J. Org. Chem., 1996, 61(15), 4882-4883, DOI:10.1021/jo9608174

## Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

## ACS Publications

## Experimental Section

General. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at the indicated field strength as solutions in $\mathrm{CDCl}_{3}$ unless otherwise indicated. Chemical shifts are expressed in parts per million (ppm, $\delta$ ) downfield from TMS and are referenced to $\mathrm{CHCl}_{3}$ ( 7.26 ppm ) as internal standard. Splitting patterns are designated as s , singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, braod. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at the indicated field strength as solutions in $\mathrm{CDCl}_{3}$ unless otherwise indicated. Chemical shifts are reported in parts per million (ppm, d) downfield from TMS and are referenced to the center line of $\mathrm{CDCl}_{3}$ ( 77.0 ppm ) as internal standard. Carbon signals were assigned by a DEPT pulse sequence, $\mathrm{q}=$ methyl, $\mathrm{t}=$ methyleme, $\mathrm{d}=$ methine, and $\mathrm{s}=$ quaternary.
( $5 R, 6 S$ )-(-)-5-Acetoxy-6-(acetoxymethyl)-1-(phenylmethyl)-2-piperidone
To a stirred solution of (-) $-4^{4}(1.44 \mathrm{~g}, 6.13 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ was added $\mathrm{Ac}_{2} \mathrm{O}(6 \mathrm{~mL}, 63.59$ mmol ) at $0^{\circ} \mathrm{C}$, then the resulting mixture was stirred at room temperature for 18 h . The solvent was evaporated, and the residue was chromatographed on $\mathrm{SiO}_{2}(50 \mathrm{~g}$, hexane:acetone $=4: 1)$ to give the diacetate ( $1.72 \mathrm{~g}, 88 \%$ ) as a colorless oil.
IR (neat) $\mathrm{cm}^{-1}: 3063,3030,2960,1738,1650,1469,1454,1416,1367,1236,1187,1055,724 ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta: 1.83 \& 2.06$ (each 3 H , each s), $1.95-2.01(1 \mathrm{H}, \mathrm{m}), 2.13-2.20(1 \mathrm{H}, \mathrm{m}), 2.52(1 \mathrm{H}$, ddd, $J=18.0,7.5,2.1 \mathrm{~Hz}$ ), $2.63(1 \mathrm{H}, \mathrm{ddd}, J=18.0,11.0,7.5 \mathrm{~Hz}), 3.56-3.60(1 \mathrm{H}, \mathrm{m}), 3.88(1 \mathrm{H}, \mathrm{d}$, $J=15.0 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{dd}, J=11.9,7.5 \mathrm{~Hz}), 4.20(1 \mathrm{H}, \mathrm{dd}, J=11.9,4.0 \mathrm{~Hz}), 5.05-5.07(1 \mathrm{H}, \mathrm{m})$, $5.46(1 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}), 7.22-7.30(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta: 20.62(\mathrm{q}), 20.71(\mathrm{q}), 21.93(\mathrm{t})$, 26.91 (t), 47.86 ( t), 57.32 (d), 61.98 ( t), 67.12 (d), 127.49 (d), 128.05 (d), 128.48 (d), 136.60 ( s$)$, 169.18 (s), 169.83 (s), 170.23 (s); MS: $320\left(\mathrm{M}^{+}+1\right.$ ), $319\left(\mathrm{M}^{+}\right), 91$ (100); HRMS: Calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{5}: 319.1419$, Found: $319.1390 ;[\alpha]^{26} \mathrm{D}-55.0\left(c 2.15, \mathrm{CHCl}_{3}\right)$.
(5R,6S)-(-)-5-Acetoxy-6-(acetoxymethyl)-1-(phenylmethyl)-2-piperidinethione
To a stirred solution of the diacetate ( $1.54 \mathrm{~g}, 4.83 \mathrm{mmol}$ ) in THF ( 20 mL ) was added Lawesson's reagent ( $1.2 \mathrm{~g}, 2.90 \mathrm{mmol}$ ), then the resulting suspension was refluxed for 2 h . After cooling, the solvent was evaporated to give a pale yellow oil, which was chromatographed on $\mathrm{SiO}_{2}$ ( 50 g , hexane:acetone $=10: 1$ ) to give the thiolactam $(1.59 \mathrm{~g}, 99 \%)$ as a colorless oil.
IR (neat) $\mathrm{cm}^{-1}: 3062,3029,2946,1746,1596,1495,1454,1413,1367,1300,1235,1173,1123$, $1050,959,923,731,704 ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta: 1.82 \& 2.10$ (each 3 H , each s), $1.86-1.95(1 \mathrm{H}, \mathrm{m})$, 2.13-2.20 (1H, m), 3.19 (1H, ddd, $J=19.5,7.5,4.0 \mathrm{~Hz}), 3.27(1 \mathrm{H}$, ddd, $J=19.5,9.6,7.1 \mathrm{~Hz})$, $3.79-3.82(1 \mathrm{H}, \mathrm{m}), 4.22(1 \mathrm{H}, \mathrm{dd}, J=12.6,7.0 \mathrm{~Hz}), 4.26(1 \mathrm{H}, \mathrm{dd}, J=12.6,4.5 \mathrm{~Hz}), 4.28(1 \mathrm{H}, \mathrm{d}, J$ $=15.0 \mathrm{~Hz}), 5.14(1 \mathrm{H}, \mathrm{q}-\mathrm{like}, J=2.2 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}), 7.27-7.36(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta: 20.65(\mathrm{q}), 20.71(\mathrm{q}), 22.32(\mathrm{t}), 36.89(\mathrm{t}), 55.33(\mathrm{t}), 59.28(\mathrm{~d}), 61.64(\mathrm{t}), 67.47$ (d), 127.93 (d), 128.13 (d), 128.63 (d), 134.88 ( ), 169.82 ( s$), 170.12$ ( s$), 201.47$ ( s$) ; \mathrm{MS}: 336\left(\mathrm{M}^{+}+1\right)$, $335\left(\mathrm{M}^{+}\right), 91(100)$; HRMS: Calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}: 335.1191$, Found: 335.1149; [ $\left.\alpha\right]^{26}{ }_{\mathrm{D}}-137.0(c$ $1.71, \mathrm{CHCl}_{3}$ ).
Methyl (5R,6S)-(+)-5-Acetoxy-6-(acetoxymethyl)-1-(phenylmethyl)-2-piperidinylidenethanoate (5)
To a stirred solution of the thiolactam ( $1.61 \mathrm{~g}, 4.83 \mathrm{mmol}$ ) in $\mathrm{MeCN}(20 \mathrm{~mL})$ was added $\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Me}$ ( $0.55 \mathrm{~mL}, 5.77 \mathrm{mmol}$ ), then the resulting mixture was stirred at room temperature for 24 h . To the
reaction mixture was added $\mathrm{Ph}_{3} \mathrm{P}(1.51 \mathrm{~g}, 5.77 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL}, 14.48 \mathrm{mmol})$, then the resulting suspension was refluxed for 24 h . Ahter cooling, the solvent was evaporated, and the residue was chromatographed on $\mathrm{SiO}_{2}(70 \mathrm{~g}$, hexane:acetone $=50: 1 \sim 12: 1)$ to give $(+)-5(1.66 \mathrm{~g}, 92 \%)$ as a colorless oil.
