Supporting Information

Title: Practical Enantioselective Synthesis of Endothelin Antagonist S-1255 by Dynamic Resolution of 4-Methoxychromene-3-carboxylic Acid Intermediate

Toshiro Konoike,* Ken-ichi Matsumura, Tadahiko Yorifuji, Yoshitugu Shinomoto, Yutaka Ide and Takashi Oya

1) Experimental details for reactions of $\mathbf{1 7 a}$ and $\mathbf{1 7 b}$ with $\mathbf{3}$ (Table 1, entry 4 and 5).
2) Melting point, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, analytical data and HPLC data of $\mathbf{1 1}$.
3) Copies of ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{6}, \mathbf{1 3}$ and $\mathbf{2 3}$.

1) Experimental details for reactions of $17 a$ and $17 b$ with 3.

Reaction of Methyl Ester 17 a with Grignard Reagent 3 (14a, Table 1, entry 4). A solution of 4bromoanisole ($701 \mathrm{mg}, 3.75 \mathrm{mmol}$) in THF (7 mL) was added dropwise to a stirred mixture of $\mathrm{Mg}(96$ $\mathrm{mg}, 3.94 \mathrm{mmol}$), 1,2-dibromoethane ($35 \mathrm{mg}, 0.188 \mathrm{mmol}$) and THF $(1 \mathrm{~mL})$ at room temperature. After being refluxed for 0.5 h , the mixture was added dropwise to a stirred solution of $\mathbf{1 7 a}(500 \mathrm{mg}, 1.25$ mmol) in THF $(7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction solution was stirred at $0^{\circ} \mathrm{C}$ for 0.5 h and poured into a mixture of 1 N HCl and ice-water. The resulting mixture was extracted with EtOAc, and the extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was subjected to column chromatography on silica gel (EtOAc/hexane, 1/4) to give methyl ester $\mathbf{1 4 a}(381 \mathrm{mg}, 64 \%)$ and ketone $18(208 \mathrm{mg}, 30 \%) .14 \mathrm{a}:$ pale yellow crystals. mp. $98-99^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.99(3 \mathrm{H}, \mathrm{t}, J=7.4)$, $1.30(3 \mathrm{H}, \mathrm{d}, J=6.0), 1.31(3 \mathrm{H}, \mathrm{d}, J=6.0), 1.43-1.69(4 \mathrm{H}, \mathrm{m}), 2.96-3.08(2 \mathrm{H}, \mathrm{m}), 3.72(3 \mathrm{H}, \mathrm{s})$, 4.36-4.44(1H, m), $5.90(2 \mathrm{H}, \mathrm{s}), 6.11(1 \mathrm{H}, \mathrm{s}), 6.65-6.82(5 \mathrm{H}, \mathrm{m}), 6.95(1 \mathrm{H}, \mathrm{d}, J=2.4) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 22.2,22.4,51.9,55.6,70.8,75.4,101.3,108.3,108.4,113.8,116.2,117.7,119.5,121.6$, 121.7, 125.0, 129.1, 130.2, 133.1, 145.1, 147.2, 147.9, 152.1, 159.5, 166.0. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{6} \cdot 0.15 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 70.29 ; \mathrm{H}, 6.68$. Found: C, $70.25 ; \mathrm{H}, 6.91$. 18: pale yellow crystals. mp. $140-$ $141{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.21(3 \mathrm{H}, \mathrm{d}, J=6.0), 1.22(3 \mathrm{H}, \mathrm{d}, J=6.0), 3.72(3 \mathrm{H}, \mathrm{s}), 3.76(3 \mathrm{H}, \mathrm{s}), 4.23-$ $4.31(1 \mathrm{H}, \mathrm{m}), 5.89(2 \mathrm{H}, \mathrm{s}), 5.95(1 \mathrm{H}, \mathrm{s}), 6.49(1 \mathrm{H}, \mathrm{d}, J=2.7), 6.67-6.86(7 \mathrm{H}, \mathrm{m}), 6.99-7.03(2 \mathrm{H}, \mathrm{m})$, $7.09(2 \mathrm{H}, \mathrm{d}, J=8.7), 7.68(2 \mathrm{H}, \mathrm{d}, J=9.0) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 22.3,22.4,55.5,55.7,70.9,77.5,101.3$, $108.2,108.7,113.6,113.8,115.4,117.7,118.5,122.2,124.5,127.9,129.9,131.0,131.7,131.8,132.7$, 137.5, 147.4, 147.7, 147.8, 152.3, 159.6, 163.3, 195.1. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{O}_{7}$: C, 74.17; H, 5.49. Found: C, 73.99; H, 5.66. HPLC: condition A ((MeCN/H2O/TFA (75/25/0.1)) 14a, 9.2 min ; 18, 7.0 min . Reaction of Isopropyl Ester 17b with Grignard Reagent 3 (14b, Table 1, entry 5). Isopropyl ester $\mathbf{1 7 b}$ was treated with 4.0 equiv. of $\mathbf{3}$ according to the same procedure used for $\mathbf{1 7 a}$, giving ester $\mathbf{1 4 b}$ (82%) and ketone $\mathbf{1 8}(9 \%) . \mathbf{1 4 b}$: pale yellow crystals. mp $116-117.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.87(3 \mathrm{H}$,
d, $J=6.3), 0.93(3 \mathrm{H}, \mathrm{d}, J=6.3), 1.17(3 \mathrm{H}, \mathrm{d}, J=6.3), 1.19(3 \mathrm{H}, \mathrm{d}, J=6.3), 3.86(3 \mathrm{H}, 2), 4.17-4.26(1 \mathrm{H}$, m), 4.75-4.84 (1H, m), $5.91(2 \mathrm{H}, \mathrm{s}), 6.16(1 \mathrm{H}, \mathrm{s}), 6.31(1 \mathrm{H}, \mathrm{d}, J=2.4), 6.72-6.74(3 \mathrm{H}, \mathrm{m}), 6.94-6.98$ $(4 \mathrm{H}, \mathrm{m}), 7.17(2 \mathrm{H}, \mathrm{br}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 21.7,21.8,22.3,22.4,55.7,68.2,70.8,75.7,101.3,108.3$, $108.4,113.7,116.1,117.6,119.2,121.6,123.1,124.9,129.4,130.3,133.4,143.5,147.2,147.8,147.8$, 152.1, 159.5, 165.4. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{7}: \mathrm{C}, 71.70 ; \mathrm{H}, 6.02$. Found: C, 71.63; H, 6.15. HPLC: condition $\mathrm{A}\left(\left(\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} / \mathrm{TFA}(75 / 25 / 0.1)\right) t_{\mathrm{R}} 9.0 \mathrm{~min}\right.$.

