

J. Org. Chem., 1996, 61(15), 4882-4883, DOI:10.1021/jo9608174

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Experimental Section

General. ¹H NMR spectra were recorded at the indicated field strength as solutions in CDCl₃ unless otherwise indicated. Chemical shifts are expressed in parts per million (ppm, δ) downfield from TMS and are referenced to CHCl₃ (7.26 ppm) as internal standard. Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, braod. ¹³C NMR spectra were recorded at the indicated field strength as solutions in CDCl₃ unless otherwise indicated. Chemical shifts are reported in parts per million (ppm, d) downfield from TMS and are referenced to the center line of CDCl₃ (77.0 ppm) as internal standard. Carbon signals were assigned by a DEPT pulse sequence, q = methyl, t = methyleme, d = methine, and s = quaternary.

(5R,6S)-(-)-5-Acetoxy-6-(acetoxymethyl)-1-(phenylmethyl)-2-piperidone

To a stirred solution of (-)-4⁴ (1.44 g, 6.13 mmol) in pyridine (10 mL) was added Ac₂O (6 mL, 63.59 mmol) at 0 °C, then the resulting mixture was stirred at room temperature for 18 h. The solvent was evaporated, and the residue was chromatographed on SiO₂ (50 g, hexane:acetone=4:1) to give the diacetate (1.72 g, 88%) as a colorless oil.

IR (neat) cm⁻¹: 3063, 3030, 2960, 1738, 1650, 1469, 1454, 1416, 1367, 1236, 1187, 1055, 724; ¹H NMR (500 MHz) δ : 1.83 & 2.06 (each 3H, each s), 1.95-2.01 (1H, m), 2.13-2.20 (1H, m), 2.52 (1H, ddd, J = 18.0, 7.5, 2.1 Hz), 2.63 (1H, ddd, J = 18.0, 11.0, 7.5 Hz), 3.56-3.60 (1H, m), 3.88 (1H, d, J = 15.0 Hz), 4.10 (1H, dd, J = 11.9, 7.5 Hz), 4.20 (1H, dd, J = 11.9, 4.0 Hz), 5.05-5.07 (1H, m), 5.46 (1H, d, J = 15.0 Hz), 7.22-7.30 (5H, m); ¹³C NMR (75 MHz) δ : 20.62 (q), 20.71 (q), 21.93 (t), 26.91 (t), 47.86 (t), 57.32 (d), 61.98 (t), 67.12 (d), 127.49 (d), 128.05 (d), 128.48 (d), 136.60 (s), 169.18 (s), 169.83 (s), 170.23 (s); MS: 320 (M⁺+1), 319 (M⁺), 91 (100); HRMS: Calcd. for C₁₇H₂₁NO₅: 319.1419, Found: 319.1390; [α]²⁶D -55.0 (c 2.15, CHCl₃).

(5R,6S)-(-)-5-Acetoxy-6-(acetoxymethyl)-1-(phenylmethyl)-2-piperidinethione

To a stirred solution of the diacetate (1.54 g, 4.83 mmol) in THF (20 mL) was added Lawesson's reagent (1.2 g, 2.90 mmol), then the resulting suspension was refluxed for 2 h. After cooling, the solvent was evaporated to give a pale yellow oil, which was chromatographed on SiO₂ (50 g, hexane:acetone=10:1) to give the thiolactam (1.59 g, 99%) as a colorless oil.

IR (neat) cm⁻¹: 3062, 3029, 2946, 1746, 1596, 1495, 1454, 1413, 1367, 1300, 1235, 1173, 1123, 1050, 959, 923, 731, 704; ¹H NMR (500 MHz) δ : 1.82 & 2.10 (each 3H, each s), 1.86-1.95 (1H, m), 2.13-2.20 (1H, m), 3.19 (1H, ddd, J = 19.5, 7.5, 4.0 Hz), 3.27 (1H, ddd, J = 19.5, 9.6, 7.1 Hz), 3.79-3.82 (1H, m), 4.22 (1H, dd, J = 12.6, 7.0 Hz), 4.26 (1H, dd, J = 12.6, 4.5 Hz), 4.28 (1H, d, J = 15.0 Hz), 5.14 (1H, q-like, J = 2.2 Hz), 6.61 (1H, d, J = 15.0 Hz), 7.27-7.36 (5H, m); ¹³C NMR (75 MHz) δ : 20.65 (q), 20.71 (q), 22.32 (t), 36.89 (t), 55.33 (t), 59.28 (d), 61.64 (t), 67.47 (d), 127.93 (d), 128.13 (d), 128.63 (d), 134.88 (s), 169.82 (s), 170.12 (s), 201.47 (s); MS: 336 (M⁺+1), 335 (M⁺), 91 (100); HRMS: Calcd. for C₁₇H₂₁NO₄S: 335.1191, Found: 335.1149; [α]²⁶D -137.0 (α) (c) 1.71, CHCl₃).

Methyl (5R,6S)-(+)-5-Acetoxy-6-(acetoxymethyl)-1-(phenylmethyl)-2-piperidinylidenethanoate (5)

To a stirred solution of the thiolactam (1.61 g, 4.83 mmol) in MeCN (20 mL) was added BrCH₂CO₂Me (0.55 mL, 5.77 mmol), then the resulting mixture was stirred at room temperature for 24 h. To the

reaction mixture was added Ph_3P (1.51 g, 5.77 mmol) and Et_3N (2.0 mL, 14.48 mmol), then the resulting suspension was refluxed for 24 h. Ahter cooling, the solvent was evaporated, and the residue was chromatographed on SiO_2 (70 g, hexane:acetone=50:1~12:1) to give (+)-5 (1.66 g, 92%) as a colorless oil.