IR (neat) $\mathrm{cm}^{-1}: 3063,2947,1732,1694,1682,1574,1558,1496,1434,1372,1242,1142,1046$, $942,730,697 ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta: 1.85-1.92(1 \mathrm{H}, \mathrm{m}), 2.02 \& 2.04$ (each 3 H , each s), 2.06-2.13 $(1 \mathrm{H}, \mathrm{m}), 3.13(1 \mathrm{H}, \mathrm{dt}, J=18.0,6.0 \mathrm{~Hz}), 3.39(1 \mathrm{H}, \mathrm{dddd}, J=18.0,9.0,6.0,1.0 \mathrm{~Hz}), 3.53(1 \mathrm{H}, \mathrm{tdd}$, $J=7.0,2.2,1.0 \mathrm{~Hz}), 3.55(3 \mathrm{H}, \mathrm{s}), 4.17(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 4.28(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 4.59(1 \mathrm{H}, \mathrm{d}$, $J=16.0 \mathrm{~Hz}), 4.72(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.10-5.13(1 \mathrm{H}, \mathrm{m}), 7.21(2 \mathrm{H}, \mathrm{d}$-like, $J=8.0 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{t}$-like, $\mathrm{J}=$ 8.0 Hz ), $7.32\left(2 \mathrm{H}, \mathrm{t}\right.$-like, $J=8.0 \mathrm{~Hz}$ ); ${ }^{13} \mathrm{C}$ NMR ( 75 MHz ) $\delta: 20.73$ (q), 21.03 (q), 21.73 (t), 21.84 (t), 50.08 (q), 53.80 (t), 60.32 (d), 62.75 (t), 68.65 (d), 86.20 (d), 126.75 (d), 127.41 (d), 128.64 (d), 135.73 (s), 160.36 (s), 168.98 (s), 170.15 ( s$), 170.41$ (s); MS: $375\left(\mathrm{M}^{+}\right), 242\left(\mathrm{M}^{+}-133\right), 91$ (100); HRMS: Calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{6}: 375.1682$, Found: $375.1723 ;[\alpha]^{26} \mathrm{D}+70.3\left(c 9.59, \mathrm{CHCl}_{3}\right)$.
Methyl ( $5 R, 6 S$ )-5-Acetoxy-6-(acetoxymethyl)-1-(phenylmethyl)piperidin-2-ethanoate To a stirred suspension of (+)-5 (1.60 g, 4.27 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{NaBH}_{3} \mathrm{CN}(95 \%, 440$ $\mathrm{mg}, 6.65 \mathrm{mmol}$ ) was added dropwise TFA ( $1.0 \mathrm{~mL}, 13.0 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$, then the resulting suspension was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with satd. $\mathrm{NaHCO}_{3}$, and the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 4)$, and the organic extracts were combined, dried, and evaporated to give a colorless oil, which was chromatographed on $\mathrm{SiO}_{2}(50 \mathrm{~g}$, hexane:acetone $=11: 1$ ) to afford the piperidine $(1.34 \mathrm{~g}, 84 \%)$ as a $11: 1$ mixture of the $\operatorname{trans}(2,6)$ - and cis(2,6)-piperidines as a colorless oil.
(4aS, $6 R, 8 \mathrm{a} R$ )-(-)-Hexahydro-6-\{2-(hydroxy)ethyl\}-2,2-dimethyl-5-(phenylmethyl)-4H-1,3-dioxino[5,4-b]pyridine (6)
To a stirred solution of the above mixture ( $1.0 \mathrm{~g}, 2.65 \mathrm{mmol}$ ) in THF ( 20 mL ) was added $\mathrm{LiAlH}_{4}$ ( 300 $\mathrm{mg}, 7.96 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$, then the resulting suspension was refluxed for 18 h . After cooling, the reaction was quenched with $10 \% \mathrm{NaOH}$, and the residue was extracted with hot $\mathrm{CHCl}_{3}$ ( $10 \mathrm{~mL} \times 10$ ). The organic extracts were combined, dried, and evaporated to give a colorless oil, which was used directly in the next step. To a stirred solution of the above oil in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 30 mL ) was added 2,2dimethoxypropane ( $0.66 \mathrm{~mL}, 5.31 \mathrm{mmol}$ ), $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(760 \mathrm{mg}, 3.98 \mathrm{mmol}$ ), and molecular sieves 5A ( 10 g ), then the resulting suspension was stirred at room temperature for 20 h . The reaction was quenched with $15 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$, and the organic layer was separated. The aqueous layer was extracted with $\mathrm{CHCl}_{3}$ ( $30 \mathrm{~mL} \times 5$ ), the organic extracts were combined, dried, and evaporated to give a pale yellow oil, which was chromatographed on $\mathrm{SiO}_{2}(40 \mathrm{~g}$, hexane:acetone $=12: 1)$ to give $(-)-6(606 \mathrm{mg}$, 75\%) as a colorless oil.
IR (neat) $\mathrm{cm}^{-1}: 3423,3061,3027,2992,2941,2874,1378,1265,1202,1167,1093,1040,735,700$; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta: 1.40 \& 1.49$ (each 3 H , each s), $1.42-1.51(1 \mathrm{H}, \mathrm{m}), 1.59-1.72(2 \mathrm{H}, \mathrm{m}), 1.78$ $(1 \mathrm{H}, \mathrm{dq}, J=13.0,3.0 \mathrm{~Hz}), 2.00(1 \mathrm{H}, \mathrm{tt}, J=14.0,5.0 \mathrm{~Hz}), 2.11-2.18(1 \mathrm{H}, \mathrm{m}), 2.88(1 \mathrm{H}, \mathrm{q}-\mathrm{like}, J=$ $6.0 \mathrm{~Hz}), 2.98(1 \mathrm{H}, \mathrm{td}, J=10.0,5.0 \mathrm{~Hz}), 3.07(1 \mathrm{H}, \mathrm{br}), 3.46(1 \mathrm{H}$, ddd, $J=11.0,9.0,4.5 \mathrm{~Hz}), 3.63$ $(1 \mathrm{H}, \mathrm{dt}, J=10.8,5.0 \mathrm{~Hz}), 3.68 \& 3.76(2 \mathrm{H}, \mathrm{ABq}, J=13.2 \mathrm{~Hz}), 3.79 \& 3.84(1 \mathrm{H}, \mathrm{ABq}, J=10.7$ $\mathrm{Hz}), 3.80 \& 3.82(1 \mathrm{H}, \mathrm{ABq}, J=11.0 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{td}, J=10.0,4.5 \mathrm{~Hz}), 7.23-7.34(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta: 19.33(q), 24.67(\mathrm{t}), 26.22(\mathrm{t}), 28.59(\mathrm{t}), 29.44(\mathrm{q}), 52.76$ ( t$), 54.68(\mathrm{~d}), 55.07(\mathrm{~d})$,
62.10 ( t$), 62.89$ (t), 69.03 (d), 98.61 ( s$), 127.17$ (d), 128.31 (d), 128.46 (d), 139.57 (s); MS: 305 $\left(\mathrm{M}^{+}\right), 91$ (100); HRMS: Calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3}: 305.2088$, Found: 305.2045; $[\alpha]^{26} \mathrm{D}-20.9$ (c 0.99, $\mathrm{CHCl}_{3}$ ).
