12.96$. Found: $\mathrm{C}, 60.29 ; \mathrm{H}, 6.33$; N, 12.64.
$5^{\prime}-\mathrm{O}$-(tert-Butyldiphenylsilyl)-2- N -(dimethylamino)methylene-2'-Omethylguanosine ( $\mathbf{1 1 \mathrm { j }}$ ). A solution of $11 \mathrm{i}(6.0 \mathrm{~g}, 11.2 \mathrm{mmol})$ and $N, N^{\prime}-$ dimethylformamide diethylacetal ( $4.72 \mathrm{~g}, 32.06 \mathrm{mmol}$ in anhydrous $\mathrm{MeOH}(25 \mathrm{~mL})$ was stirred at room temperature for 18 h . After removing the solvent under reduced pressure, the residue was dissolved in $\operatorname{EtOAc}(100 \mathrm{~mL})$ and washed with water $(2 \times 20 \mathrm{~mL})$. The organic layer was concentrated and the residual oil purified by column chromatography using $3-6 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product fractions were concentrated and dried to yield
$6.17 \mathrm{~g}(93 \%)$ of a colorless foam: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ) $\delta 11.40(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H})$, $7.98(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.39(\mathrm{~m}, 10 \mathrm{H}), 5.98(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, 1 \mathrm{H}), 4.45-3.70(\mathrm{~m}$, 5H), $3.39(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H})$; MS ( $\mathrm{FAB}^{+}$) m/e 591 $(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Si} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 60.53 ; \mathrm{H}, 6.52 ; \mathrm{N}, 14.12$. Found: C, $60.80 ; \mathrm{H}, 6.53 ; \mathrm{N}, 13.75$.

## $3^{\prime}$-Deoxy-5'-O-(4,4'-dimethoxytriphenylmethyl)-6- $N$ - [1-

 (dimethylamino)ethylene]-3'-iodo-2'-O-methyladenosine (12b). From 11b (5 $\mathrm{g}, 7.6 \mathrm{mmol}$ ) according to general procedure A was obtained $3.1 \mathrm{~g}(60 \%)$ of $\mathbf{1 2 b}$ after chromatography ( $20 \%$ acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) and precipitation by ether-hexane mixture: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ) d $8.43(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.22(\mathrm{~m}, 9 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 4 \mathrm{H})$, 4.86-4.72 (m, 2 H ), $3.97(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.62(\mathrm{~s}, 6 \mathrm{H}), 3.44-3.39(\mathrm{~m}, 5 \mathrm{H}), 3.10(\mathrm{~s}, 6 \mathrm{H})$, $1.23(\mathrm{~s}, 3 \mathrm{H})$; MS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / e 763(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{I} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 56.04; H, 5.22; N, 10.89. Found: C, 56.20; H, 5.62; N, 10.69.
## $3^{\prime}$-Deoxy- $5^{\prime}$ - O -(4,4'-dimethoxytriphenylmethyl)-2- N -

 (dimethylamino)methylene-3'-iodo- $\mathbf{2}^{\prime}$ - $O$-methylguanosine (12d). This compound was prepared by the general procedure A from $1.0 \mathrm{~g}(1.5 \mathrm{mmol})$ of $\mathbf{1 1 d}$ after chromatography using $30 \%$ acetone $/ \mathrm{Ch}_{2} \mathrm{Cl}_{2}$ as the eluent to give $0.61 \mathrm{~g}(52 \%)$ of 12 d : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSOd}_{6}\right) \delta 11.44(\mathrm{~s}, 1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.24(\mathrm{~m}, 9 \mathrm{H}), 6.89$ (d, $J=8 \mathrm{~Hz}, 4 \mathrm{H}$ ), 5.91 (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.89-4.87 (m,1H), 4.73-4.71 (m, 1H), 3.90 (bs, 1H), $3.75(\mathrm{~s}, 6 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H})$. mass spectrum (FAB) m/z $765\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{I} \cdot 0.5 \mathrm{MeOH}: \mathrm{C}$, $54.62 ; \mathrm{H}, 5.04 ; \mathrm{N}, 10.77$. Found: C, $55.01 ; \mathrm{H}, 5.17 ; \mathrm{N}, 10.51$.$3^{\prime}$-Deoxy- $\mathbf{3}^{\prime}$-iodo- $\mathbf{2}^{\prime}$ - $O$-methyl-5-methyluridine (12h). A mixture of $\mathbf{1 2 a}$ ( $0.580 \mathrm{~g}, 0.847 \mathrm{mmol}$ ) and $1,1,1,3,3,3$-hexafluoroisopropanol ( 5 mL ) was stirred for 4 h . The solvent was removed under reduced pressure with a good trap and the residue was purified by flash chromatography using a mixture of $80: 18: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ :acetone: MeOH as the eluent. Appropriate fractions were combined and concentrated to give $0.250 \mathrm{~g}(77 \%)$ of

12h as a colorless foam: ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{DMSO}_{6}$ ) $\delta 11.47(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.73(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.10(\mathrm{~m}, 1 \mathrm{H}), 4.66-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.37(\mathrm{~m}$, $1 \mathrm{H}), 3.72-3.5(\mathrm{~m}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right) \delta 163.68$, $150.25,136.19,109.34,90.74,88.37,79.88,66.15,57.56,26.91,12.39 ; \mathrm{MS}\left(\mathrm{FAB}^{+}\right)$ $m / e 383(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{I} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 34.17 ; \mathrm{H}, 4.04 ; \mathrm{N}$, 7.24. Found: C, $34.55, \mathrm{H}, 3.92 ; \mathrm{N}, 6.92$.
