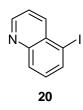
Supporting Information

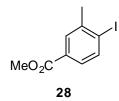

Palladium-Catalyzed Sequential Alkylation-Alkenylation Reactions. Application to the Synthesis of 2-Substituted-4-Benzoxepines and 2,5-Disubtituted-4-Benzoxepines

Mark Lautens,* Jean-François Paquin and Sandrine Piguel

Department of Chemistry, University of Toronto Toronto, Ontario Canada M5S 3H6

The following includes general experimental procedures, specific details for representative reactions, and isolation and spectroscopic information for the new compounds prepared. All ¹H and ¹³C NMR spectra were recorded in deuterated chloroform using tetramethylsilane or residual chloroform as internal standard at ambient temperature unless noted. High resolution mass spectra were obtained at 70 eV. Aryl iodides were purchased from commercial sources (4, 7, 10, 17, 19, 25), synthesized using literature procedures (8¹, 9², 11¹, 18²), or prepared as described in this section (20, 28). Bromoenoates (5, 26) were prepared as described in this section.

Aryl iodides.



5-iodoquinoline (20). To a slurry of 5-aminoquinoline (348 mg, 2.4 mmol) in HCl (4 ml) at -10° C was added dropwise a solution of NaNO₂ (200 mg, 2.9 mmol) in H₂O (4 mL). The resulting yellow mixture was stirred 30 min at -10° C. A solution of KI (797 mg, 4.8 mmol) in

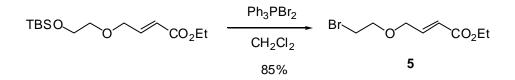
¹ Larock, R. C.; Harrison, W. L. J. Am. Chem. Soc. 1984, 106, 4218-4227.

² Lautens, M.; Paquin, J.-F.; Piguel, S.; Dahlmann, M. J. Org. Chem. 2001, 66, 8127-8134.

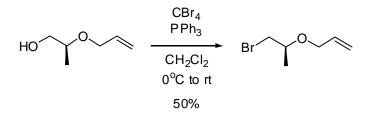
H₂O (4 mL) was then added slowly. The resulting brown mixture was stirred 30 min at -10° C and warmed to rt and stirred for 2 hrs. The aqueous mixture was washed with Et₂O (2×) and then basified (pH ~ 10) using Na₂CO₃ and extracted with Et₂O (3×). The organic layers were combined, washed with 5% NaHSO₃ (3×), H₂O (2×), brine, and dried over MgSO₄. Activated charcoal was added and the resulting suspension was stirred 15 min, filtrated over Celite, and the solvent was evaporated to yield the desired product (114 mg, 19%) as a beige solid. IR (film) v = 3068, 3027, 1555, 1488, 946 cm⁻¹; ¹H NMR δ 8.90 (dd, 1H, *J* = 4.2, 1.5 Hz), 8.40 (m, 1H), 8.12 (m, 2H), 7.47 (m, 2H); ¹³C NMR δ 151.2, 148.7, 140.4, 137.7, 130.5, 130.4, 130.2, 122.7, 98.5; HRMS calcd for C₉H₆NI 254.9545, found 254.9552.

Methyl 4-iodo-3-methylbenzoate (28). A mixture of 4-iodo-3-methylbenzoic acid (1.0 g, 3.82 mmol) and H₂SO₄ (few drops) in MeOH (20 mL) was refluxed for 19 hrs. The mixture was cooled to rt and the solvent was evaporated. The residue was dissolved in Et₂O and washed with satd NaHCO₃ (3×), H₂O, brine, dried over MgSO₄, and the solvent was evaporated to yield **28** (704 mg, 70%) as a white solid. IR (film) v = 3020, 2953, 1717, 1431, 1303, 1256, 1108, 757 cm⁻¹; ¹H NMR δ 7.89 (m, 2H), 7.50 (dd, 1H, *J* = 8.1, 2.1 Hz), 3.90 (s, 3H), 2.47 (s, 3H); ¹³C NMR δ 166.7, 141.8, 139.1, 130.3, 128.0, 107.4, 52.2, 28.0; HRMS calcd for C₉H₉O₂I 275.9647, found 275.9647.

Bromoenoates.