Ethyl (4aS,6R,8aR)-(+)-Hexahydro-2,2-dimethyl-5-(phenylmethyl)-4H-1,3-dioxino-[5,4-b]pyridine-6-but-(2E)-enoate (7)
To a stirred solution of $(\mathrm{COCl})_{2}(0.19 \mathrm{~mL}, 2.28 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added DMSO $(0.32 \mathrm{~mL}$, 4.56 mmol ) at $-78^{\circ} \mathrm{C}$, then the resulting mixture was stirred for 5 min . To the mixture was added ( - )-6 ( $347 \mathrm{mg}, 1.14 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~mL}\right.$ ) was added at $-78^{\circ} \mathrm{C}$, then the mixture was stirred for 30 min . To the resulting mixture was added $\mathrm{Et}_{3} \mathrm{~N}(0.95 \mathrm{~mL}, 6.84 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, then the temperature was rised gradually to $0^{\circ} \mathrm{C}$. The reaction was quenched with satd. $\mathrm{NaHCO}_{3}$, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$. The organic extracts were combined, dried, and evaporated to give the crude aldehyde as a pale yellow oil. This ladehyde was used directly in the next step. To a stirred suspension of $\mathrm{NaH}(60 \%, 68 \mathrm{mg}, 1.71 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added ( EtO$)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ $(0.37 \mathrm{~mL}, 1.82 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . To the mixture was added the above aldehyde in $\mathrm{THF}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, then the mixture was stirred at room temperature for 40 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 $\mathrm{mL} \times 5$ ). The organic extracts were combined, dried, and evaporated to give a pale yellow oil, which was chromatographed on $\mathrm{SiO}_{2}(20 \mathrm{~g}$, hexane:acetone $=50: 1)$ to give $(+)-7(338 \mathrm{mg}, 80 \%)$ as a colorless oil.
IR (neat) $\mathrm{cm}^{-1}: 3062,3027,2991,2942,2874,1716,1652,1454,1368,1319,1265,1202,1174$, $1122,1093,1041,985,927,868,737,700 ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta: 1.27(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.40 \&$ 1.47 (each 3 H , each s), $1.52-1.64(2 \mathrm{H}, \mathrm{m}), 1.68-1.74(2 \mathrm{H}, \mathrm{m}), 2.47-2.52(2 \mathrm{H}, \mathrm{m}), 2.69(1 \mathrm{H}, \mathrm{td}, J=$ $10.5,4.5 \mathrm{~Hz}), 2.82-2.86(1 \mathrm{H}, \mathrm{m}), 3.52 \& 3.69(2 \mathrm{H}, \mathrm{ABq}, J=14.0 \mathrm{~Hz}), 3.59(1 \mathrm{H}, \mathrm{t}, J=10.0 \mathrm{~Hz})$, $3.72(1 \mathrm{H}, \mathrm{ddd}, J=11.0,9.0,4.5 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{dd}, J=10.9,4.5 \mathrm{~Hz}), 4.16(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz})$, $5.79(1 \mathrm{H}$, dt-like, $J=15.0,1.0 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{dt}, J=15.0,8.0 \mathrm{~Hz}), 7.22-7.31(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz ) $\delta: 14.17$ (q), 19.17 (q), 25.02 ( $), 25.46$ ( $), 26.25$ (t), $29.50(\mathrm{q}), 52.95$ (t), 55.18 (d), 55.91 (d), 60.13 (t), 63.93 (t), 72.11 (d), 98.47 ( s$), 122.89$ (d), 126.99 (d), 127.98 (d), 128.29 (d), 139.33 (s), 146.88 (d), 166.19 (s); MS: 373 ( $\mathrm{M}^{+}$), 91 (100); HRMS: Calcd. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{4}$ : 373.2251, Found: $373.2232 ;[\alpha]^{26} \mathrm{D}+62.6\left(c 1.00, \mathrm{CHCl}_{3}\right)$.
Trichloroethyl (4aS,6S,8aR)-(-)-Hexahydro-6-\{4-(hydroxy)butyl\}-2,2-dimethyl-4H-1,3-dioxino[5,4-b]pyridine-5-carboxylate
To a stirred solution of $(+)-7(300 \mathrm{mg}, 0.80 \mathrm{mmol})$ in $\mathrm{EtOH}(10 \mathrm{~mL})$ was added $\mathrm{Pd}(\mathrm{OH})_{2}(20 \mathrm{mg})$, then the resulting suspension was hydrogenated at 1 atm for 15 h . The catalyst was filtered off, and the filterate was evaporated to give a colorless oil. To a stirred solution of the oil in THF ( 10 mL ) was added $\mathrm{LiAlH}_{4}(61 \mathrm{mg}, 1.60 \mathrm{mmol}$ ), then the resulting suspension was refluxed for 12 h . After cooling, the reaction was quenched with $10 \% \mathrm{NaOH}$, and the residue was extracted with hot $\mathrm{CHCl}_{3}$ ( 10 $\mathrm{ml} \times 6$ ). The organic extracts were combined, dried, and evaporated to afford a colorless oil, which was used directly in the next step. To a stirred solution of the above oil in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ (2 mL ) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(220 \mathrm{mg}, 1.60 \mathrm{mmol})$ and $\mathrm{TrocCl}(0.22 \mathrm{~mL}, 1.60 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, then the resulting mixture was stirred at room temperature for 8 h . The organic layer was separated and the aqueous layer was extracted with $\mathrm{CHCl}_{3}(10 \mathrm{~mL} \times 5)$. The organic extracs were combined, dried, and
evaporated to give a colorless oil, which was chromatographed on $\mathrm{SiO}_{2}(15 \mathrm{~g}$, hexane:acetone=11:1) to give (-)-8 (220 mg, 65\%) as a colorless oil.
IR (neat) $\mathrm{cm}^{-1}: 3446,2994,2939,1717,1424,1382,1266,1204,1098,705 ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta$ : $1.39 \& 1.51$ (each 3 H , each s), 1.31-1.42 $(2 \mathrm{H}, \mathrm{m}), 1.55-1.70(6 \mathrm{H}, \mathrm{m}), 1.74-1.88(3 \mathrm{H}, \mathrm{m}), 3.23(1 \mathrm{H}$, $\mathrm{td}, J=10.0,4.5 \mathrm{~Hz}), 3.63(2 \mathrm{H}, \mathrm{t}$-like, $J=6.2 \mathrm{~Hz}), 3.71(1 \mathrm{H}, \mathrm{td}, J=10.5,4.5 \mathrm{~Hz}), 4.36 \& 4.44$ (each 1 H , each br), $4.59\left(1 \mathrm{H}, \mathrm{t}, J=11.0 \mathrm{~Hz}\right.$ ), $4.66 \& 4.72$ (each 1 H , each br); ${ }^{13} \mathrm{C}$ NMR ( 75 MHz ) $\delta: 19.07$ (q), 22.49 (t), 26.03 (t), 26.37 (t), 29.15 ( $t$ ), 29.39 (q), 32.34 (t), 53.39 (d), 53.46 (d), $62.36 \& 62.45$ (each t , due to rotamers), 62.52 ( t ), 70.63 (d), 74.94 ( s$), 95.41$ ( s$), 98.49(\mathrm{~s}), 153.25$ (s); $[\alpha]^{26} \mathrm{D}-9.3$ (c $2.24, \mathrm{CHCl}_{3}$ ).
Phenyl sluphone (-)-(9)
To a stirred solution of $\left(\mathrm{COCl}_{2}(0.103 \mathrm{~mL}, 1.22 \mathrm{mmol})\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added DMSO ( 0.17 $\mathrm{mL}, 2.44 \mathrm{mmol}$ ) at $-78^{\circ} \mathrm{C}$, then the resulting mixture was stirred for 5 min . To the mixture was added $(-)-8(255 \mathrm{mg}, 0.61 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added at $-78^{\circ} \mathrm{C}$, then the mixture was stirred for 30 min . To the resulting mixture was added $\mathrm{Et}_{3} \mathrm{~N}(0.51 \mathrm{~mL}, 3.66 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, then the temperature was rised gradually to $0^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$. The organic extracts were combined, dried, and evaporated to give the crude aldehyde as a pale yellow oil. This aldehyde was used directly in the next step. To a stirred suspension of $\mathrm{NaH}(60 \%, 27 \mathrm{mg}, 0.67 \mathrm{mmol})$ in $\mathrm{THF}(5 \mathrm{~mL})$ was added $(\mathrm{EtO}))_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{Ph}$ ( $214 \mathrm{mg}, 0.73 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . To the mixture was added the above aldehyde in $\mathrm{THF}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, then the mixture was stirred at room temperature for 3 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 10 $\mathrm{mL} \times 5$ ). The organic extracts were combined, dried, and evaporated to give a pale yellow oil, which was chromatographed on $\mathrm{SiO}_{2}(20 \mathrm{~g}$, hexane:acetone $=15: 1)$ to give $(-)-9(266 \mathrm{mg}, 80 \%)$ as a colorless oil.