$3^{\prime}$-Deoxy-6- N -[1-(dimethylamino)ethylene]-3'-iodo-2'-O-
methyladenosine (12i). A similar procedure described for the preparation of compound 12 h gave from $0.225 \mathrm{~g}(0.29 \mathrm{mmol})$ of $\mathbf{1 2 b}, 0.110 \mathrm{~g}(80 \%)$ of $\mathbf{1 2 i}$ as a colorless compound: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ) $\delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{bs}, 1 \mathrm{H})$, 5.30-5.27 (m, 1H), 4.82-4.80 (m, 1H), 4.77-4.75 (m, 1H), 3.81-3.60 (m, 3H), 3.40 (s, 3H), $3.15(\mathrm{~s}, 6 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}$ ) $\delta 161.20,159.98,152.44$, $150.35,140.36,125.54,90.42,87.57,80.44,66.20,57.75,25.88,17.07 . ; \mathrm{MS}^{\left(\mathrm{FAB}^{+}\right)}$ $m / e 461(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{I}: \mathrm{C}, 39.14 ; \mathrm{H}, 4.60 ; \mathrm{N}, 18.26$. Found: C, 39.18; H, 4.58; N, 18.01.
$3^{\prime}$-Deoxy- $\mathbf{3}^{\prime}$-iodo-2- $N$-isobutyryl-2'-O-methylguanosine (12j). A solution $11 \mathrm{c}(0.20 \mathrm{~g}, 0.25 \mathrm{mmol})$ was stirred with hexafluoroisopropanol ( 2 ml ) for 6 h and the reaction was worked up as in case of $\mathbf{1 2 h}$ to afford $0.095 \mathrm{~g},(78 \%)$ of $\mathbf{1 2} \mathbf{j}$ as a colorless foam: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ) $\delta 12.17(\mathrm{~s}, 1 \mathrm{H}), 11.64(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{bs}, 1 \mathrm{H}), 5.18$ (bs, 1 H$), 4.80-4.68(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.53(\mathrm{~m}, 3 \mathrm{H}), 2.8-2.70$ $(\mathrm{m}, 1 \mathrm{H}), 1.05(\mathrm{bs}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}$ ) $\delta 180.21,154.78,148.43,137.34$, $120.13,91.01,87.28,80.55,66.05,57.85,34.73,26.31,18.88,18.83 ; \mathrm{MS}^{\left(\mathrm{FAB}^{+}\right) \mathrm{m} / e}$ $478(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{I}: \mathrm{C}, 37.74 ; \mathrm{H}, 4.50 ; \mathrm{N}, 14.20$. Found: C, 37.34; H, 4.34; N, 14.06.
$\mathbf{3}^{\prime}$-tert -Butyldiphenylsilyl-2'-O-methyl-5'-O -phthalimido-5methyluridine (14a). From $13 \mathrm{a}(5.5 \mathrm{~g}, 13.2 \mathrm{mmol}$ ) according to general procedure C was obtained crude 14a in essentially quantitative yield, along with silyl by-products.

Purification on a short silica gel column ( 0 to $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) gave $8.0 \mathrm{~g}(93 \%)$ of 14a: $R_{f} 0.48\left(1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right) .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ) $\delta 11.37(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 4 \mathrm{H})$, 7.5-7.7 (m, 5H), 7.3-7.4 (m, 6H), $5.97(\mathrm{~d}, J=5.82 \mathrm{~Hz}, 1 \mathrm{H}), 4.1-4.5(\mathrm{~m}, 4 \mathrm{H}), 3.08(\mathrm{~s}$, $3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si}: \mathrm{C}, 61.57 ; \mathrm{H}, 5.90 ; \mathrm{N}$, 6.15. Found: C, 61.60; H, 5.93; N, 6.46.