IR (neat) cm⁻¹: 3063, 2947, 1732, 1694, 1682, 1574, 1558, 1496, 1434, 1372, 1242, 1142, 1046, 942, 730, 697; ¹H NMR (500 MHz) δ : 1.85-1.92 (1H, m), 2.02 & 2.04 (each 3H, each s), 2.06-2.13 (1H, m), 3.13 (1H, dt, J = 18.0, 6.0 Hz), 3.39 (1H, dddd, J = 18.0, 9.0, 6.0, 1.0 Hz), 3.53 (1H, tdd, J = 7.0, 2.2, 1.0 Hz), 3.55 (3H, s), 4.17 (1H, d, J = 6.0 Hz), 4.28 (1H, d, J = 16.0 Hz), 4.59 (1H, d, J = 16.0 Hz), 4.72 (1H, br s), 5.10-5.13 (1H, m), 7.21 (2H, d-like, J = 8.0 Hz), 7.25 (1H, t-like, J = 8.0 Hz), 7.32 (2H, t-like, J = 8.0 Hz); ¹³C NMR (75 MHz) δ : 20.73 (q), 21.03 (q), 21.73 (t), 21.84 (t), 50.08 (q), 53.80 (t), 60.32 (d), 62.75 (t), 68.65 (d), 86.20 (d), 126.75 (d), 127.41 (d), 128.64 (d), 135.73 (s), 160.36 (s), 168.98 (s), 170.15 (s), 170.41 (s); MS: 375 (M⁺), 242 (M⁺-133), 91 (100); HRMS: Calcd. for C₂₀H₂₅NO₆: 375.1682, Found: 375.1723; [α]²⁶D +70.3 (c 9.59, CHCl₃).

Methyl (5R,6S)-5-Acetoxy-6-(acetoxymethyl)-1-(phenylmethyl)piperidin-2-ethanoate To a stirred suspension of (+)-5 (1.60 g, 4.27 mmol) in CH₂Cl₂ (20 mL) and NaBH₃CN (95%, 440 mg, 6.65 mmol) was added dropwise TFA (1.0 mL, 13.0 mmol) at 0 °C, then the resulting suspension was stirred at 0 °C for 2 h. The reaction was quenched with satd. NaHCO₃, and the organic layer was separated. The aqueous layer was extracted with CH₂Cl₂ (10 mL x 4), and the organic extracts were combined, dried, and evaporated to give a colorless oil, which was chromatographed on SiO₂ (50 g, hexane:acetone=11:1) to afford the piperidine (1.34 g, 84%) as a 11:1 mixture of the *trans*(2,6)- and *cis*(2,6)-piperidines as a colorless oil.

(4aS,6R,8aR)-(-)-Hexahydro-6-{2-(hydroxy)ethyl}-2,2-dimethyl-5-(phenylmethyl)-4H-1,3-dioxino[5,4-b]pyridine (6)

To a stirred solution of the above mixture (1.0 g, 2.65 mmol) in THF (20 mL) was added LiAlH₄ (300 mg, 7.96 mmol) at 0 °C, then the resulting suspension was refluxed for 18 h. After cooling, the reaction was quenched with 10% NaOH, and the residue was extracted with hot CHCl₃ (10 mL x 10). The organic extracts were combined, dried, and evaporated to give a colorless oil, which was used directly in the next step. To a stirred solution of the above oil in CH₂Cl₂ (30 mL) was added 2,2-dimethoxypropane (0.66 mL, 5.31 mmol), p-TsOH•H₂O (760 mg, 3.98 mmol), and molecular sieves 5A (10 g), then the resulting suspension was stirred at room temperature for 20 h. The reaction was quenched with 15% K₂CO₃, and the organic layer was separated. The aqueous layer was extracted with CHCl₃ (30 mL x 5), the organic extracts were combined, dried, and evaporated to give a pale yellow oil, which was chromatographed on SiO₂ (40 g, hexane:acetone=12:1) to give (-)-6 (606 mg, 75%) as a colorless oil.

IR (neat) cm⁻¹: 3423, 3061, 3027, 2992, 2941, 2874, 1378, 1265, 1202, 1167, 1093, 1040, 735, 700; ¹H NMR (500 MHz) δ : 1.40 & 1.49 (each 3H, each s), 1.42-1.51 (1H, m), 1.59-1.72 (2H, m), 1.78 (1H, dq, J = 13.0, 3.0 Hz), 2.00 (1H, tt, J = 14.0, 5.0 Hz), 2.11-2.18 (1H, m), 2.88 (1H, q-like, J = 6.0 Hz), 2.98 (1H, td, J = 10.0, 5.0 Hz), 3.07 (1H, br), 3.46 (1H, ddd, J = 11.0, 9.0, 4.5 Hz), 3.63 (1H, dt, J = 10.8, 5.0 Hz), 3.68 & 3.76 (2H, ABq, J = 13.2 Hz), 3.79 & 3.84 (1H, ABq, J = 10.7 Hz), 3.80 & 3.82 (1H, ABq, J = 11.0 Hz), 3.90 (1H, td, J = 10.0, 4.5 Hz), 7.23-7.34 (5H, m); ¹³C NMR (75 MHz) δ : 19.33 (q), 24.67 (t), 26.22 (t), 28.59 (t), 29.44 (q), 52.76 (t), 54.68 (d), 55.07 (d),

62.10 (t), 62.89 (t), 69.03 (d), 98.61 (s), 127.17 (d), 128.31 (d), 128.46 (d), 139.57 (s); MS: 305 (M⁺), 91 (100); HRMS: Calcd. for $C_{18}H_{27}NO_3$: 305.2088, Found: 305.2045; $[\alpha]^{26}D$ -20.9 (c 0.99, CHCl₃).