IR (neat) $\mathrm{cm}^{-1}: 2995,2945,2868,1715,1446,1384,1307,1266,1234,1204,1147,1096,753,688 ;$ ${ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta: 1.37 \& 1.48$ (each 3 H , each s), $1.40-1.51(3 \mathrm{H}, \mathrm{m}), 1.55-1.64(2 \mathrm{H}, \mathrm{m}), 1.73-$ $1.86(3 \mathrm{H}, \mathrm{m}), 2.26(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}), 3.14(1 \mathrm{H}, \mathrm{td}, J=10.0,4.5 \mathrm{~Hz}), 3.65-3.72(1 \mathrm{H}, \mathrm{m}), 4.29$ $(1 \mathrm{H}, \mathrm{br}), 4.39(1 \mathrm{H}, \mathrm{br}), 4.56(1 \mathrm{H}, \mathrm{br}$ t-like, $J=11.0 \mathrm{~Hz}), 4.52-4.66(1 \mathrm{H}, \mathrm{br}), 4.71(1 \mathrm{H}, \mathrm{d}-\mathrm{like}, J=$ $11.0 \mathrm{~Hz}), 6.30(1 \mathrm{H}, \mathrm{dd}-\mathrm{like}, J=14.0,1.0 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{dtd}, J=14.0,6.5,1.0 \mathrm{~Hz}), 7.52(2 \mathrm{H}, \mathrm{tm}, J$ $=8.0 \mathrm{~Hz}), 7.59(1 \mathrm{H}, \mathrm{tm}, J=8.0 \mathrm{~Hz}), 7.84(2 \mathrm{H}, \mathrm{dm}, J=8.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}) \delta: 19.01$ (q), $22.53(\mathrm{t}), 24.18(\mathrm{t}), 25.95 \& 26.46$ (each t , due to rotamers), $28.66 \& 29.34$ (each t , due to rotamers), 29.34 (q), $30.97 \& 31.45$ (each $t$, due to rotamers), 52.93 (d), 53.37 (d), 62.20 (t), 70.40 (d), 74.75 (t), 95.47 ( s$), 98.45$ ( s$), 127.45$ (d), 129.20 (d), 130.84 (d), 133.25 (d), 140.38 ( s$), 145.98$ (d); $[\alpha]^{26}$ D -3.77 (c 4.10, $\mathrm{CHCl}_{3}$ ).

## Quinolizidine (-)-10

To a stirred solution of (-)-9 (278 mg, 0.50 mmol$)$ in THF ( 6 mL ) and $1 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OAc}(6 \mathrm{~mL})$ was added $10 \% \mathrm{Cd}-\mathrm{Pb}(440 \mathrm{mg})$, then the resulting suspension was stirred at room temperature for 24 h . To the suspension was added an addiional $10 \% \mathrm{Cd}-\mathrm{Pb}(440 \mathrm{mg})$, then the suspension was stirred an additional 24 h . The insoluble material was removed through the celite pad, and the the aqueous layer was extracted with $\mathrm{CHCl}_{3}(15 \mathrm{~mL} \times 4)$. The organic extracts were combined, dried, and evaporated to give a colorless oil, which was recrystallized from $i$ - $\mathrm{Pr}_{2} \mathrm{O}$-benzene-hexane to afford $(-)-10(127 \mathrm{mg}, 67 \%)$ as
a colorless needle ( $\mathrm{mp} 194 \sim 195^{\circ} \mathrm{C}$ ). The mother liquor was evaporated, and the residue was chromatographed on $\mathrm{SiO}_{2}(10 \mathrm{~g}$, hexane:acetone $=17: 1)$ to give $(-)-10(48 \mathrm{mg}, 25 \%)$ as an additional crops.
IR (KBr) $\mathrm{cm}^{-1}: 3062,2991,2972,2942,2914,2887,2867,1300,1291,1268,1201,1173,1148$, $1138,1092,1034,865,753 ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta: 0.95(1 \mathrm{H}, \mathrm{dm}, J=13.5 \mathrm{~Hz}), 1.00(1 \mathrm{H}, \mathrm{tt}, J=$ $14.0,5.0 \mathrm{~Hz}), 1.25(2 \mathrm{H}, \mathrm{tm}, J=17.0 \mathrm{~Hz}), 1.32-1.46(2 \mathrm{H}, \mathrm{m}), 1.38 \& 1.44$ (each 3 H , each s$), 1.48 \&$ $1.53(1 \mathrm{H}$, each dt, $J=14.0,4.0 \mathrm{~Hz}), 1.72(1 \mathrm{H}, \mathrm{dm}, J=13.5 \mathrm{~Hz}), 1.75-1.89(2 \mathrm{H}, \mathrm{m}), 2.65(1 \mathrm{H}, \mathrm{dm}$, $J=12.2 \mathrm{~Hz}), 2.78(1 \mathrm{H}, \mathrm{td}-\mathrm{like}, J=9.5,4.5 \mathrm{~Hz}), 3.14(1 \mathrm{H}, \mathrm{dd}, J=15.0,5.0 \mathrm{~Hz}), 3.23(1 \mathrm{H}, \mathrm{ddd}, J=$ $11.0,9.0,4.2 \mathrm{~Hz}), 3.40(1 \mathrm{H}, \mathrm{br}$ dt-like, $J=8.0,4.0 \mathrm{~Hz}), 3.48(1 \mathrm{H}, \mathrm{t}, J=11.0 \mathrm{~Hz}), 3.74(1 \mathrm{H}, \mathrm{dd}, J=$ $14.0,8.0 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{dd}, J=11.0,4.5 \mathrm{~Hz}), 7.56(2 \mathrm{H}, \mathrm{t}-\mathrm{like}, J=8.0,1.0 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{tt}-\mathrm{like}, J$ $=8.0,1.1 \mathrm{~Hz}), 7.92(2 \mathrm{H}, \mathrm{dm}, J=8.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ( 125 MHz ) $\delta: 19.07(\mathrm{q}), 20.48(\mathrm{t}), 21.33(\mathrm{t})$, 22.23 (t), 25.59 (t), 27.82 (t), 29.42 (q), 48.42 (d), 49.21 (d), 52.79 (d), 57.27 ( $), 62.60$ (t), 71.84 (d), 98.09 ( s , 127.86 (d), 128.86 (d), 133.20 (d), 140.67 (s); MS: 379 ( $\mathrm{M}^{+}$), 138 ( 100 ); HRMS: Calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S}: 379.1817$, Found: 379.1839; $[\alpha]^{26} \mathrm{D}-44.5$ (c 1.06, $\mathrm{CHCl}_{3}$ ).