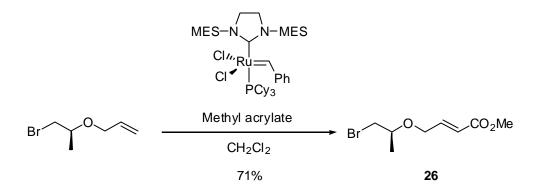

HO OH
$$\xrightarrow{\text{TBSCI}}_{\text{imidazole}}$$
 TBSO OH OH OH O'C to rt 60% based on TBSCI

2-(2-*tert***-butyldimethylsiloxyethoxy)ethanol.** To a 0°C solution of di(ethyleneglycol) (3.5 mL, 36.9 mmol) in CH₂Cl₂ (40 mL) was added imidazole (1.26 g, 18.5 mmol) and the resulting mixture was stirred 5 min and TBSCl (2.79g, 18.5 mmol) was added in one portion. The reaction mixture was stirred 1hr at 0°C and warmed to rt and stirred overnight. Water was added, the organic layer was washed with 10% HCl, satd NaHCO₃, brine, dried over MgSO₄, and the solvent was evaporated to give the crude product that was purified by flash chromatography using 30% EtOAc/hexane as eluant to give the desired product (2.40 g, 60% based on TBSCl) as a colourless liquid. IR (neat) v = 3415, 2948, 2854, 1254, 1145 cm⁻¹; ¹H NMR δ 3.81-3.68 (m, 4H), 3.61 (m, 4H), 2.40 (t, 1H, *J* = 6.0 Hz), 0.91 (s, 9H), 0.08 (s, 6H); ¹³C NMR δ 72.4, 72.3, 62.7, 61.7, 25.8, 18.3, -5.4; HRMS calcd for C₆H₁₅O₃Si [M - *t*-Bu]⁺ 163.0790, found 163.0786.


$$TBSO OH \xrightarrow{1) DMSO, (COCI)_2, Et_3N}{THF, -78^{\circ}C \text{ to rt}} TBSO OH \xrightarrow{2) Ph_3P=CHCO_2Et}{71\%} TBSO OC_{CO_2Et}$$

Ethyl (2*E*)-4-(2-*tert*-butyldimethylsiloxyethoxy)but-2-enoate. To a -78°C solution of DMSO (993 μ L, 14.0 mmol) in CH₂Cl₂ (20 mL) was added dropwise (COCl)₂ (916 μ L, 10.5 mmol). The mixture was stirred at -78°C for 30 min. A solution of 2-(2-*tert*-butyldimethylsiloxy-

ethoxy)ethanol (1.54 g, 6.99 mmol) in CH₂Ch (5 mL) was added dropwise and the reaction mixture was stirred 45 min at -78°C. Et₃N (4.81 mL, 34.5 mmol) was added dropwise and the reaction mixture was stirred 15 min at -78°C and warmed to rt and stirred for 1 hr. The reaction mixture was cooled to -78°C and a solution of (carbethoxymetylene)triphenylphosphorane (2.92 g, 8.39 mmol) in THF (20 mL) was added dropwise. The mixture was stirred 15 min at -78°C and warmed to rt and stirred for 2 hrs. Satd NH₄Cl was added; the aqueous layer was extracted with CH₂Cb ($3\times$). The combined organic layers were washed with H₂O, brine, dried over MgSO₄, and the solvent was evaporated to yield the crude product that was purified by flash chromatography using Et₂O/hexane (10 \rightarrow 15%) as eluant to yield the desired product (1.44 g, 71%) as a colourless liquid along with the cis isomer (179 mg, 9%). Trans isomer: IR (neat) v =2940, 2856, 1725, 1466, 1304 cm⁻¹; ¹H NMR δ 6.95 (dt, 1H, J = 15.9, 4.2 Hz), 6.10 (dt, 1H, J = 15.9, 2.1 Hz), 4.20 (m, 4H), 3.79 (t, 2H, J = 5.1 Hz), 3.56 (t, 2H, J = 5.1 Hz), 1.29 (t, 3H, J = 7.2Hz), 0.91 (s, 9H), 0.08 (s, 6H); ¹³C NMR δ 166.3, 144.4, 121.1, 72.3, 69.8, 62.7, 60.2, 25.8, 18.3, 14.2, -5.4; HRMS calcd for $C_{10}H_{19}O_4Si [M - t-Bu]^+ 231.1053$, found 231.1055. Cis isomer: IR (neat) v = 2939, 2857, 1724, 1465, 1412 cm⁻¹; ¹H NMR δ 6.39 (dt, 1H, J = 12.0, 4.8 Hz), 5.80 (dt, 1H, J = 12.0, 2.4 Hz), 4.62 (dd, 2H, J = 4.8, 2.4 Hz), 4.17 (q, 2H, J = 7.2 Hz), 3.78 (t, 2H, J = 5.1 Hz), 3.56 (t, 2H, J = 5.1 Hz), 1.29 (t, 3H, J = 7.2 Hz), 0.90 (s, 9H), 0.08 (s, 6H); ¹³C NMR δ 166.0, 148.7, 119.3, 72.2, 69.3, 62.6, 60.1, 25.9, 18.3, 14.2, -5.3; HRMS calcd for C₁₄H₂₈O₄Si 288.1757, found 288.1754.

