Supporting Information

Factors Affecting the Catalytic Epoxidation of Olefins by Iron Porphyrin Complexes and H₂O₂ in Protic Solvents

Wonwoo Nam,^{*,†} So-Young Oh,[†] Ying Ji Sun,[†] Jinheung Kim,[‡] Won-Ki Kim,[§] Seung K. Woo, and Woonsup Shin

[†]Department of Chemistry and Division of Nano Sciences, Ewha Womans University, Seoul 120-750, Korea

^{*}Department of Chemical Technology, Changwon National University, Kyungnam 641-773, Korea

⁸Department of Pharmacology and Laboratory of Neurodegenerative Diseases, Ewha Institute of Neuroscience, Seoul 120-750, Korea

Department of Chemistry, Sogang University, Seoul 121-742, Korea

TABLE S1. Effect of Alcohol Concentrations on Product Yields and the $Fe^{III/II}$ Reduction Potentials of $Fe(TPFPP)Cl^{\alpha}$

A. Effect of CH₃OH concentrations

Vol % of CH ₃ OH ^b	Product yield $(\%)^c$	E° vs ferrocene, V ^d			
0	2	-0.54			
1	8	-0.49			
3	36	-0.39			
5	57	-0.36			
10	63	-0.34			
20	66	-0.32			
40	69	-0.32			
75	71	-0.34			

B. Effect of (CH₃)₂CHOH concentrations

Vol % of $(CH_3)_2 CHOH^b$	Product yield $(\%)^c$	E° vs ferrocene, V^{d}			
0	2	-0.54			
1	3	-0.53			
3	12	-0.50			
5	26	-0.45			
10	37	-0.41			
20	47	-0.38			
40	55	-0.37			
55	60	-0.36			
75	65	-0.35			
5 10 20 40 55 75	26 37 47 55 60 65	-0.45 -0.41 -0.38 -0.37 -0.36 -0.35			

^{*a*} See Experimental Section for detailed reaction conditions. ^{*b*} Volume percents of alcohols in a solvent mixture of alcohol/CH₂Cl₂. ^{*c*} Based on the amounts of H₂O₂ added. ^{*d*} In volts versus Fc/Fc⁺ (ferrocene/ferrocinium) couple. Experimental details for electrochemical measurements have been described previously.^{3*a*}

FIGURE S1. Structures of iron(III) porphyrin complexes used in this study.

	Z Y. A. Y	Iron(III) porphyrins	<u>X</u>	<u>Y</u>	<u>Z</u>	<u>P</u>
$\begin{array}{c} P X \\ P X \\ Y \\ Z \\ Y \\ Y$	1, Fe(-Cl ₈ TPFPP)Cl	F	F	F	CI	
	2, Fe(-Cl ₈ TDCPP)Cl	CI	Н	Н	CI	
	3 , Fe(TPFPP)Cl	F	F	F	Н	
	4, Fe(TDFPP)Cl	F	Н	Н	Н	
	5, Fe(TDCPP)CI	CI	Н	Н	Н	
	PX X P	6, Fe(TPP)Cl	н	Н	Н	Н
	Y Y Z	7, Fe(TMP)Cl	CH_3	Н	CH_3	Н