(4S,6S,7R,9aS-cis)-(-)-6-\{(2,2-Dimethylethyldiphenylsiloxy)methyl\}-7-hydroxy-4-(phenylsulfonylmehyl)octahydro-2 $H$-quinolizine (11)
To a stirred solution of (-)-10 (583 mg, 1.54 mmol$)$ in $\mathrm{EtOH}(40 \mathrm{~mL})$ was added $10 \% \mathrm{HCl}(3 \mathrm{~mL})$, then the resulting mixture was refluxed for 30 min . After coolling, the solvent was evaporated, and the residue was disolved in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$. To the solution was added $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{~g})$, then the suspension was stirred at room temperature for 1 h . Filteration and the evaporation of the filterate gave a colorless oil, which was used directly in the next step. To a stirred solution of the oil in DMF ( 5 mL ) was added imidazole ( $160 \mathrm{mg}, 2.35 \mathrm{mmol}$ ) and $\operatorname{TBDPSCl}(0.41 \mathrm{~mL}, 1.58 \mathrm{mmol})$, then the resulting solution was stirred at $80^{\circ} \mathrm{C}$ for 40 min . After cooling, the reaction mixture was diluted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ and $15 \% \mathrm{~K}_{2} \mathrm{CO}_{3}(5 \mathrm{~mL})$, and the organic layer was separated. The aqueous layer was extracted with $\mathrm{CHCl}_{3}(10 \mathrm{~mL} \times 5)$, and the organic extracts were combined, dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, and evaporated to give a pale yellow oil, which was chromatographed on $\mathrm{SiO}_{2}(20 \mathrm{~g}$, hexane:acetone $=10: 1)$ to give $(-)-11(755$ $\mathrm{mg}, 85 \%$ ) as a colorless solid ( $\mathrm{mp} \mathrm{160} \mathrm{\sim 163}{ }^{\circ} \mathrm{C}$ ).
IR (KBr) $\mathrm{cm}^{-1}: 3501,3070,2935,2891,2857,1589,1448,1428,1300,1289,1144,1113,1085$, $1058,806,746,703,689 ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta: 0.93(1 \mathrm{H}, J=13.0,4.5 \mathrm{~Hz}), 1.06(9 \mathrm{H}, \mathrm{s}), 1.19$ $(1 \mathrm{H}, \mathrm{dm}, J=13.0 \mathrm{~Hz}), 1.24-1.34(2 \mathrm{H}, \mathrm{m}), 1.39(1 \mathrm{H}, \mathrm{qm}, J=13.0 \mathrm{~Hz}), 1.50(1 \mathrm{H}$, qt-like, $J=12.0$, $4.5 \mathrm{~Hz}), 1.59(1 \mathrm{H}, \mathrm{dq}, J=13.0,4.5 \mathrm{~Hz}), 1.67-1.77(3 \mathrm{H}, \mathrm{m}), 2.61(1 \mathrm{H}, \mathrm{dm}, J=11.0 \mathrm{~Hz}), 2.89(1 \mathrm{H}$, q-like, $J=7.5 \mathrm{~Hz}), 3.18(1 \mathrm{H}, \mathrm{dd}, J=14.0,5.5 \mathrm{~Hz}), 3.20(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.18-3.25(1 \mathrm{H}, \mathrm{m}), 3.61(1 \mathrm{H}$, $\mathrm{dd}, J=15.0,7.0 \mathrm{~Hz}), 3.69-3.75(1 \mathrm{H}, \mathrm{br}), 3.71(1 \mathrm{H}, \mathrm{dd}, J=11.0,5.5 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{dd}, J=11.0$, $5.0 \mathrm{~Hz}), 7.34(2 \mathrm{H}, \mathrm{t}-\mathrm{ike}, J=7.5 \mathrm{~Hz}), 7.42-7.49(7 \mathrm{H}, \mathrm{m}), 7.70-7.74(6 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ( 125 MHz$) \delta$ : 19.03 ( s ), 20.34 (t), 22.99 ( t$), 23.70$ ( t$), 26.74$ (q), 26.86 (t), 27.63 (t), 49.48 (d), 49.94 (d), 58.38 (t), 60.44 (d), 66.84 (t), 71.45 (d), 127.81 (d), 127.86 (d), 128.82 (d), 129.92 (d), 129.97 (d), 132.62 (s), 132.81 (s), 133.09 (d), 135.63 (d), 135.65 (d), 140.25 (s); MS: $577\left(\mathrm{M}^{+}\right), 520\left(\mathrm{M}^{+}-57\right), 69(100)$; HRMS: Calcd. for $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{NO}_{4} \mathrm{~S}_{1} \mathrm{Si}: 577.2700$, Found: 577.2658; $[\alpha]^{26} \mathrm{D}-1.01\left(c 1.02, \mathrm{CHCl}_{3}\right)$. ( $4 S, 6 S, 7 R, 9 \mathrm{a} S$-cis)-(-)-6-\{(2,2-Dimethylethyldiphenylsiloxy)methyl\}-7-(methoxymethoxy)-4-(phenylsulfonylmethyl)octahydro-2H-quinolizine (12)

To a stirred solution of ( - )-11 ( $755 \mathrm{mg}, 1.31 \mathrm{mmol}$ ) in $\mathrm{CHCl}_{3}(15 \mathrm{~mL}$ ) was added $\mathrm{MOMCl}(0.31 \mathrm{~mL}$, $4.08 \mathrm{mmol})$ and $(i-\operatorname{Pr})_{2} \mathrm{EtN}(0.83 \mathrm{~mL}, 4.74 \mathrm{mmol})$, then the resulting solution was refluxed for 40 min . After cooling, the solven was evaporated to give an orange oil, which was chromatographed on $\mathrm{SiO}_{2}$ (20 g , hexane:acetone $=12: 1$ ) to give $(-)-12(753 \mathrm{mg}, 93 \%)$ as a colorless oil.
IR (neat) $\mathrm{cm}^{-1}: 2925,1654,1648,1560,1458,1448,1429,1305,1036,742 ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta$ : $0.81(1 \mathrm{H}, \mathrm{tt}, J=14.0,4.5 \mathrm{~Hz}), 1.05(9 \mathrm{H}, \mathrm{s}), 1.22-1.44(4 \mathrm{H}, \mathrm{m}), 1.56(1 \mathrm{H}, \mathrm{q}, J=12.5,4.0 \mathrm{~Hz})$, $1.66-1.76(2 \mathrm{H}, \mathrm{m}), 1.82(1 \mathrm{H}, \mathrm{qd}, J=12.5,4.0 \mathrm{~Hz}), 2.18(1 \mathrm{H}, \mathrm{tt}, J=14.0,4.9 \mathrm{~Hz}), 2.64(1 \mathrm{H}, \mathrm{dm}, J$ $=11.5 \mathrm{~Hz}), 2.75(1 \mathrm{H}, \mathrm{td}, J=10.0,4.5 \mathrm{~Hz}), 3.02(3 \mathrm{H}, \mathrm{s}), 3.06(1 \mathrm{H}, \mathrm{dd}, J=9.0,6.0 \mathrm{~Hz}), 3.26(1 \mathrm{H}$, dd, $J=14.5,5.5 \mathrm{~Hz}), 3.79(1 \mathrm{H}, \mathrm{dd}, J=10.0,6.0 \mathrm{~Hz}), 3.81(1 \mathrm{H}, \mathrm{dd}, J=14.0,7.5 \mathrm{~Hz}), 3.98(1 \mathrm{H}, \mathrm{d}$, $J=11.0 \mathrm{~Hz}), 4.23 \& 4.39(2 \mathrm{H}, \mathrm{ABq}, J=7.0 \mathrm{~Hz}), 4.46-4.53(1 \mathrm{H}, \mathrm{m}), 7.36-7.46(5 \mathrm{H}, \mathrm{m}), 7.54(1 \mathrm{H}$, $\mathrm{tt}, J=7.5,1.2 \mathrm{~Hz}), 7.74(2 \mathrm{H}, \mathrm{dm}, J=7.5 \mathrm{~Hz}), 7.81-7.84(2 \mathrm{H}, \mathrm{m}), 7.88(2 \mathrm{H}, \mathrm{dm}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ( 125 MHz ) $\delta: 19.11(\mathrm{~s}), 20.65(\mathrm{t}), 22.59(\mathrm{t}), 22.63(\mathrm{t}), 22.97(\mathrm{t}), 25.70(\mathrm{t}), 26.69(\mathrm{q}), 26.91(\mathrm{t})$, 31.56 (t), 49.31 (d), 50.63 (d), 55.42 (q), 58.22 ( $t), 61.64$ (d), $65.69(t), 74.61(\mathrm{~d}), 95.26(\mathrm{t}), 127.46$ (d), 127.70 (d), 127.95 (d), 128.75 (d), 129.44 (d), 129.56 (d), 132.92 (d), 133.37 (s), 133.47 (s), 135.80 (d), 135.85 (t), 141.24 (s); MS: $621\left(\mathrm{M}^{+}\right), 564\left(\mathrm{M}^{+}-57\right), 352$ (100); HRMS: Calcd. for $\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{NO}_{5} \mathrm{~S}_{1} \mathrm{Si}: 621.2973$, Found: $621.2932 ;[\alpha]^{26} \mathrm{D}-4.58\left(c 1.24, \mathrm{CHCl}_{3}\right)$.