$\mathbf{3}^{\prime}$-tert-Butyldiphenylsilyl-2'-O-methyl-5'-O -phthalimidoadenosine
( $\mathbf{1 4 b}$ ). From 13b ( $5.0 \mathrm{~g}, 11.7 \mathrm{mmol}$ ) according to general procedure C was obtained crude 13b in essentially quantitative yield, along with silyl by-products. Purification on a short silica gel column (80:15:5 EtOAc/hexane/MeOH).gave $7.3 \mathrm{~g}(93 \%)$ of pure $14 \mathrm{~b}: R_{f}$ $0.57\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6}$ ) $\delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}$, $4 \mathrm{H}), 7.5-7.8(\mathrm{~m}, 4 \mathrm{H}), 7.2-7.5(\mathrm{~m}, 6 \mathrm{H}), 6.14(\mathrm{~d}, J=5.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.6-4.8(\mathrm{~m}, 1 \mathrm{H}), 4.2-$ $4.4(\mathrm{~m}, 3 \mathrm{H}), 3.9-4.2(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;$ HRMS ( $\mathrm{FAB}^{+}, \mathrm{CsI} / \mathrm{NBA}$ ) calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Si} 797.1520$, found 797.1535. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Si} \bullet 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 62.39 ; \mathrm{H}, 5.53 ; \mathrm{N}, 12.47$. Found: C, $62.53 ; \mathrm{H}, 5.32 ; \mathrm{N}$, 12.44.
$3^{\prime}$-O-tert-Butyldiphenylsilyl-2'-O-methyl-5'-O- (methyleneimino)-5methyluridine (15a). 2'-O-Methyl-5'-O-phthalimido-5-methyluridine ( $2.90 \mathrm{~g}, 6.95$ mmol ) and imidazole ( $2.13 \mathrm{~g}, 31.3 \mathrm{mmole}$ ) were dissolved in dry DMF ( 35 mL ) under an inert atmosphere, and TBDPSCl ( $2.71 \mathrm{~mL}, 10.42 \mathrm{mmol}$ ) was added. The reaction was stirred at room temperature for 48 h , then poured into EtOAc ( 100 mL ) and water ( 100 $\mathrm{mL})$. The organic layer was washed with water ( $3 \times 100 \mathrm{~mL}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude material was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$, and methylhydrazine ( $0.44 \mathrm{~mL}, 8.34 \mathrm{mmole}$ ) was added dropwise at $0^{\circ} \mathrm{C}$. After 1 h , the mixture was filtered, and the filtrates washed well with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Toluene ( 35 mL ) was added to the combined filtrates, and the solution concentrated, then azeotroped with toluene. The residue was dissolved in EtOAc/MeOH ( $50 \mathrm{~mL}+50 \mathrm{~mL}$ ), formaldehyde ( 20 $\% \mathrm{w} / \mathrm{w}$ aqueous, $1.05 \mathrm{~mL}, 7.0 \mathrm{mmol}$ ) was added, and the mixture stirred 1 h at rt . The
solution was concentrated, then chromatographed ( $20 \%$ to $50 \%$ EtOAc/hexane, $4.5 \times 15$ $\mathrm{cm})$ to provide $3.43 \mathrm{~g}(92 \%)$ of $\mathbf{1 5 a}$ as a large foam: $R_{f} 0.53(50 \% \mathrm{EtOAc} / \mathrm{hexane}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{bs}, 1 \mathrm{H}), 7.73-7.30(\mathrm{~m}, 10 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.44(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.05(\mathrm{~m}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H})$, $3.18(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}: \mathrm{C}, 62.55 ; \mathrm{H}$, 6.56; N, 7.81. Found: C, 62.47; H, 6.46; N, 7.66.

## $3^{\prime}$ - O -tert-Butyldiphenylsilyl-4- N -benzoyl- $\mathbf{2}^{\prime}$ - O -methyl- $\mathbf{5}^{\prime}$ - O -

(methyleneimino)-5-methylcytidine (15b). To $1,2,4$-triazole ( $11.88 \mathrm{~g}, 172.0$ $\mathrm{mmol})$ in dry $\mathrm{MeCN}(75 \mathrm{~mL})$ under argon at $0^{\circ} \mathrm{C}$ was added $\mathrm{POCl}_{3}(3.73 \mathrm{~mL}, 40 \mathrm{mmol})$ in $\mathrm{MeCN}(25 \mathrm{~mL})$ dropwise with vigorous stirring. $\mathrm{Et}_{3} \mathrm{~N}(27.9 \mathrm{~mL}, 200 \mathrm{mmol})$ was added dropwise over 0.5 h , and the thick suspension was stirred at $0^{\circ} \mathrm{C}$ for an additional 0.5 h . A solution of $15 \mathrm{a}(5.40 \mathrm{~g}, 10.0 \mathrm{mmol})$ in $\mathrm{MeCN}(50 \mathrm{~mL})$ was then added dropwise over 0.5 h , and the mixture allowed to warm to rt over 3 h . The mixture was then cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{Et}_{3} \mathrm{~N}(28 \mathrm{~mL})$ and water ( 2.8 mL ) were added, the mixture allowed to warm to room temperature with stirring, then concentrated to a small volume. The residue was partitioned between EtOAc ( 200 mL ) and $5 \% \mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and the organic layer washed with $5 \% \mathrm{NaHCO}_{3}(2 \times 200 \mathrm{~mL})$, water ( $3 \times 200 \mathrm{~mL}$ ), and brine, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The resulting foam was azeotroped with dry toluene $(2 \times 100 \mathrm{~mL})$ to provide the triazolide in essentially quantitative yield, which was used immediately for the next step: $R_{f} 0.28$ ( $50 \% \mathrm{EtOAc} /$ hexane). In a separate reaction vessel, sodium hydride ( $60 \% \mathrm{w} / \mathrm{w}, 1.60 \mathrm{~g}, 40 \mathrm{mmol}$ ) was added portionwise to benzamide ( 4.85 $\mathrm{g}, 40 \mathrm{mmol})$ in dry 1,4 -dioxane ( 100 mL ), and the resulting mixture stirred for 1 h at rt . This suspension was then added via cannula to a solution of the triazolide obtained above in dry 1,4-dioxane ( 100 mL ), and the mixture stirred at ft for 3 h . AcOH ( $2.25 \mathrm{~mL}, 40$ mmol ) was added, and the mixture diluted with EtOAc ( 100 mL ) and hexane ( 100 mL ), then washed with $5 \% \mathrm{NaHCO}_{3}$, water, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and chromatographed ( 0 to $30 \% \mathrm{EtOAc} /$ hexane) to provide $5.16 \mathrm{~g}(80 \%)$ of $\mathbf{1 5 b}: R_{f} 0.71$
(30\% EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.26(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, 2 \mathrm{H}), 7.75-7.25(\mathrm{~m}$, $14 \mathrm{H}), 6.91(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ (dd, 1H), $4.31(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{dd}, 1 \mathrm{H}), 4.11(\mathrm{dd}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{dd}, 1 \mathrm{H}), 1.99$ (d, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.10 (s, 9H). Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Si}: \mathrm{C}, 65.60 ; \mathrm{H}, 6.29$; $\mathrm{N}, 8.74$. Found: C, 65.25; H, 6.34; N, 8.42.
$3^{\prime}$-O-tert-Butyldiphenylsilyl-2'-O-methyl-5'-O- (methyleneimino)-5methylcytidine (15c). The triazolide ( $38 \mathrm{~g}, 64 \mathrm{mmol}$ ) obtained from the procedure given for $\mathbf{1 5 b}$ was dissolved in dry 1,4-dioxane ( 200 mL ), cooled on ice, and ca 20 mL of condensed anhydrous $\mathrm{NH}_{3}$ was added. The was allowed to warm to rt over 2 h , with stirring, and then concentrated to a syrup, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 500 mL ) washed with water, dried ( $\mathrm{MgSO}_{4}$ ), concentrated, and chromatographed ( 0 to $5 \%$ $\left.\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to provide $26.6 \mathrm{~g}(77 \%)$ of 15 c : $R_{f} 0.27\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 7.62(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.25(\mathrm{~m}, 7 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{dd}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{dd}, 1 \mathrm{H}), 4.00(\mathrm{dd}$, 1H), 3.46 (s, 3H), 3.24 (dd, 1H), 1.74 (s, 3H), 1.08 (s, 9H). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 62.66 ; \mathrm{H}, 6.76 ; \mathrm{N}, 10.44$. Found: C, $62.26 ; \mathrm{H}, 6.53 ; \mathrm{N}, 10.23$. $3^{\prime}$-tert-Butyldiphenylsilyl-2'-O-methyl-5'-O -(methyleneimino)adenosine (15d). From 14b ( $2.0 \mathrm{~g}, 3.0 \mathrm{mmol}$ ) according to general procedure $D$ was obtained $1.3 \mathrm{~g}(79 \%)$ of 15 d after chromatography (70:27:3 EtOAc/hexane/MeOH): $R_{f} 0.43\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ) $\delta 8.29(\mathrm{~s}$, $1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.6-7.8(\mathrm{~m}, 4 \mathrm{H}), 7.2-7.5(\mathrm{~m}, 6 \mathrm{H}), 6.14(\mathrm{~d}, J=5.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.6-4.8$ $(\mathrm{m}, 1 \mathrm{H}), 4.2-4.4(\mathrm{~m}, 3 \mathrm{H}), 3.9-4.2(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Si}$ : $\mathrm{C}, 61.52 ; \mathrm{H}, 6.27$; N, 15.37. Found: C, $61.21 ; \mathrm{H}$, 6.19; N, 15.18.