Ethyl (4aS,6R,8aR)-(+)-Hexahydro-2,2-dimethyl-5-(phenylmethyl)-4H-1,3-dioxino-[5,4-b]pyridine-6-but-(2E)-enoate (7)

To a stirred solution of (COCl)₂ (0.19 mL, 2.28 mmol) in CH₂Cl₂ (5 mL) was added DMSO (0.32 mL, 4.56 mmol) at -78 °C, then the resulting mixture was stirred for 5 min. To the mixture was added (-)-6 (347 mg, 1.14 mmol) in CH₂Cl₂ (5 mL) was added at -78 °C, then the mixture was stirred for 30 min. To the resulting mixture was added Et₃N (0.95 mL, 6.84 mmol) at - 78°C, then the temperature was rised gradually to 0 °C. The reaction was quenched with satd. NaHCO₃, and the aqueous layer was extracted with Et₂O (20 mL x₃). The organic extracts were combined, dried, and evaporated to give the crude aldehyde as a pale vellow oil. This ladehyde was used directly in the next step. stirred suspension of NaH (60%, 68 mg, 1.71 mmol) in THF (10 mL) was added (EtO)₂P(O)CH₂CO₂Et (0.37 mL, 1.82 mmol) at 0 °C, then the reaction mixture was stirred at 0 °C for 30 min. was added the above aldehyde in THF (5 mL) at 0 °C, then the mixture was stirred at room temperature The reaction was quenched with H₂O, and the aqueous layer was extracted with CH₂Cl₂ (10 The organic extracts were combined, dried, and evaporated to give a pale yellow oil, which $mL \times 5$). was chromatographed on SiO₂ (20 g, hexane:acetone=50:1) to give (+)-7 (338 mg, 80%) as a colorless oil.

IR (neat) cm⁻¹: 3062, 3027, 2991, 2942, 2874, 1716, 1652, 1454, 1368, 1319, 1265, 1202, 1174, 1122, 1093, 1041, 985, 927, 868, 737, 700; ${}^{1}H$ NMR (500 MHz) δ : 1.27 (3H, t, J = 7.0 Hz), 1.40 & 1.47 (each 3H, each s), 1.52-1.64 (2H, m), 1.68-1.74 (2H, m), 2.47-2.52 (2H, m), 2.69 (1H, td, J = 10.5, 4.5 Hz), 2.82-2.86 (1H, m), 3.52 & 3.69 (2H, ABq, J = 14.0 Hz), 3.59 (1H, t, J = 10.0 Hz), 3.72 (1H, ddd, J = 11.0, 9.0, 4.5 Hz), 3.88 (1H, dd, J = 10.9, 4.5 Hz), 4.16 (2H, q, J = 7.0 Hz), 5.79 (1H, dt-like, J = 15.0, 1.0 Hz), 6.72 (1H, dt, J = 15.0, 8.0 Hz), 7.22-7.31 (5H, m); ${}^{13}C$ NMR (75 MHz) δ : 14.17 (q), 19.17 (q), 25.02 (t), 25.46 (t), 26.25 (t), 29.50 (q), 52.95 (t), 55.18 (d), 55.91 (d), 60.13 (t), 63.93 (t), 72.11 (d), 98.47 (s), 122.89 (d), 126.99 (d), 127.98 (d), 128.29 (d), 139.33 (s), 146.88 (d), 166.19 (s); MS: 373 (M⁺), 91 (100); HRMS: Calcd. for C₂₂H₃₁NO₄: 373.2251, Found: 373.2232; $[\alpha]^{26}D$ +62.6 (c 1.00, CHCl₃).

Trichloroethyl (4aS,6S,8aR)-(-)-Hexahydro-6- $\{4$ -(hydroxy)butyl $\}$ -2,2-dimethyl-4H-1,3-dioxino[5,4-b]pyridine-5-carboxylate (8)

To a stirred solution of (+)-7 (300 mg, 0.80 mmol) in EtOH (10 mL) was added Pd(OH)₂ (20 mg), then the resulting suspension was hydrogenated at 1 atm for 15 h. The catalyst was filtered off, and the filterate was evaporated to give a colorless oil. To a stirred solution of the oil in THF (10 mL) was added LiAlH₄ (61 mg, 1.60 mmol), then the resulting suspension was refluxed for 12 h. After cooling, the reaction was quenched with 10% NaOH, and the residue was extracted with hot CHCl₃ (10 ml x 6). The organic extracts were combined, dried, and evaporated to afford a colorless oil, which was used directly in the next step. To a stirred solution of the above oil in CHCl₃ (20 mL) and H₂O (2 mL) was added K₂CO₃ (220 mg, 1.60 mmol) and TrocCl (0.22 mL, 1.60 mmol) at 0 °C, then the resulting mixture was stirred at room temperature for 8 h. The organic layer was separated and the aqueous layer was extracted with CHCl₃ (10 mL x 5). The organic extracts were combined, dried, and

evaporated to give a colorless oil, which was chromatographed on SiO_2 (15 g, hexane:acetone=11:1) to give (-)-8 (220 mg, 65%) as a colorless oil.

IR (neat) cm⁻¹: 3446, 2994, 2939, 1717, 1424, 1382, 1266, 1204, 1098, 705; ¹H NMR (500 MHz) δ : 1.39 & 1.51 (each 3H, each s), 1.31-1.42 (2H, m), 1.55-1.70 (6H, m), 1.74-1.88 (3H, m), 3.23 (1H, td, J = 10.0, 4.5 Hz), 3.63 (2H, t-like, J = 6.2 Hz), 3.71 (1H, td, J = 10.5, 4.5 Hz), 4.36 & 4.44 (each 1H, each br), 4.59 (1H, t, J = 11.0 Hz), 4.66 & 4.72 (each 1H, each br); ¹³C NMR (75 MHz) δ : 19.07 (q), 22.49 (t), 26.03 (t), 26.37 (t), 29.15 (t), 29.39 (q), 32.34 (t), 53.39 (d), 53.46 (d), 62.36 & 62.45 (each t, due to rotamers), 62.52 (t), 70.63 (d), 74.94 (s), 95.41 (s), 98.49 (s), 153.25 (s); $[\alpha]^{26}D$ -9.3 (c 2.24, CHCl₃).