(4S,6S,7R,9aS-cis)-(-)-6-(Hydroxymethyl)-7-(methoxymethoxy)-4-(phenylsulfonylmethyl)octahydro-2H-quinolizine (13)
To a stirred solution of (-)-12 (753 mg, 1.21 mmol ) in THF ( 15 mL ) was added pyridine ( $3.6 \mathrm{~mL}, 44.5$ $\mathrm{mmol})$ and $47 \% \mathrm{HF}(0.91 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, then the resulting solution was stirred at room temperature for 1.5 h . The reaction was quenched with $30 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$, and the aqueous layer was extracted with $\mathrm{CHCl}_{3}$ ( $10 \mathrm{~mL} \times 8$ ). The organic extracts were combined, dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, and evaporated to give a colorless oil, which was chromatographed on $\mathrm{SiO}_{2}(15 \mathrm{~g}$, hexane:acetone $=5: 1)$ to give (-)-13 (443 mg, 95\%) as a colorless oil.
IR (neat) $\mathrm{cm}^{-1}: 3502,3064,2937,1447,1405,1301,1212,1144,1049,967,915,881,750,688 ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta: 0.89-1.00(2 \mathrm{H}, \mathrm{m}), 1.14(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=14.5 \mathrm{~Hz}), 1.20(1 \mathrm{H}, \mathrm{dq}, J=14.0,3.0$ $\mathrm{Hz}), 1.41(1 \mathrm{H}, \mathrm{qm}, J=12.0 \mathrm{~Hz}), 1.49(1 \mathrm{H}, \mathrm{qt}, J=13.0,4.5 \mathrm{~Hz}), 1.70(1 \mathrm{H}, \mathrm{dm}, J=14.0 \mathrm{~Hz}), 1.73-$ $1.84(3 \mathrm{H}, \mathrm{m}), 2.65-2.70(2 \mathrm{H}$, br m$), 3.08(1 \mathrm{H}, \mathrm{dd}, J=14.0,3.0 \mathrm{~Hz}), 3.35(1 \mathrm{H}, \mathrm{br}), 3.38(3 \mathrm{H}, \mathrm{s})$, $3.55(1 \mathrm{H}, \mathrm{ddd}, J=11.0,9.0,4.5 \mathrm{~Hz}), 3.82-4.00(4 \mathrm{H}, \mathrm{m}), 4.70 \& 4.72(2 \mathrm{H}, \mathrm{ABq}, J=6.5 \mathrm{~Hz}), 7.55$ $(2 \mathrm{H}, \mathrm{tm}, J=8.0 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{tt}, J=8.0,1.2 \mathrm{~Hz}), 7.94(2 \mathrm{H}, \mathrm{dm}, J=8.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ( 125 MHz ) $\delta: 20.60$ (t), 21.70 (t), 22.71 (t), 25.79 (t), 26.84 (t), 48.72 (d), 49.06 (d), 55.49 (q), 57.16 (t), 59.10 (d), 73.36 (d), 96.13 (t), 127.83 (d), 129.07 (d), 133.41 (d), 140.67 ( s$) ; \mathrm{MS}: 383$ ( $\mathrm{M}^{+}$), 352 ( 100 ); HRMS: Calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{~S}: 383.1730$, Found: 383.1751 ; $[\alpha]^{26}{ }_{\mathrm{D}}-3.06\left(c 1.18, \mathrm{CHCl}_{3}\right)$.
(4S,6S,7R,9aS-cis)-(+)-6-(Iodomethyl)-7-(methoxymethoxy)-4-(phenylsulfonylmethyl)octahydro-2H-quinolizine (14)
To a stirred solution of (-)-13 ( $443 \mathrm{mg}, 1.16 \mathrm{mmol}$ ) in benzene ( 20 mL ) was added imidazole ( 195 mg , $2.87 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}(757 \mathrm{mg}, 2.89 \mathrm{mmol})$ and $\mathrm{I}_{2}(584 \mathrm{mg}, 2.30 \mathrm{mmol})$, then the resulting suspension was stirred at room temperature for 20 min . The reaction was quenched with $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in satd. $\mathrm{NaHCO}_{3}$, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 1,10 \mathrm{~mL} \times 5)$. The organic extracts were combined, dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, and evaporated to give a pale yellow oil, which was
chromatographed on $\mathrm{SiO}_{2}(20 \mathrm{~g}$, hexane:acetone $=15: 1)$ to give $(+)-14(510 \mathrm{mg}, 89 \%)$ as a pale yellow oil.
IR (neat) $\mathrm{cm}^{-1}: 3061,2934,1448,1302,1199,1036,968,917,750,719,688 ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta$ : $1.09(1 \mathrm{H}$, br d, $J=12.0 \mathrm{~Hz}), 1.22-1.32(1 \mathrm{H}$, br m$), 1.39-1.55(3 \mathrm{H}, \mathrm{m}), 1.61-1.81(4 \mathrm{H}, \mathrm{m}), 1.86-1.93$ $(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.16(1 \mathrm{H}, \mathrm{brd}, J=8.0 \mathrm{~Hz}), 2.82(1 \mathrm{H}, \mathrm{brd}, J=12.0 \mathrm{~Hz}), 3.12-3.19(2 \mathrm{H}, \mathrm{m}), 3.33-3.39$ $(1 \mathrm{H}, \mathrm{m}), 3.36(3 \mathrm{H}, \mathrm{s}), 3.43(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10.0 \mathrm{~Hz}), 3.70(1 \mathrm{H}, \mathrm{d}-\mathrm{like}, J=10.0 \mathrm{~Hz}), 3.73(1 \mathrm{H}, \mathrm{dd}, J=$ $13.0,11.0 \mathrm{~Hz}), 4.64 \& 4.69(2 \mathrm{H}, \mathrm{ABq}, J=6.8 \mathrm{~Hz}), 7.55(2 \mathrm{H}, \mathrm{t}$-like, $J=7.5 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{t}-\mathrm{like}, J$ $=7.5 \mathrm{~Hz}), 7.93(2 \mathrm{H}, \mathrm{d}-\mathrm{like}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ( 125 MHz ) $\delta: 11.08(\mathrm{t}), 19.77$ ( t$), 19.78(\mathrm{t}), 23.49$ ( t$), 24.93$ ( t), $27.64(\mathrm{t}), 48.41(\mathrm{~d}), 50.24(\mathrm{~d}), 55.77(\mathrm{q}), 56.06(\mathrm{~d}), 58.71(\mathrm{t}), 76.75(\mathrm{~d}), 95.58(\mathrm{t})$, 128.06 (d), 129.29 (d), 133.63 (d), 139.94 (s); MS: $493\left(\mathrm{M}^{+}\right), 366$ (100); HRMS: Calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{INO}_{4} \mathrm{~S}: 493.0747$, Found: 493.0787; $[\alpha]^{26} \mathrm{D}+30.9\left(c 2.78, \mathrm{CHCl}_{3}\right)$.