$3^{\prime}$ - De (oxyphosphinico)- $3^{\prime}$-(methyleneimino)- $5^{\prime}-O$ - (4,4'-dimethoxytriphenylmethyl)-2'-O-methyl-5-methyluridylyl-( $\left.3^{\prime} \rightarrow 5^{\prime}\right)$-3'-O-tert-butyldiphenylsilyl-2'- $O$-methyl-5-methyluridine (16a). $3^{\prime}$-Deoxy-5'-O-(4,4'-
dimethoxytrityl)-3'-iodo-2'-O-methyl-5-methyluridine ( $343 \mathrm{mg}, 0.50 \mathrm{mmol}$ ) and 3'-O-tert-butyldiphenylsilyl-2'-O-methyl-5'-O-(methyleneimino)-5-methyluridine ( $807 \mathrm{mg}, 1.50$ mmol ) were combined, azeotroped with dry benzene ( 5 mL ), dissolved in dry benzene ( 2.5 mL ), degassed (argon, 0.5 h ), and heated to $80^{\circ} \mathrm{C}$ in an oil bath. A degassed (argon, 0.5 h) solution of bis(trimethystannyl)benzopinacolate ( $484 \mathrm{mg}, 0.70 \mathrm{mmol}$ ) in dry benzene ( 3.5 mL ) was then added via syringe pump over 24 h ( $145 \mu \mathrm{~L} / \mathrm{h}$ flow rate). The solution was stirred at $80^{\circ} \mathrm{C}$ for an additional 16 h , allowed to cool, diluted with EtOAc ( 30 mL ) and $10 \%$ aqueous KF ( 10 mL ), and stirred vigorously for 24 h . The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, dissolved in the minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and applied to a column of silica ( $3.5 \times 15 \mathrm{~cm}$ ). Elution with $20 \%$ EtOAc/hexane ( 5 column volumes) provided tin by-products and benzophenone; with $50 \%$ EtOAc/hexane ( 20 column volumes) provided unreacted oxime ( $0.60 \mathrm{~g},>90 \%$ of unreacted material), followed by minor side products; and elution with $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded the hydroxylamino linked dimer 16a ( $0.39 \mathrm{~g}, 70 \%$, based on starting iodide): $R_{f} 0.37\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.79(\mathrm{bs}, 1 \mathrm{H}), 8.60(\mathrm{bs}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.20(\mathrm{~m}, 19 \mathrm{H})$, $7.16(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~m}, 4 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{bs}, 1 \mathrm{H}), 1.70$ $(\mathrm{s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H})$, and other protons. Anal. Calcd for $\mathrm{C}_{60} \mathrm{H}_{69} \mathrm{~N}_{5} \mathrm{O}_{13} \mathrm{Si}^{-} \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 64.67 ; \mathrm{H}, 6.42 ; \mathrm{N}, 6.28$. Found: C, $64.61 ; \mathrm{H}, 6.24 ; \mathrm{N}, 6.13$. $3^{\prime}$-De(oxyphosphinico)- $3^{\prime}$-(methyleneimino)- $5^{\prime}$ - $O$-(4, $4^{\prime}$ -dimethoxytriphenylmethyl)-2'-O-methyl-5'-methyluridylyl-( $\left.3^{\prime} \rightarrow 5^{\prime}\right)-3^{\prime}-O$ -tert-butyldiphenylsilyl-2'-O-methyl-5-methylcytidine (16b). A solution of 12 a $(0.310 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $15 \mathrm{c}(0.810 \mathrm{~g}, 1.5 \mathrm{mmol})$ in benzene was treated with 8 ( 0.483 $\mathrm{g}, 0.7 \mathrm{mmol}$ ) in degassed benzene ( 5 mL ) via a syringe pump as described for $\mathbf{1 6 a}$. The crude residue was purified by flash chromatography using $5-10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to furnish $0.385 \mathrm{~g}(75 \%)$ of $\mathbf{1 6 b}$ as a colorless foam: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.68-$ $7.26(\mathrm{~m}, 24 \mathrm{H}), 5.91(\mathrm{bs}, 1 \mathrm{H}), 5.84(\mathrm{bs}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 4.30-3.20(\mathrm{~m}, 16 \mathrm{H}), 3.10-$ $2.75(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.09-1.06(\mathrm{~m}, 18 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{e} 1031$
$(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{55} \mathrm{H}_{70} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Si}_{2}: \mathrm{C}, 64.05 ; \mathrm{H}, 6.84 ; \mathrm{N}, 8.15$. Found: C, 63.65; H, 6.91; N, 8.24.
$3^{\prime}$-De(oxyphosphinico)- $\mathbf{3}^{\prime}$-(methyleneimino)- $5^{\prime}$ - $O$ - ( $4,4^{\prime}$ -
dimethoxytriphenylmethyl)-6-N-[1-(dimethylamino)ethylene]-2'-O-methyl-adenosylyl-( $3^{\prime} \rightarrow 5^{\prime}$ )-3'-O-tert-butyldiphenylsilyl-2'-O-methyl-5methyluridine ( $\mathbf{1 6 c}$ ) A mixture of $\mathbf{1 2 b}(1.09 \mathrm{~g}, 1.5 \mathrm{mmol})$ and $\mathbf{1 5 a}(2.4 \mathrm{~g}, 4.5 \mathrm{mmol}$ in degassed benzene ( 8 mL ) was treated with $8(1.5 \mathrm{~g}, 2.1 \mathrm{mmol})$ in degassed benzene ( 10 mL ) via a syringe pump as described for 16a. The crude residue was purified by flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} / \mathrm{MeOH}(80: 17: 3)$ as the eluent to furnish 0.91 g (52\%) of 16 c as a colorless foam: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.68-$ $7.17(\mathrm{~m}, 20 \mathrm{H}), 6.82-6.77(\mathrm{~m}, 4 \mathrm{H}), 6.22(\mathrm{bs} 1 \mathrm{H}), 5.80(\mathrm{bs}, 1 \mathrm{H}), 5.45(\mathrm{~m}, 1 \mathrm{H}), 4.50-2.50$ $(\mathrm{m}, 31 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~S}, 9 \mathrm{H})$; MS ( $\mathrm{FAB}^{+}$) m/e $1174(\mathrm{M}+\mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{64} \mathrm{H}_{75} \mathrm{~N}_{9} \mathrm{O}_{11} \mathrm{Si} \bullet \mathrm{MeOH}: \mathrm{C}, 64.71 ; \mathrm{H}, 6.60 ; \mathrm{N}, 10.45$. Found: C, 65.00; H, 6.57; N, 10.18.