Phenyl sluphone (-)-(9)

To a stirred solution of (COCl)₂ (0.103 mL, 1.22 mmol) in CH₂Cl₂ (2 mL) was added DMSO (0.17 mL, 2.44 mmol) at -78 °C, then the resulting mixture was stirred for 5 min. To the mixture was added (-)-8 (255 mg, 0.61 mmol) in CH₂Cl₂ (2 mL) was added at -78 °C, then the mixture was stirred for 30 To the resulting mixture was added Et₃N (0.51 mL, 3.66 mmol) at - 78°C, then the temperature The reaction was quenched with H₂O, and the aqueous layer was was rised gradually to 0 °C. extracted with Et₂O (20 mL x3). The organic extracts were combined, dried, and evaporated to give the crude aldehyde as a pale yellow oil. This aldehyde was used directly in the next step. stirred suspension of NaH (60%, 27 mg, 0.67 mmol) in THF (5 mL) was added (EtO)₂P(O)CH₂SO₂Ph (214 mg, 0.73 mmol) at 0 °C, then the reaction mixture was stirred at 0 °C for 30 min. was added the above aldehyde in THF (5 mL) at 0 °C, then the mixture was stirred at room temperature for 3 h. The reaction was quenched with H₂O, and the aqueous layer was extracted with CH₂Cl₂ (10 mL x 5). The organic extracts were combined, dried, and evaporated to give a pale yellow oil, which was chromatographed on SiO₂ (20 g, hexane:acetone=15:1) to give (-)-9 (266 mg, 80%) as a colorless oil.

IR (neat) cm⁻¹: 2995, 2945, 2868, 1715, 1446, 1384, 1307, 1266, 1234, 1204, 1147, 1096, 753, 688; ¹H NMR (500 MHz) δ : 1.37 & 1.48 (each 3H, each s), 1.40-1.51 (3H, m), 1.55-1.64 (2H, m), 1.73-1.86 (3H, m), 2.26 (2H, q, J = 7.0 Hz), 3.14 (1H, td, J = 10.0, 4.5 Hz), 3.65-3.72 (1H, m), 4.29 (1H, br), 4.39 (1H, br), 4.56 (1H, br t-like, J = 11.0 Hz), 4.52-4.66 (1H, br), 4.71 (1H, d-like, J = 11.0 Hz), 6.30 (1H, dd-like, J = 14.0, 1.0 Hz), 6.93 (1H, dtd, J = 14.0, 6.5, 1.0 Hz), 7.52 (2H, tm, J = 8.0 Hz), 7.59 (1H, tm, J = 8.0 Hz), 7.84 (2H, dm, J = 8.0 Hz); ¹³C NMR (125 MHz) δ : 19.01 (q), 22.53 (t), 24.18 (t), 25.95 & 26.46 (each t, due to rotamers), 28.66 & 29.34 (each t, due to rotamers), 29.34 (q), 30.97 & 31.45 (each t, due to rotamers), 52.93 (d), 53.37 (d), 62.20 (t), 70.40 (d), 74.75 (t), 95.47 (s), 98.45 (s), 127.45 (d), 129.20 (d), 130.84 (d), 133.25 (d), 140.38 (s), 145.98 (d); $[\alpha]^{26}$ D -3.77 (c 4.10, CHCl₃).

Quinolizidine (-)-10

To a stirred solution of (-)-9 (278 mg, 0.50 mmol) in THF (6 mL) and 1N NH₄OAc (6 mL) was added 10% Cd-Pb (440 mg), then the resulting suspension was stirred at room temperature for 24 h. To the suspension was added an additional 10% Cd-Pb (440 mg), then the suspension was stirred an additional 24 h. The insoluble material was removed through the celite pad, and the the aqueous layer was extracted with CHCl₃ (15 mL x 4). The organic extracts were combined, dried, and evaporated to give a colorless oil, which was recrystallized from i-Pr₂O-benzene-hexane to afford (-)-10 (127 mg, 67%) as

a colorless needle (mp 194 \sim 195 °C). The mother liquor was evaporated, and the residue was chromatographed on SiO₂ (10 g, hexane:acetone=17:1) to give (-)-10 (48 mg, 25%) as an additional crops.

IR (KBr) cm⁻¹: 3062, 2991, 2972, 2942, 2914, 2887, 2867, 1300, 1291, 1268, 1201, 1173, 1148, 1138, 1092, 1034, 865, 753; 1 H NMR (500 MHz) δ : 0.95 (1H, dm, J = 13.5 Hz), 1.00 (1H, tt, J = 14.0, 5.0 Hz), 1.25 (2H, tm, J = 17.0 Hz), 1.32-1.46 (2H, m), 1.38 & 1.44 (each 3H, each s), 1.48 & 1.53 (1H, each dt, J = 14.0, 4.0 Hz), 1.72 (1H, dm, J = 13.5 Hz), 1.75-1.89 (2H, m), 2.65 (1H, dm, J = 12.2 Hz), 2.78 (1H, td-like, J = 9.5, 4.5 Hz), 3.14 (1H, dd, J = 15.0, 5.0 Hz), 3.23 (1H, ddd, J = 11.0, 9.0, 4.2 Hz), 3.40 (1H, br dt-like, J = 8.0, 4.0 Hz), 3.48 (1H, t, J = 11.0 Hz), 3.74 (1H, dd, J = 14.0, 8.0 Hz), 3.90 (1H, dd, J = 11.0, 4.5 Hz), 7.56 (2H, t-like, J = 8.0, 1.0 Hz), 7.65 (1H, tt-like, J = 8.0, 1.1 Hz), 7.92 (2H, dm, J = 8.0 Hz); 13 C NMR (125 MHz) δ : 19.07 (q), 20.48 (t), 21.33 (t), 22.23 (t), 25.59 (t), 27.82 (t), 29.42 (q), 48.42 (d), 49.21 (d), 52.79 (d), 57.27 (t), 62.60 (t), 71.84 (d), 98.09 (s), 127.86 (d), 128.86 (d), 133.20 (d), 140.67 (s); MS: 379 (M+), 138 (100); HRMS: Calcd. for C₂₀H₂₉NO₄S: 379.1817, Found: 379.1839; [α]²⁶D -44.5 (c 1.06, CHCl₃).