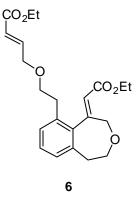


Ethyl (2*E*)-4-(2-bromoethyl)but-2-enoate (5). To a suspension of Ph₃PBr₂ in CH₂Cl₂ (8 mL) was added a solution of ethyl (2*E*)-4-(2-*tert*-butyldimethylsiloxyethoxy)but-2-enoate in CH₂Cl₂ (4 mL), the resulting suspension turned into a solution after 5 min and was stirred 2 hrs at rt. CH₂Cl₂ was added and the solution was washed with H₂O (2×), brine, dried over MgSO₄, and the solvent was evaporated to give the crude product that was purified by flash chromatography using CH₂Cl₂/toluene (10 \rightarrow 15%) as eluant to yield the desired product (512 mg, 85%) as a slightly yellow liquid. IR (neat) v = 2981, 2907, 2846, 1724, 1662, 1303, 1178 cm⁻¹; ¹H NMR δ 6.94 (dt, 1H, *J* = 15.6, 4.5 Hz), 6.11 (dt, 1H, *J* = 15.6, 2.1 Hz), 4.22 (m, 4H), 3.81 (t, 2H, *J* = 6.0 Hz), 1.30 (t, 3H, *J* = 7.2 Hz); ¹³C NMR δ 166.1, 143.5, 121.7, 70.6, 69.5, 60.4, 30.1, 14.2; HRMS calcd for C₈H₁₃O₃Br 236.0048, found 236.0040.

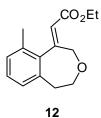
3-{[(1*S***)-2-bromo-1-methylethyl]oxy}prop-1-ene.** To a 0°C solution of (2*S*)-2-(allyloxy)propan-1-ol³ (718 mg, 6.18 mmol) in CH₂Cl₂ (20 mL) was added CBr₄ (3.07 g, 9.27 mmol) and PPh₃ (2.43 g, 9.27 mmol). The mixture was stirred 10 min at 0°C and then warmed to rt and

stirred overnight. The solvent was evaporated and the crude product was purified by flash chromatography using Et₂O/hexane (2 \rightarrow 5%) as eluant gave the desired product (550 mg, 50%) as a volatile colourless liquid. [α]²⁵_D = +3.2 (c 1.25, CHCl₃); IR (neat) v = 3081, 2978, 2865, 1138, 1084, 926 cm⁻¹; ¹H NMR δ 5.92 (ddt, 1H, *J* = 17.4, 10.2, 5.7 Hz), 5.30 (dq, 1H, *J* = 17.4, 1.5 Hz), 5.19 (dq, 1H, *J* = 10.2, 1.5 Hz), 4.05 (dt, 2H, *J* = 5.7, 1.5 Hz), 3.69 (m, 1H), 3.39 (m, 2H), 1.29 (d, 3H, *J* = 6.6 Hz); ¹³C NMR δ 134.6, 117.1, 74.0, 70.0, 36.3, 18.8; MS (EI) : 85(100), 64(64), 121(22), 123(20).

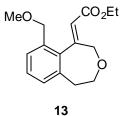
Methyl (2E)-4-{[(1S)-2-bromo-1-methylethyl]oxy}but-2-enoate (26). To a solution of 3-


{[(1*S*)-2-bromo-1-methylethyl]oxy}prop-1-ene (200 mg, 1.12 mmol) and methyl acrylate (2.5 mL, 28.0 mmol) in CH₂Cl₂ (2.5 mL) was added Grubb's 2nd generation catalyst (48 mg, 5 mol%). The resulting mixture was stirred at rt for 4 hrs and DMSO⁴ (200 µL, 50 equiv. relative to the catalyst) was added and the mixture stirred for 20 hrs. Evaporation of the volatiles gave a crude product that was purified by flash chromatography using Et₂O/hexane (1:9) as eluant to yield **26** (189 mg, 71%) as a colorless liquid. $[\alpha]^{25}_{D} = +16.8$ (c 1.15, CHCl₃); IR (neat) v = 2986, 2959, 2845, 1723, 1303 cm⁻¹; ¹H NMR δ 6.97 (dt, 1H, *J* = 15.6, 4.2 Hz), 6.13 (dt, 1H, *J* = 15.6, 2.1

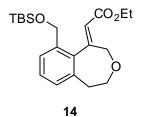
³ Obtained in 66% yield over 2 steps from ethyl (S)-(-)-lactate, for experimental details, see Broggini, G.; Molteni, G.; Pilati, T. *Tetrahedron: Asymmetry* **2000**, *11*, 1975-1984.