## $3^{\prime}$-De(oxyphosphinico)- $\mathbf{3}^{\prime}$-(methyleneimino)- $5^{\prime}$ - $O$-(4,4'-

 dimethoxytriphenylmethyl)-2- $N$-isobutyryl- $2^{\prime}-O$-methyl-guanosylyl$\left(3^{\prime} \rightarrow 5^{\prime}\right)-3^{\prime}$-O-tert-butyldiphenylsilyl-2'-O-methyl-5-methyluridine (16d) A mixture of $\mathbf{1 2 c}(2.0 \mathrm{~g}, 2.5 \mathrm{mmol})$ and $\mathbf{1 5 a}(4.3 \mathrm{~g}, 8.0) \mathrm{mmol}$ in degassed benzene was treated with $8(2.73 \mathrm{~g}, 3.8 \mathrm{mmol})$ in degassed benzene via a syringe pump as described for 16a. The crude residue was purified by flash chromatography using the usual conditions, then treated with DMTCl in pyridine in presence of DMAP for 12 h , and finally re-purified to give $1.2 \mathrm{~g}(40 \%)$ of $\mathbf{1 6 d}$ as a light yellow foam: ${ }^{1} \mathrm{H}$ NMR (DMSO-d 6 ) $\delta 12.13(\mathrm{~s}, 1 \mathrm{H})$, $11.55(\mathrm{~s}, 1 \mathrm{H}), 11.33(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.16(\mathrm{~m}, 19 \mathrm{H}), 6.81-6.77(\mathrm{~m}, 4 \mathrm{H})$, $6.55(\mathrm{~m}, 1 \mathrm{H}), 5.99(\mathrm{bs}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.3-4.04(\mathrm{~m}, 4 \mathrm{H}), 3.68-2.57(\mathrm{~m}$, $23 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.14-0.99(\mathrm{~m}, 15 \mathrm{H})$; $\mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / e 1191(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{64} \mathrm{H}_{74} \mathrm{~N}_{8} \mathrm{O}_{13} \mathrm{Si} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 64.04 ; \mathrm{H}, 6.30 ; \mathrm{N}, 9.33$. Found: C, 63.78; H, 6.35; N , 9.13 .$3^{\prime}$-De(oxyphosphinico)- $\mathbf{3}^{\prime}$-(methyleneimino)- $5^{\prime}$ - $O$-(4,4'-dimethoxytriphenylmethyl)-2- N -isobutyryl-2'-O-methyl-guanosylyl$\left(3^{\prime} \rightarrow 5^{\prime}\right)-3^{\prime}$-O-tert-butyldiphenylsilyl-2'-O-methyl-5-methylcytidine (16e). A mixture of 12c $(0.250 \mathrm{~g}, 0.32 \mathrm{mmol})$ and $15 \mathrm{c}(0.44 \mathrm{~g}, 0.82 \mathrm{mmol}) \mathrm{mmol}$ in degassed benzene ( 2 mL ) was treated with $8(0.354 \mathrm{~g}, 0.5 \mathrm{mmol})$ in benzene $(2.5 \mathrm{~mL})$ via a syringe pump as described for 16a. The crude residue was purified by column chromatography on silica gel using EtOAc-hexane-MeOH $(70: 15: 15)$ as the eluent. Appropriate fractions were combined and concentrated to give $0.211 \mathrm{~g}(55 \%)$ of 16 e as a colorless foam,: ${ }^{1} \mathrm{H}$ NMR (DMSO-d6) $\delta 12.16(\mathrm{~s}, 1 \mathrm{H}), 11.6(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}) 7.66-7.17(\mathrm{~m}, 19 \mathrm{H}), 7.00-6.66$ $(\mathrm{m}, 6 \mathrm{H}), 6.06-5.85(\mathrm{~m}, 3 \mathrm{H}), 4.45-3.00(\mathrm{~m}, 26 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.25-0.87(\mathrm{~m}, 15 \mathrm{H}) ; \mathrm{MS}$ $\left(\mathrm{FAB}^{+}\right) m / e 1191(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{64} \mathrm{H}_{74} \mathrm{~N}_{8} \mathrm{O}_{13} \mathrm{Si}^{\circ} \cdot \mathrm{H}_{2} \mathrm{O} \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}$ : C, 63.47; H, 6.35; N, 9.68. Found: C, 63.27; H, 6.54; N, 10.04.