$(4S,6S,7R,9aS-cis)-(-)-6-\{(2,2-Dimethylethyldiphenylsiloxy)methyl\}-7-hydroxy-4-(phenylsulfonylmehyl)octahydro-2H-quinolizine (11)$

To a stirred solution of (-)-10 (583 mg, 1.54 mmol) in EtOH (40 mL) was added 10% HCl (3 mL), then the resulting mixture was refluxed for 30 min. After coolling, the solvent was evaporated, and the residue was disolved in CHCl₃ (30 mL). To the solution was added K_2CO_3 (3 g), then the suspension was stirred at room temperature for 1 h. Filteration and the evaporation of the filterate gave a colorless oil, which was used directly in the next step. To a stirred solution of the oil in DMF (5 mL) was added imidazole (160 mg, 2.35 mmol) and TBDPSCl (0.41 mL, 1.58 mmol), then the resulting solution was stirred at 80 °C for 40 min. After cooling, the reaction mixture was diluted with CHCl₃ (20 mL) and 15% K_2CO_3 (5 mL), and the organic layer was separated. The aqueous layer was extracted with CHCl₃ (10 mL x 5), and the organic extracts were combined, dried over K_2CO_3 , and evaporated to give a pale yellow oil, which was chromatographed on SiO₂ (20 g, hexane:acetone=10:1) to give (-)-11 (755 mg, 85%) as a colorless solid (mp 160~163 °C).

IR (KBr) cm⁻¹: 3501, 3070, 2935, 2891, 2857, 1589, 1448, 1428, 1300, 1289, 1144, 1113, 1085, 1058, 806, 746, 703, 689; ¹H NMR (500 MHz) δ : 0.93 (1H, , J = 13.0, 4.5 Hz), 1.06 (9H, s), 1.19 (1H, dm, J = 13.0 Hz), 1.24-1.34 (2H, m), 1.39 (1H, qm, J = 13.0 Hz), 1.50 (1H, qt-like, J = 12.0, 4.5 Hz), 1.59 (1H, dq, J = 13.0, 4.5 Hz), 1.67-1.77 (3H, m), 2.61 (1H, dm, J = 11.0 Hz), 2.89 (1H, q-like, J = 7.5 Hz), 3.18 (1H, dd, J = 14.0, 5.5 Hz), 3.20 (1H, br s), 3.18-3.25 (1H, m), 3.61 (1H, dd, J = 15.0, 7.0 Hz), 3.69-3.75 (1H, br), 3.71 (1H, dd, J = 11.0, 5.5 Hz), 3.88 (1H, dd, J = 11.0, 5.0 Hz), 7.34 (2H, t-ike, J = 7.5 Hz), 7.42-7.49 (7H, m), 7.70-7.74 (6H, m); ¹³C NMR (125 MHz) δ : 19.03 (s), 20.34 (t), 22.99 (t), 23.70 (t), 26.74 (q), 26.86 (t), 27.63 (t), 49.48 (d), 49.94 (d), 58.38 (t), 60.44 (d), 66.84 (t), 71.45 (d), 127.81 (d), 127.86 (d), 128.82 (d), 129.92 (d), 129.97 (d), 132.62 (s), 132.81 (s), 133.09 (d), 135.63 (d), 135.65 (d), 140.25 (s); MS: 577 (M⁺), 520 (M⁺-57), 69 (100); HRMS: Calcd. for C₃₃H₄₃NO₄S₁Si: 577.2700, Found: 577.2658; $[\alpha]^{26}$ D -1.01 (c 1.02, CHCl₃).

 $(4S,6S,7R,9aS-cis)-(-)-6-\{(2,2-Dimethylethyldiphenylsiloxy)methyl\}-7-$ (methoxymethoxy)-4-(phenylsulfonylmethyl)octahydro-2*H*-quinolizine (12) To a stirred solution of (-)-11 (755 mg, 1.31 mmol) in CHCl₃ (15 mL) was added MOMCl (0.31 mL, 4.08 mmol) and (*i*-Pr)₂EtN (0.83 mL, 4.74 mmol), then the resulting solution was refluxed for 40 min. After cooling, the solven was evaporated to give an orange oil, which was chromatographed on SiO₂ (20 g, hexane:acetone=12:1) to give (-)-12 (753 mg, 93%) as a colorless oil.