(4S,6S,7R,9aS-cis)-(-)-7-(Methoxymethoxy)-6-methyl-4-(phenylsulfonylmethyl)-octahydro- 2 H -quinolizine (15)
To a stirred solution of $(+)-14(510 \mathrm{mg}, 1.03 \mathrm{mmol})$ in toluene $(15 \mathrm{~mL})$ was added $n-\mathrm{Bu} 3 \mathrm{SnH}(0.35$ $\mathrm{mL}, 1.24 \mathrm{mmol}$ ) and AIBN ( $34 \mathrm{mg}, 0.21 \mathrm{mmol}$ ), then the resulting solution was refluxed for 16 h . After cooling, the solvent was evaporaed, and the residue was disolved with $\mathrm{MeCN}(25 \mathrm{~mL}$ ), and the solution was washed with hexane ( $6 \mathrm{~mL} \times 8$ ), then the solvent was evaporated. The residue was chromatographed on $\mathrm{SiO}_{2}(15 \mathrm{~g}$, hexane:acetone $=14: 1)$ to give $(-)-15(358 \mathrm{mg}, 94 \%)$ as a colorless oil. IR (neat) $\mathrm{cm}^{-1}: 3061,2935,1447,1304,1148,1106,1086,1036,750,689 ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta$ : $0.89-0.94(1 \mathrm{H}, \mathrm{m}), 0.99(1 \mathrm{H}, \mathrm{tt}, J=15.0,5.0 \mathrm{~Hz}), 1.04(3 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 1.22-1.37(3 \mathrm{H}, \mathrm{m}), 1.54$ $(1 \mathrm{H}, \mathrm{tt}, J=13.0,4.0 \mathrm{~Hz}), 1.67-1.83(4 \mathrm{H}, \mathrm{m}), 2.61(1 \mathrm{H}, \mathrm{dm}, J=12.5 \mathrm{~Hz}), 2.72-2.78(1 \mathrm{H}, \mathrm{m}), 2.82$ $(1 \mathrm{H}, \mathrm{tt}, J=11.0,4.5 \mathrm{~Hz}), 3.26(1 \mathrm{H}, \mathrm{dd}, J=14.5,6.0 \mathrm{~Hz}), 3.35(3 \mathrm{H}, \mathrm{s}), 3.63(1 \mathrm{H}, \mathrm{dd}, J=14.5,7.0$ $\mathrm{Hz}), 3.82(1 \mathrm{H}, \mathrm{br}$ q,$J=5.5 \mathrm{~Hz}), 4.56 \& 4.68(2 \mathrm{H}, \mathrm{ABq}, J=7.0 \mathrm{~Hz}), 7.53(2 \mathrm{H}, \mathrm{t}-\mathrm{like}, J=8.0 \mathrm{~Hz})$, $7.60(1 \mathrm{H}, \mathrm{tt}-\mathrm{like}, J=8.0,1.0 \mathrm{~Hz}), 7.91(2 \mathrm{H}, \mathrm{dm}, J=8.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ( 125 MHz ) $\delta: 15.39$ (q), 20.45 (t), 20.97 (t), 22.23 (t), 25.82 (t), 27.70 (t), 48.93 (d), 49.15 (d), 53.02 (d), 55.54 (q), 58.13 (t), 79.31 (d), 95.58 (t), 128.07 (d), 128.84 (d), 133.16 (d), 140.53 ( s$) ; \mathrm{MS}: 367\left(\mathrm{M}^{+}\right), 212$ ( 100 ); HRMS: Calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S}: 367.1796$, Found: 367.1830; $[\alpha]^{26} \mathrm{D}-10.95\left(c 0.81, \mathrm{CHCl}_{3}\right)$.
(4S,6S,7R,9aS-cis)-(-)-4-(Deca-7,9-dienyl)-7-(methoxymethoxy)-6-methyloctahydro$2 H$-quinolizine (16)
To a stirred solution of ( - ) $-15(76 \mathrm{mg}, 0.21 \mathrm{mmol})$ in THF ( 2 mL ) was added $n-\mathrm{BuLi}(0.15 \mathrm{~mL}, 0.23$ $\mathrm{mmol})$ at $-80^{\circ} \mathrm{C}$, then the resulting solution was stirred for 10 min . To the solution was added trans $-2-$ nonenal ( $0.07 \mathrm{~mL}, 0.42 \mathrm{mmol}$ ) at $-80^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-50^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with $15 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$, and the aqueous layer was extracted with $\mathrm{CHCl}_{3}(10 \mathrm{~mL} \times 5)$. The organic extracts were combined, dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, and evaporated to give a pale yellow oil, which was used directly in he next step. To a stirred solution of the above oil in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ ( $220 \mathrm{mg}, 1.55 \mathrm{mmol}$ ) and $5 \% \mathrm{Na}-\mathrm{Hg}(1.8 \mathrm{~g})$, then he resulting suspension was stirred at room emperature for 2 h . The reaction was quenched with $15 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$, and the aqueous layer was extracted with $\mathrm{CHCl}_{3}$ ( $10 \mathrm{~mL} \times 4$ ). The organic exracts were combined, dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, and evaporated to give a pale yellow oil, which was chromatographed on $\mathrm{SiO}_{2}(15 \mathrm{~g}$, hexane:acetone $=20: 1)$ to give (-)-16 ( $38 \mathrm{mg}, 53 \%$ ) as a colorless oil.

IR (neat) $\mathrm{cm}^{-1}: 2926,1654,1560,1543,1508,1459,1104,1040,990 ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta: 0.88$ $(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.12(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 1.24-1.31(7 \mathrm{H}, \mathrm{m}), 1.36(2 \mathrm{H}$, quint-like, $J=7.0 \mathrm{~Hz})$, $1.45-1.56(3 \mathrm{H}, \mathrm{m}), 1.57-1.64(2 \mathrm{H}, \mathrm{m}), 1.70-1.76(2 \mathrm{H}, \mathrm{m}), 1.87(1 \mathrm{H}, \mathrm{tt}-\mathrm{like}, J=12.5,3.8 \mathrm{~Hz}), 1.91-$ $1.99(1 \mathrm{H}, \mathrm{m}), 2.05(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J=6.5 \mathrm{~Hz}), 3.18-3.23(1 \mathrm{H}, \mathrm{m}), 3.27-3.33(1 \mathrm{H}, \mathrm{m}), 3.35(3 \mathrm{H}, \mathrm{s}), 3.39$ $(1 \mathrm{H}, \mathrm{q}, J=4.0 \mathrm{~Hz}), 3.84(1 \mathrm{H}, \mathrm{td}, J=8.0,3.0 \mathrm{~Hz}), 4.61(2 \mathrm{H}, \mathrm{s}), 5.52(1 \mathrm{H}, \mathrm{dd}, J=14.0,7.5 \mathrm{~Hz})$, $5.58(1 \mathrm{H}, \mathrm{dt}, J=14.0,7.1 \mathrm{~Hz}), 6.03(1 \mathrm{H}, \mathrm{dd}, J=14.0,10.0 \mathrm{~Hz}), 6.09(1 \mathrm{H}, \mathrm{dd}, J=14.0,10.0 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ( 125 MHz ) $\delta: 14.10$ (q), 17.12 (q), 19.68 (t), 22.05 (t), 22.59 (t), 25.92 (t), 28.91 (t), 29.32 (t), 29.38 (t), 31.24 ( t), 31.72 (t), 32.63 (t), 49.13 (d), $52.95(\mathrm{~d}), 55.27$ (q), 57.64 (d), 75.44 (d), 94.42 (t), 130.13 (d), 131.01 (d), 133.35 (d), 136.26 (d); MS: 349 ( $\mathrm{M}^{+}$), 334 (100); HRMS: Calcd. for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NO}_{2}: 349.3018$, Found: 349.3001 ; $[\alpha]^{26}{ }_{\mathrm{D}}-20.7$ (c 0.81, $\mathrm{CHCl}_{3}$ ).