⁴ Ahn, Y. M.; Yang, K. L.; Georg, G. I. Org. Lett. 2001, 3, 1411-1413.

Hz), 4.22 (dd, 2H, J = 4.2, 2.1 Hz), 3.71 (m, 4H), 3.40 (m, 2H), 1.30 (d, 3H, J = 6.0 Hz); ¹³C NMR δ 166.5, 144.3, 120.8, 75.0, 67.5, 51.5, 36.0, 18.7; HRMS calcd for C₈H₁₃O₃Br 237.0126, found 237.0130.

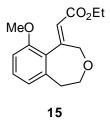

2-Substituted-4-benzoxepines and 2,5-disubstituted-4-benzoxepines.

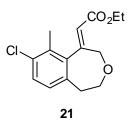
Cyclization using iodobenzene. General procedure. Ethyl (2*E*)-4-{2-[(5*Z*)-5-(2-ethoxy-2oxoethylidene)-1,2,4,5-tetrahydro-3-benzoxepin-6-yl]ethoxy}but-2-enoate (6). Under argon, a flame-dried round-bottom flask equipped with a condenser was charged with iodobenzene (20 μ L, 0.18 mmol), **5** (182 mg, 0.77 mmol), Cs₂CO₃ (118 mg, 0.36 mmol), norbornene (40.9 mg, 0.43 mmol), tri-2-furylphosphine (8.5 mg, 0.037 mmol), Pd(OAc)₂ (4.0 mg, 0.018 mg) and CH₃CN (5 mL). The reaction mixture was heated at 85°C for 15 hrs. The reaction was quenched by the addition of satd NH₄Cl and the mixture was extracted with Et₂O (3×). The combined organic layers were washed with brine and dried over MgSO₄. Removal of the solvent gave the crude product that was purified by flash chromatography using Et₂O/hexane (10→20%) as eluant to give the desired product (36.7 mg, 53%) as a colourless oil. IR (neat) ν = 2978, 2929, 2859, 1718, 1704, 1658, 1623, 1177 cm⁻¹; ¹H NMR δ 7.25 (m, 2H), 7.03 (dd, 1H, *J* = 6.0, 2.4 Hz), 6.91 (dt, 1H, *J* = 15.6, 4.4 Hz), 6.02 (d, 1H, *J* = 15.6 Hz), 5.81 (t, 1H, *J* = 2.0 Hz), 4.86 (br m, 2H), 4.20 (m, 6H), 3.85-3.58 (m, 4H), 3.12 (br m, 2H), 2.94 (br m, 1H), 2.56 (br m, 1H), 1.22 (m, 6H); 13 C NMR δ 166.2, 165.8, 162.3, 144.1, 138.9, 136.7, 135.1, 128.8, 128.4, 125.7, 121.2, 118.2, 71.9, 69.5, 68.8, 67.7, 60.2, 53.3, 34.0, 33.1, 14.2, 14.1; HRMS calcd for C₂₂H₂₈O₆ 388.1886, found 388.1875.