$3^{\prime}$-De(oxyphosphinico)- $3^{\prime}$-(methyleneimino)- $5^{\prime}$ - $O$-(4, $4^{\prime}$ -dimethoxytriphenylmethyl)-2- N -isobutyryl- $\mathbf{2}^{\prime}$ - O -methyl-guanosylyl$\left(3^{\prime} \rightarrow 5^{\prime}\right)$-3'-O-tert-butyldiphenylsilyl-2'-O-methyladenosine (16f). A mixture of $\mathbf{1 2 c}(0.076 \mathrm{~g}, 0.08 \mathrm{mmol}), 15 \mathrm{~d}(0.160 \mathrm{~g}, 0.3 \mathrm{mmol})$ and $\mathbf{8}(0.107 \mathrm{~g}, 0.1 \mathrm{mmol})$ in degassed benzene ( 1.5 mL ) was reacted according to general procedure E , then purified by chromatography ( $60: 30: 5-10 \% \mathrm{EtOAc} /$ hexane $/ \mathrm{MeOH}$ ) to furnish $0.035 \mathrm{~g}(35 \%)$ of $\mathbf{1 6 f}$ as a colorless foam: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ) $\delta 12.20(\mathrm{~s}, 1 \mathrm{H}), 11.60(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H})$, 7.71-7.15 (m, 20H), 6.83-6.77 (m, 4H), 6.53( bs, 1 H$), 6.05-6.00(\mathrm{~m}, 2 \mathrm{H}), ~ 4.45-2.80$ $(\mathrm{m}, 27 \mathrm{H}), 1.16-1.03(\mathrm{~m}, 15 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / e 1201(\mathrm{M}+\mathrm{H}) ; \mathrm{HRMS}\left(\mathrm{FAB}^{+}, \mathrm{CsI} / \mathrm{NBA}\right)$ calcd for $\mathrm{C}_{64} \mathrm{H}_{13} \mathrm{~N}_{11} \mathrm{O}_{11} \mathrm{Si}+\mathrm{Cs}^{+}$1332.4315, found 1332.4328.
$3^{\prime}$-De(oxyphosphinico)- $\mathbf{3}^{\prime}$-(methyleneimino) $-5^{\prime}$ - $O$-(4,4'-dimethoxytriphenylmethyl)-6-N-[1-(dimethylamino)ethylene]-2'-O-methyl-adenosylyl-( $3^{\prime} \rightarrow 5^{\prime}$ )-3'-O-tert-butyldiphenylsilyl-2'- $O$-methyladenosine ( $\mathbf{1 6 g}$ ). A mixture of $\mathbf{1 2 b}(0.107 \mathrm{~g}, 0.14 \mathrm{mmol}), 15 \mathrm{~d}(0.230 \mathrm{~g}, 0.42 \mathrm{mmol})$ and $\mathbf{8}$ $(0.153 \mathrm{~g}, 0.22 \mathrm{mmol})$ in degassed benzene $(1 \mathrm{~mL})$ was reacted according to general
procedure E , then purified by chromatography ( $70: 20: 10 \mathrm{EtOAc} / \mathrm{hexane} / \mathrm{MeOH}$ ) to furnish $0.065 \mathrm{~g}(40 \%)$ of 16 g as a colorless foam: ${ }^{1} \mathrm{H}$ NMR (DMSO-d6) $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}$, $2 \mathrm{H})$, 7.69-7.16 (m, 21H), 6.80-6.76 (m, 4H), 6.52-6.46 (m, 1H), $6.19(\mathrm{bs}, 1 \mathrm{H}), 6.01$ $(\mathrm{d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.00(\mathrm{~m}, 6 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}), 3.63-2.70(\mathrm{~m}, 18 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H})$, $1.02(\mathrm{~s}, 9 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / e 1183(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{64} \mathrm{H}_{74} \mathrm{~N}_{12} \mathrm{O}_{9} \mathrm{Si} \cdot E t O A c:$ C, 65.05; H, 6.58; N, 13.39. Found: C, 65.26; H, 6.71; N, 13.60.