(+)-clavepictine $B$ (2)
To a stirred solution of (-)-16 (38 mg, 0.11 mmol$)$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added c . HCl ( 2 drops), then the resulting solution was refluxed for 4 h . After cooling, the reaction was quenched with $15 \%$ $\mathrm{K}_{2} \mathrm{CO}_{3}$, and the solvent was evaporated. The residue was extracted with hot $\mathrm{CHCl}_{3}(5 \mathrm{~mL} \times 10)$, and the organic extracts were combined, evaporated to give a colorless oil, which was chromatographed on $\mathrm{SiO}_{2}\left(10 \mathrm{~g}, \mathrm{CHCl}_{3}: \mathrm{MeOH}=10: 1\right)$ to give $(+)-2(27 \mathrm{mg}, 82 \%)$ as a colorless solid ( $\mathrm{mp} 70 \sim 72^{\circ} \mathrm{C}$, lit ${ }^{1} \mathrm{mp}$ $70 \sim 72^{\circ} \mathrm{C}$ ).
IR (KBr) $\mathrm{cm}^{-1}: 3202,3019,2923,2855,1659,1443,1368,1340,1278,1202,1151,1055,1039$, $1029,990,950 ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ ) $\delta: 0.81(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.15-1.27(7 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.29$ $(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 1.29-1.35(2 \mathrm{H}, \mathrm{m}), 1.36-1.43(1 \mathrm{H}, \mathrm{m}), 1.48-1.59(2 \mathrm{H}, \mathrm{m}), 1.60-1.72(3 \mathrm{H}, \mathrm{m})$, 1.77-1.86 (2H, m), 1.90-1.96 (1H, m), 2.05 ( $2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}$ ), 3.11-3.16 ( $1 \mathrm{H}, \mathrm{m}$ ), $3.32(1 \mathrm{H}$, quint, $J=6.0 \mathrm{~Hz}), 3.62(1 \mathrm{H}$, quint-like, $J=5.0 \mathrm{~Hz}), 4.04(1 \mathrm{H}, \mathrm{br} \mathrm{q}, J=5.0 \mathrm{~Hz}), 5.65(1 \mathrm{H}, \mathrm{dt}, J=15.0,7.0$ $\mathrm{Hz}), 5.78(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 5.87(1 \mathrm{H}, \mathrm{dd}, J=15.0,7.0 \mathrm{~Hz}), 6.22(1 \mathrm{H}, \mathrm{dd}, J=15.0,10.0 \mathrm{~Hz})$, $6.38(1 \mathrm{H}, \mathrm{dd}, J=15.0,10.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta: 14.24$ (q), 16.79 (q), 20.60 ( t$)$, $22.84(\mathrm{t}), 26.07(\mathrm{t}), 27.87(\mathrm{t}), 28.10(\mathrm{t}), 29.12(\mathrm{t}), 29.34(\mathrm{t}), 29.70(\mathrm{t}), 31.92(\mathrm{t}), 32.95(\mathrm{t}), 49.47(\mathrm{~d})$, 56.67 (d), 57.21 (d), 71.87 (d), 130.87 (d), 131.23 (d), 133.02 (d), 137.03 (d); $[\alpha]^{26}{ }_{D}+25.7$ (c 0.61, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).
(-)-clavepictine A (1)
To a stirred solution of $(+)-2(25 \mathrm{mg}, 0.082 \mathrm{mmol})$ in pyridine $(0.3 \mathrm{~mL})$ was added $\mathrm{Ac}_{2} \mathrm{O}(0.1 \mathrm{~mL})$, then the resulting solution was stirred at room temperature for 5 h . The volatile was evaporated, and the residue was chromatographed on $\mathrm{SiO}_{2}(10 \mathrm{~g}$, hexane:acetone $=16: 1)$ to give $(-)-1(26 \mathrm{mg}, 90 \%)$ as a colorless oil.
IR (neat) $\mathrm{cm}^{-1}: 3016,2928,2856,1736,1654,1560,1458,1376,1246,1162,1108,1029,990,962$; ${ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta: 0.80(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 0.95(1 \mathrm{H}, \mathrm{dq}-\mathrm{like}, J=12.6,3.0 \mathrm{~Hz}), 1.10$ $(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 1.12-1.24(6 \mathrm{H}, \mathrm{m}), 1.26-1.35(3 \mathrm{H}, \mathrm{m}), 1.42-1.50(4 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.58(1 \mathrm{H}, \mathrm{dm}, J=$ $13.0 \mathrm{~Hz}), 1.75(1 \mathrm{H}, \mathrm{dq}, J=13.0,4.0 \mathrm{~Hz}), 1.84(1 \mathrm{H}, \mathrm{tt}, J=11.0,4.0 \mathrm{~Hz}), 1.93(1 \mathrm{H}, \mathrm{qd}-\mathrm{like}, J=$ $13.0,4.0 \mathrm{~Hz}), 2.04(2 \mathrm{H}, \mathrm{q}$-like, $J=6.0 \mathrm{~Hz}), 2.15(3 \mathrm{H}, \mathrm{s}), 3.11(1 \mathrm{H}, \mathrm{dm}, J=10.0 \mathrm{~Hz}), 3.50(1 \mathrm{H}, \mathrm{qd}-$ like, $J=7.0,2.5 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{td}, J=8.0,3.0 \mathrm{~Hz}), 4.70(1 \mathrm{H}, \mathrm{q}, J=3.0 \mathrm{~Hz}), 5.66(1 \mathrm{H}, \mathrm{dd}, J=$ $15.0,7.0 \mathrm{~Hz}), 5.73(1 \mathrm{H}, \mathrm{dt}, J=15.0,7.0 \mathrm{~Hz}), 6.17(1 \mathrm{H}, \mathrm{dd}, J=15.0,10.5 \mathrm{~Hz}), 6.31(1 \mathrm{H}, \mathrm{dd}, J=$ $15.0,10.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 14.10$ (q), 17.20 (q), 19.68 (t), 20.59 ( t$), 21.60$ ( t$)$,
22.59 (t), 25.68 (q), 28.96 (t), 29.29 ( $t), 31.72$ (t), 32.63 (t), 49.00 (d), 52.89 (d), 58.01 (d), 73.29 (d), 129.97 (d), 130.95 (d), 133.58 (d), 136.15 (d), 170.34 ( s$) ;[\alpha]^{26} \mathrm{D}-74.5$ (c 0.55, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).