IR (neat) cm⁻¹: 2925, 1654, 1648, 1560, 1458, 1448, 1429, 1305, 1036, 742; ¹H NMR (500 MHz) δ : 0.81 (1H, tt, J = 14.0, 4.5 Hz), 1.05 (9H, s), 1.22-1.44 (4H, m), 1.56 (1H, q, J = 12.5, 4.0 Hz), 1.66-1.76 (2H, m), 1.82 (1H, qd, J = 12.5, 4.0 Hz), 2.18 (1H, tt, J = 14.0, 4.9 Hz), 2.64 (1H, dm, J = 11.5 Hz), 2.75 (1H, td, J = 10.0, 4.5 Hz), 3.02 (3H, s), 3.06 (1H, dd, J = 9.0, 6.0 Hz), 3.26 (1H, dd, J = 14.5, 5.5 Hz), 3.79 (1H, dd, J = 10.0, 6.0 Hz), 3.81 (1H, dd, J = 14.0, 7.5 Hz), 3.98 (1H, d, J = 11.0 Hz), 4.23 & 4.39 (2H, ABq, J = 7.0 Hz), 4.46-4.53 (1H, m), 7.36-7.46 (5H, m), 7.54 (1H, tt, J = 7.5, 1.2 Hz), 7.74 (2H, dm, J = 7.5 Hz), 7.81-7.84 (2H, m), 7.88 (2H, dm, J = 7.5 Hz); ¹³C NMR (125 MHz) δ : 19.11 (s), 20.65 (t), 22.59 (t), 22.63 (t), 22.97 (t), 25.70 (t), 26.69 (q), 26.91 (t), 31.56 (t), 49.31 (d), 50.63 (d), 55.42 (q), 58.22 (t), 61.64 (d), 65.69 (t), 74.61 (d), 95.26 (t), 127.46 (d), 127.70 (d), 127.95 (d), 128.75 (d), 129.44 (d), 129.56 (d), 132.92 (d), 133.37 (s), 133.47 (s), 135.80 (d), 135.85 (t), 141.24 (s); MS: 621 (M+), 564 (M+-57), 352 (100); HRMS: Calcd. for C35H47NO5S1Si: 621.2973, Found: 621.2932; [α]²⁶D -4.58 (c 1.24, CHCl₃).

(4S,6S,7R,9aS-cis)-(-)-6-(Hydroxymethyl)-7-(methoxymethoxy)-4-(phenylsulfonylmethyl)octahydro-2H-quinolizine (13)

To a stirred solution of (-)-12 (753 mg, 1.21 mmol) in THF (15 mL) was added pyridine (3.6 mL, 44.5 mmol) and 47% HF (0.91 mL) at 0 °C, then the resulting solution was stirred at room temperature for 1.5 h. The reaction was quenched with 30% K_2CO_3 , and the aqueous layer was extracted with CHCl₃ (10 mL x 8). The organic extracts were combined, dried over K_2CO_3 , and evaporated to give a colorless oil, which was chromatographed on SiO_2 (15 g, hexane:acetone=5:1) to give (-)-13 (443 mg, 95%) as a colorless oil.

IR (neat) cm⁻¹: 3502, 3064, 2937, 1447, 1405, 1301, 1212, 1144, 1049, 967, 915, 881, 750, 688; ¹H NMR (500 MHz) δ : 0.89-1.00 (2H, m), 1.14 (1H, br d, J = 14.5 Hz), 1.20 (1H, dq, J = 14.0, 3.0 Hz), 1.41 (1H, qm, J = 12.0 Hz), 1.49 (1H, qt, J = 13.0, 4.5 Hz), 1.70 (1H, dm, J = 14.0 Hz), 1.73-1.84 (3H, m), 2.65-2.70 (2H, br m), 3.08 (1H, dd, J = 14.0, 3.0 Hz), 3.35 (1H, br), 3.38 (3H, s), 3.55 (1H, ddd, J = 11.0, 9.0, 4.5 Hz), 3.82-4.00 (4H, m), 4.70 & 4.72 (2H, ABq, J = 6.5 Hz), 7.55 (2H, tm, J = 8.0 Hz), 7.62 (1H, tt, J = 8.0, 1.2 Hz), 7.94 (2H, dm, J = 8.0 Hz); ¹³C NMR (125 MHz) δ : 20.60 (t), 21.70 (t), 22.71 (t), 25.79 (t), 26.84 (t), 48.72 (d), 49.06 (d), 55.49 (q), 57.16 (t), 59.10 (d), 73.36 (d), 96.13 (t), 127.83 (d), 129.07 (d), 133.41 (d), 140.67 (s); MS: 383 (M+), 352 (100); HRMS: Calcd. for C₁₉H₂₉NO₅S: 383.1730, Found: 383.1751; [α]²⁶D -3.06 (c 1.18, CHCl₃).

(4S,6S,7R,9aS-cis)-(+)-6-(Iodomethyl)-7-(methoxymethoxy)-4-(phenylsulfonylmethyl)octahydro-2H-quinolizine (14)

To a stirred solution of (-)-13 (443 mg, 1.16 mmol) in benzene (20 mL) was added imidazole (195 mg, 2.87 mmol), Ph₃P (757 mg, 2.89 mmol) and I₂ (584 mg, 2.30 mmol), then the resulting suspension was stirred at room temperature for 20 min. The reaction was quenched with 10% Na₂S₂O₃ in satd. NaHCO₃, and the aqueous layer was extracted with CH₂Cl₂ (20 mL x 1, 10 mL x 5). The organic extracts were combined, dried over K₂CO₃, and evaporated to give a pale yellow oil, which was

chromatographed on SiO_2 (20 g, hexane:acetone=15:1) to give (+)-14 (510 mg, 89%) as a pale yellow oil.