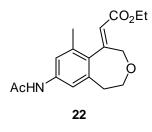
Cyclization using *ortho*-substituted aryl iodides. General procedure. Ethyl (2Z)-(9-methyl-4,5-dihydro-3-benzoxepin-1(2*H*)-ylidene)acetate (12). A round-bottom flask equipped with a condenser was charged with 2-iodotoluene (32 µL, 0.25 mmol), 5 (241 mg, 1.0 mmol), Cs₂CO₃, (164 mg, 0.50 mmol), norbornene (54 mg, 0.57 mmol), Pd(OAc)₂ (5.9 mg, 0.026 mmol), tri-2furylphosphine (11.8 mg, 0.051 mmol) and CH₃CN (2.5 mL). The resulting solution was heated at 85°C for 23 hrs. The reaction was quenched by the addition of satd NH₄Cl and the mixture was extracted with Et₂O (3×). The combined organic layers were washed with brine and dried over MgSO₄. Removal of the solvent gave the crude product that was purified by preparative TLC with CH₂Cl₂ as the eluant to afford **12** (53.2 mg, 85%) as a colourless oil. IR (neat) v = 3063, 2978, 2950, 2850, 1708, 1623, 1169 cm⁻¹; ¹H NMR δ 7.19 (m, 2H), 6.99 (t, 1H, *J* = 4.0 Hz), 5.73 (t, 1H, *J* = 2.4 Hz), 4.88 (m, 2H), 4.21 (q, 2H, *J* = 7.2 Hz), 3.79 (m, 2H), 2.90 (br s, 2H), 2.37 (s, 3H), 1.31 (t, 3H, *J* = 7.2 Hz); ¹³C NMR δ 165.9, 162.5, 138.3, 136.6, 134.4, 129.7, 128.3, 125.1, 118.2, 68.6, 67.8, 60.1, 33.8, 20.5, 14.2; HRMS calcd for C₁₅H₁₈O₃ 246.1255, found 246.1263.

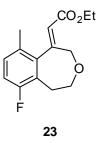
Ethyl (2Z)-[9-(methoxymethyl)-4,5-dihydro-3-benzoxepin-1(2H)-ylidene]acetate (13).

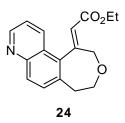

Following the general procedure for *ortho*-substituted aryl iodides on a 0.27 mmol scale using **8** and **5**, **13** was isolated as a colourless oil (17.4 mg, 23%) by preparative TLC using 30% Et₂O/hexane. IR (neat) $\nu = 3064$, 2978, 2928, 2863, 2822, 1708, 1622, 1448, 1177 cm⁻¹; ¹H NMR δ 7.41 (dd, 1H, *J* = 7.8, 0.9 Hz), 7.30 (t, 1H, *J* = 7.8 Hz), 7.11 (dd, 1H, *J* = 7.8, 0.9 Hz), 5.88 (t, 1H, *J* = 2.4 Hz), 4.88 (br s, 2H), 4.41 (s, 2H), 4.21 (q, 2H, *J* = 7.2 Hz), 3.80 (br s, 2H), 3.36 (s, 3H), 2.62 (br s, 2H), 1.31 (t, 3H, *J* = 7.2 Hz); ¹³C NMR δ 165.9, 161.4, 138.9, 136.8, 134.9, 128.7, 128.5, 127.2, 118.1, 72.6, 68.7, 67.7, 60.1, 57.9, 33.8, 14.2; HRMS calcd for C₁₆H₂₀O₄ 276.1362, found 276.1372.


Ethyl (2Z)-[9-(tert-butyldimethylsiloxymethyl)-4,5-dihydro-3-benzoxepin-1(2H)-

ylidene]acetate (14). Following the general procedure for *ortho*-substituted aryl iodides on a 0.17 mmol scale using 9 and 5, 14 was isolated as a colourless oil (34.1 mg, 23%) by preparative TLC using 40% Et₂O/hexane. IR (neat) $v = 2950, 2929, 2852, 1708, 1662, 1620, 1461 \text{ cm}^{-1}; {}^{1}\text{H}$ NMR δ 7.33 (d, 1H, *J* = 8.0 Hz), 7.20 (t, 1H, *J* = 8.0 Hz), 7.00 (d, 1H, *J* = 8.0 Hz), 5.85 (t, 1H, *J* = 2.4 Hz), 4.79 (br s, 2H), 4.56 (s, 2H), 4.20 (m, 2H), 3.70 (br s, 2H), 2.60 (br s, 2H), 1.21 (t, 3H, 3H)


J = 7.2 Hz), 0.82 (s, 9H), 0.0 (s, 6H); ¹³C NMR δ 165.9, 161.5, 138.1, 137.7, 136.5, 128.5, 128.2, 126.7, 118.2, 68.6, 67.8, 63.3, 60.0, 33.8, 25.8, 18.2, 14.2, -5.3; HRMS calcd for C₁₇H₂₃O₄Si [M - *t*-Bu]⁺ 319.1366, found 319.1371.