$3^{\prime}$-De(oxyphosphinico)- $\mathbf{3}^{\prime}$-(methyleneimino)- $5^{\prime}$ - O -(tert-butyldiphenylsilyl)-6- $N$-(dimethylamino)methylene- $\mathbf{2}^{\prime}$ - $O$-methyl-adenosylyl-( $3^{\prime} \rightarrow 5^{\prime}$ )-3'- $O$-tert-butyldiphenylsilyl-2'- $O$-methyladenosine (16i). A mixture of $\mathbf{1 2 f}(0.427 \mathrm{~g}, 0.6 \mathrm{mmol})$ and $15 \mathrm{~d}(1.0 \mathrm{~g}, 1.82 \mathrm{mmol})$ and $8(0.631$ $\mathrm{g}, 0.91 \mathrm{mmol}$ ) were reacted according to general procedure E , then purified by column chromatography using $3-7 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $0.203 \mathrm{~g}(30 \%)$ of $\mathbf{1 6 i}$ as a colorless foam: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ) $\delta 8.91(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H})$, 8.06(s, 1H), 7.69-32 (m, 22H), 6.54 (bs 1 H$), 6.32$ (bs, 1 H$), 5.94$ (d, J=5.4 Hz, 1H), 4.60-3.50 (m, 12H), 3.34 (s, 6H), 3.17 (s, 3H), 3.13-2.9 (m, 5H), 1.02 (s, 9H), 0.92 $(\mathrm{s}, 9 \mathrm{H})$. mass spectrum ( FAB ) m/z $1105\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{58} \mathrm{H}_{72} \mathrm{~N}_{12} \mathrm{O}_{7} \mathrm{Si}_{2}: \mathrm{C}$, 63.02; H, 6.56; N, 15.20. Found: C, 62.73; H, 6.31; N, 14.89.
$\mathbf{3}^{\prime}$-De(oxyphosphinico)- $\mathbf{3}^{\prime}$-(methyleneimino)- $\mathbf{2}^{\prime}$ - $O$-methyl-5-methyluridylyl-( $\left.3^{\prime} \rightarrow 5^{\prime}\right)$-3'-O-tert-butyldiphenylsilyl-2'-O-methyl-5methyluridine (161). A mixture of $\mathbf{1 2 h}(0.215 \mathrm{~g}, 0.446 \mathrm{mmol}), 15 \mathrm{a}(0.720 \mathrm{~g}, 1.34$ $\mathrm{mmol})$ and $8(0.450 \mathrm{~g}, 0.65 \mathrm{mmol})$ was reacted according to general procedure E , then chromatographed ( $5-10 \% \mathrm{MeOH}$ in $2: 1 \mathrm{EtOAc} / \mathrm{Hexane}$ ) to afford 0.270 g ( $68 \%$ ) of $\mathbf{1 6 1}$ : ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ) $\delta 11.38(\mathrm{~s}, 1 \mathrm{H}), 11.37(\mathrm{~s}, 1 \mathrm{H}), 8.00-7.45(\mathrm{~m}, 12 \mathrm{H}), 6.59(\mathrm{~m}$, $1 \mathrm{H}), 5.93$ (d, $J=4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.74 (bs, 1H), 5.25 (bs, 1H), 4.30-2.7 (m, 18H), 1.74 (s, $6 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{51} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{Si}^{\bullet} 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 58.67 ; \mathrm{H}, 6.50 ; \mathrm{N}$, 8.77. Found: C, $58.50 ; \mathrm{H}, 6.53 ; \mathrm{N}, 8.72$.
$3^{\prime}-N$-(Benzyloxyamino)methyl-3'-deoxy-5'-O-(4,4' dimethoxytriphenylmethyl)-2'-O-methyl-5-methyluridine (18). A mixture of 12a ( $2.0 \mathrm{~g}, 3.22 \mathrm{mmol}$ ), O-benzyl formaldoxime $17(1.3 \mathrm{~g}, 9.61 \mathrm{mmol})$ and $8(3.3 \mathrm{~g}$, 4.83 mmol ) was reacted according to general procedure E , then purified by flash chromatography using $60 \% \mathrm{EtOAc} /$ hexane as the eluent to give $0.805 \mathrm{~g}(40 \%)$ of 18a as a colorless foam: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.26(\mathrm{~m}, 16 \mathrm{H}), 5.86(\mathrm{bs}, 1 \mathrm{H})$, $5.72(\mathrm{bs}, 1 \mathrm{H}), 4.61(\mathrm{bs}, 2 \mathrm{H}), 4.20-3.67(\mathrm{~m}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.12-2.49(\mathrm{~m}, 3 \mathrm{H}), 1.49$ $(\mathrm{s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / e 630(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.27 ; \mathrm{H}, 6.91 ; \mathrm{N}, 6.62$. Found: C, $66.14 ; \mathrm{H}, 6.81 ; \mathrm{N}$, 6.31 .

## References For Supplementary Material

*Author to whom correspondence should be addressed.
${ }_{\dagger} \dagger$ Current address: Hewlett-Packard, 3500 Deer Creek Rd. 25-45, Palo Alto, CA 94304
${ }^{1}$ Debart, F.; Sanghvi, Y. S.; Cook, P. D. J. Am. Chem. Soc. 1992, 114, 4006-4007.
${ }^{2}$ Perbost, M.; Hoshiko, T.; Morvan, F.; Swayze, E.; Griffey, R. H.; Sanghvi, Y. S. J. Org. Chem. 1995, 60, 5150-5156.
${ }^{3}$ McBride, L. J.; Kierzek, R.; Beaucage, S. L.; Caruthers, M. H. J. Am. Chem. Soc. 1986, 108, 2040-2048.