IR (neat) cm⁻¹: 3061, 2934, 1448, 1302, 1199, 1036, 968, 917, 750, 719, 688; ¹H NMR (500 MHz) δ : 1.09 (1H, br d, J = 12.0 Hz), 1.22-1.32 (1H, br m), 1.39-1.55 (3H, m), 1.61-1.81 (4H, m), 1.86-1.93 (1H, br m), 2.16 (1H, br d, J = 8.0 Hz), 2.82 (1H, br d, J = 12.0 Hz), 3.12-3.19 (2H, m), 3.33-3.39 (1H, m), 3.36 (3H, s), 3.43 (1H, br d, J = 10.0 Hz), 3.70 (1H, d-like, J = 10.0 Hz), 3.73 (1H, dd, J = 13.0, 11.0 Hz), 4.64 & 4.69 (2H, ABq, J = 6.8 Hz), 7.55 (2H, t-like, J = 7.5 Hz), 7.63 (1H, t-like, J = 7.5 Hz), 7.93 (2H, d-like, J = 7.5 Hz); ¹³C NMR (125 MHz) δ : 11.08 (t), 19.77 (t), 19.78 (t), 23.49 (t), 24.93 (t), 27.64 (t), 48.41 (d), 50.24 (d), 55.77 (q), 56.06 (d), 58.71 (t), 76.75 (d), 95.58 (t), 128.06 (d), 129.29 (d), 133.63 (d), 139.94 (s); MS: 493 (M⁺), 366 (100); HRMS: Calcd. for C₁₉H₂₈INO₄S: 493.0747, Found: 493.0787; [α]²⁶D +30.9 (c 2.78, CHCl₃).

(4S,6S,7R,9aS-cis)-(-)-7-(Methoxymethoxy)-6-methyl-4-(phenylsulfonylmethyl)-octahydro-2H-quinolizine (15)

To a stirred solution of (+)-14 (510 mg, 1.03 mmol) in toluene (15 mL) was added n-Bu₃SnH (0.35 mL, 1.24 mmol) and AIBN (34 mg, 0.21 mmol), then the resulting solution was refluxed for 16 h. After cooling, the solvent was evaporaed, and the residue was disolved with MeCN (25 mL), and the solution was washed with hexane (6 mL x 8), then the solvent was evaporated. The residue was chromatographed on SiO₂ (15 g, hexane:acetone=14:1) to give (-)-15 (358 mg, 94%) as a colorless oil. IR (neat) cm⁻¹: 3061, 2935, 1447, 1304, 1148, 1106, 1086, 1036, 750, 689; ¹H NMR (500 MHz) δ : 0.89-0.94 (1H, m), 0.99 (1H, tt, J = 15.0, 5.0 Hz), 1.04 (3H, d, J = 5.9 Hz), 1.22-1.37 (3H, m), 1.54 (1H, tt, J = 13.0, 4.0 Hz), 1.67-1.83 (4H, m), 2.61 (1H, dm, J = 12.5 Hz), 2.72-2.78 (1H, m), 2.82 (1H, tt, J = 11.0, 4.5 Hz), 3.26 (1H, dd, J = 14.5, 6.0 Hz), 3.35 (3H, s), 3.63 (1H, dd, J = 14.5, 7.0 Hz), 3.82 (1H, br q, J = 5.5 Hz), 4.56 & 4.68 (2H, ABq, J = 7.0 Hz), 7.53 (2H, t-like, J = 8.0 Hz), 7.60 (1H, tt-like, J = 8.0, 1.0 Hz), 7.91 (2H, dm, J = 8.0 Hz); ¹³C NMR (125 MHz) δ : 15.39 (q), 20.45 (t), 20.97 (t), 22.23 (t), 25.82 (t), 27.70 (t), 48.93 (d), 49.15 (d), 53.02 (d), 55.54 (q), 58.13 (t), 79.31 (d), 95.58 (t), 128.07 (d), 128.84 (d), 133.16 (d), 140.53 (s); MS: 367 (M⁺), 212 (100); HRMS: Calcd. for C₁₉H₂₉NO₄S: 367.1796, Found: 367.1830; [α]²⁶D -10.95 (c 0.81, CHCl₃).

(4S,6S,7R,9aS-cis)-(-)-4-(Deca-7,9-dienyl)-7-(methoxymethoxy)-6-methyloctahydro-2H-quinolizine (16)

To a stirred solution of (-)-15 (76 mg, 0.21 mmol) in THF (2 mL) was added *n*-BuLi (0.15 mL, 0.23 mmol) at -80 °C, then the resulting solution was stirred for 10 min. To the solution was added *trans*-2-nonenal (0.07 mL, 0.42 mmol) at -80 °C, then the reaction mixture was stirred at -50 °C for 1 h. The reaction was quenched with 15 % K₂CO₃, and the aqueous layer was extracted with CHCl₃ (10 mL x 5). The organic extracts were combined, dried over K₂CO₃, and evaporated to give a pale yellow oil, which was used directly in he next step. To a stirred solution of the above oil in MeOH (5 mL) was added Na₂HPO₄ (220 mg, 1.55 mmol) and 5% Na-Hg (1.8 g), then he resulting suspension was stirred at room emperature for 2 h. The reaction was quenched with 15% K₂CO₃, and the aqueous layer was extracted with CHCl₃ (10 mL x 4). The organic exracts were combined, dried over K₂CO₃, and evaporated to give a pale yellow oil, which was chromatographed on SiO₂ (15 g, hexane:acetone=20:1) to give (-)-16 (38 mg, 53%) as a colorless oil.