2) Melting point, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, analytical data and HPLC data of 11 .

11: brown crystals. $\mathrm{mp} 100-102{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.37(6 \mathrm{H}, \mathrm{d}, J=6.0), 2.64(3 \mathrm{H}, \mathrm{s}), 4.53(1 \mathrm{H}$, m), $5.71(1 \mathrm{H}, \mathrm{br}), 6.85(1 \mathrm{H}, \mathrm{d}, J=9.0), 6.98(1 \mathrm{H}, \mathrm{dd}, J=3.3$ and 9.0$), 7.03(1 \mathrm{H}, \mathrm{d}, J=3.3) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 22.5,32.6,71.6,116.0,116.5,121.6,129.4,149.9,151.7,201.4$. Anal. Calced for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$: C, 68.02; H, 7.27. Found: C, 67.64; H, 7.19. HPLC: column, Cosmosil 5C18R AR $4.6 \mathrm{~mm} \times 150 \mathrm{~mm}$; solvent, $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} /$ TFA ($75 / 25 / 0.1$); flow rate, $1.0 \mathrm{~mL} / \mathrm{min}$; detection, $254 \mathrm{~nm} . t_{\mathrm{R}}, 2.4 \mathrm{~min}$.

3) Copies of ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectra of $\mathbf{6 , 1 3}$ and 23.