IR (neat) cm⁻¹: 2926, 1654, 1560, 1543, 1508, 1459, 1104, 1040, 990; ¹H NMR (500 MHz) δ : 0.88 (3H, t, J = 7.0 Hz), 1.12 (3H, d, J = 6.5 Hz), 1.24-1.31 (7H, m), 1.36 (2H, quint-like, J = 7.0 Hz), 1.45-1.56 (3H, m), 1.57-1.64 (2H, m), 1.70-1.76 (2H, m), 1.87 (1H, tt-like, J = 12.5, 3.8 Hz), 1.91-1.99 (1H, m), 2.05 (2H, br q, J = 6.5 Hz), 3.18-3.23 (1H, m), 3.27-3.33 (1H, m), 3.35 (3H, s), 3.39 (1H, q, J = 4.0 Hz), 3.84 (1H, td, J = 8.0, 3.0 Hz), 4.61 (2H, s), 5.52 (1H, dd, J = 14.0, 7.5 Hz), 5.58 (1H, dt, J = 14.0, 7.1 Hz), 6.03 (1H, dd, J = 14.0, 10.0 Hz), 6.09 (1H, dd, J = 14.0, 10.0 Hz); ¹³C NMR (125 MHz) δ : 14.10 (q), 17.12 (q), 19.68 (t), 22.05 (t), 22.59 (t), 25.92 (t), 28.91 (t), 29.32 (t), 29.38 (t), 31.24 (t), 31.72 (t), 32.63 (t), 49.13 (d), 52.95 (d), 55.27 (q), 57.64 (d), 75.44 (d), 94.42 (t), 130.13 (d), 131.01 (d), 133.35 (d), 136.26 (d); MS: 349 (M+), 334 (100); HRMS: Calcd. for C₂₂H₃₉NO₂: 349.3018, Found: 349.3001; [α]²⁶D -20.7 (c 0.81, CHCl₃).

(+)-clavepictine B (2)

To a stirred solution of (-)-16 (38 mg, 0.11 mmol) in MeOH (2 mL) was added c. HCl (2 drops), then the resulting solution was refluxed for 4 h. After cooling, the reaction was quenched with 15 % K_2CO_3 , and the solvent was evaporated. The residue was extracted with hot CHCl₃ (5 mL x 10), and the organic extracts were combined, evaporated to give a colorless oil, which was chromatographed on SiO₂ (10 g, CHCl₃:MeOH=10:1) to give (+)-2 (27 mg, 82%) as a colorless solid (mp 70~72 °C, lit¹ mp 70~72 °C).

IR (KBr) cm⁻¹: 3202, 3019, 2923, 2855, 1659, 1443, 1368, 1340, 1278, 1202, 1151, 1055, 1039, 1029, 990, 950; 1 H NMR (500 MHz, C₅D₅N) δ : 0.81 (3H, t, J = 7.0 Hz), 1.15-1.27 (7H, br m), 1.29 (3H, d, J = 6.5 Hz), 1.29-1.35 (2H, m), 1.36-1.43 (1H, m), 1.48-1.59 (2H, m), 1.60-1.72 (3H, m), 1.77-1.86 (2H, m), 1.90-1.96 (1H, m), 2.05 (2H, q, J = 7.0 Hz), 3.11-3.16 (1H, m), 3.32 (1H, quint, J = 6.0 Hz), 3.62 (1H, quint-like, J = 5.0 Hz), 4.04 (1H, br q, J = 5.0 Hz), 5.65 (1H, dt, J = 15.0, 7.0 Hz), 5.78 (1H, d, J = 5.5 Hz), 5.87 (1H, dd, J = 15.0, 7.0 Hz), 6.22 (1H, dd, J = 15.0, 10.0 Hz), 6.38 (1H, dd, J = 15.0, 10.0 Hz); 13 C NMR (125 MHz, C₅D₅N) δ : 14.24 (q), 16.79 (q), 20.60 (t), 22.84 (t), 26.07 (t), 27.87 (t), 28.10 (t), 29.12 (t), 29.34 (t), 29.70 (t), 31.92 (t), 32.95 (t), 49.47 (d), 56.67 (d), 57.21 (d), 71.87 (d), 130.87 (d), 131.23 (d), 133.02 (d), 137.03 (d); $[\alpha]^{26}$ D +25.7 (c 0.61, CH₂Cl₂).

(-)-clavepictine A (1)

To a stirred solution of (+)-2 (25 mg, 0.082 mmol) in pyridine (0.3 mL) was added Ac_2O (0.1 mL), then the resulting solution was stirred at room temperature for 5 h. The volatile was evaporated, and the residue was chromatographed on SiO_2 (10 g, hexane:acetone=16:1) to give (-)-1 (26 mg, 90%) as a colorless oil.

IR (neat) cm⁻¹: 3016, 2928, 2856, 1736, 1654, 1560, 1458, 1376, 1246, 1162, 1108, 1029, 990, 962; ¹H NMR (500 MHz, C₅D₅N) δ : 0.80 (3H, t, J = 7.1 Hz), 0.95 (1H, dq-like, J = 12.6, 3.0 Hz), 1.10 (3H, d, J = 7.1 Hz), 1.12-1.24 (6H, m), 1.26-1.35 (3H, m), 1.42-1.50 (4H, br m), 1.58 (1H, dm, J = 13.0 Hz), 1.75 (1H, dq, J = 13.0, 4.0 Hz), 1.84 (1H, tt, J = 11.0, 4.0 Hz), 1.93 (1H, qd-like, J = 13.0, 4.0 Hz), 2.04 (2H, q-like, J = 6.0 Hz), 2.15 (3H, s), 3.11 (1H, dm, J = 10.0 Hz), 3.50 (1H, qd-like, J = 7.0, 2.5 Hz), 3.85 (1H, td, J = 8.0, 3.0 Hz), 4.70 (1H, q, J = 3.0 Hz), 5.66 (1H, dd, J = 15.0, 7.0 Hz), 5.73 (1H, dt, J = 15.0, 7.0 Hz), 6.17 (1H, dd, J = 15.0, 10.5 Hz), 6.31 (1H, dd, J = 15.0, 10.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ : 14.10 (q), 17.20 (q), 19.68 (t), 20.59 (t), 21.60 (t),

22.59 (t), 25.68 (q), 28.96 (t), 29.29 (t), 31.72 (t), 32.63 (t), 49.00 (d), 52.89 (d), 58.01 (d), 73.29 (d), 129.97 (d), 130.95 (d), 133.58 (d), 136.15 (d), 170.34 (s); $[\alpha]^{26}$ D -74.5 (c 0.55, CH₂Cl₂).