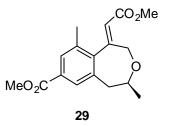

Ethyl (2*Z*)-(9-methoxy-4,5-dihydro-3-benzoxepin-1(2*H*)-ylidene)acetate (15). Following the general procedure for *ortho*-substituted aryl iodides on a 0.15 mmol scale using 9 and 5, 14 was isolated as a colourless oil (30 mg, 75%) by flash chromatography using 5% Et₂O/hexane. IR (neat) v = 3063, 2957, 2929, 282, 1704, 1620, 1268, 1468 cm⁻¹; ¹H NMR δ 7.24 (t, 1H, *J* = 8.0 Hz), 6.89 (d, 1H, *J* = 8.0 Hz), 6.78 (d, 1H, *J* = 8.0 Hz), 5.97 (t, 1H, *J* = 2.4 Hz), 4.88 (d, 2H, *J* = 7.2 Hz), 4.20 (q, 2H, *J* = 7.2 Hz), 3.79 (m, 5H), 2.84 (t, 2H, *J* = 6.4 Hz), 1.32 (t, 3H, *J* = 7.2 Hz); ¹³C NMR δ 166.3, 157.9, 156.1, 138.3, 129.5, 127.1, 120.2, 1191, 110.3, 68.7, 67.7, 59.9, 55.7, 33.7, 14.3; HRMS calcd for C₁₅H₁₈O₄ 262.1205, found 262.1201.


Cyclization using polysubstituted aryl iodides. General procedure. Ethyl (2Z)-(8-chloro-9methyl-4,5-dihydro-3-benzoxepin-1(2H)-ylidene)acetate (21). A round-bottom flask equipped with a condenser was charged with Cs₂CO₃ (130 mg, 0.40 mmol), norbornene (38 mg, 0.40 mmol), Pd(OAc)₂ (4.5 mg, 0.020 mmol), tri-2-furylphosphine (9.2 mg, 0.040 mmol). A solution of **5** and 2-chloro-6-iodotoluene (50.6 mg, 0.20 mmol) in CH₃CN (2 mL) was added. The resulting mixture was heated at 85°C for 19 hrs and then quenched by addition of H₂O. The aqueous solution was extracted with Et₂O (3×). The organic layers were combined, washed with brine, and dried over MgSO₄. Removal of the solvent gave a crude oil that was purified by flash chromatography using 10% acetone/hexane to give **21** as a colorless solid (47.2 mg, 85%). IR (neat) v = 3060, 2929, 2867, 1695, 1174 cm⁻¹; ¹H NMR δ 7.30 (d, 1H, *J* = 8.1 Hz), 6.95 (d, 1H, *J* = 8.1 Hz), 5.69 (t, 1H, *J* = 2.4 Hz), 4.87 (m, 2H), 4.22 (q, 2H, *J* = 7.2 Hz), 3.77 (br m, 2H), 3.07 (br m, 1H), 2.59 (br m, 1H), 2.40 (s, 3H), 1.32 (t, 3H, *J* = 7.2 Hz); ¹³C NMR δ 165.8, 162.1, 140.3, 135.1, 134.4, 132.8, 129.1, 126.0, 119.1, 68.5, 67.6, 60.3, 33.6, 18.3, 14.2; HRMS calcd for C₁₅H₁₇O₃Cl 280.0866, found 280.0874.

Ethyl (2*Z*)-[7-(acetylamino)-9-methyl-4,5-dihydro-3-benzoxepin-1(2*H*)-ylidene]acetate (22). Following the general procedure for polysubstituted aryl iodides on a 0.200 mmol scale using 18 and 5, 22 was isolated as a slightly yellow solid (48.5 mg, 80%) by flash chromatography using EtOAc/hexane (50 \rightarrow 60%) as eluant. IR (neat) v = 3728, 2924, 2851, 1700, 1516 cm⁻¹; ¹H NMR δ 7.58 (br s, 1H), 7.31 (s, 1H), 7.22 (s, 1H), 5.68 (t, 1H, *J* = 2.4 Hz), 4.86 (d, 2H, *J* = 2.4 Hz), 4.21 (q, 2H, *J* = 7.2 Hz), 3.77 (br m, 2H), 2.80 (br m, 2H), 2.32 (s, 3H), 2.15 (s, 3H), 1.31 (t, 3H, *J* = 7.2 Hz); ¹³C NMR δ 168.5, 166.0, 162.1, 137.8, 137.7, 135.6, 134.4, 120.4, 118.2, 116.8, 68.7, 67.7, 60.2, 33.9, 24.6, 20.7, 14.2; HRMS calcd for C₁₇H₂₁NO₄ 303.1471, found 303.1478.

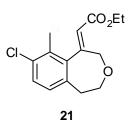


Ethyl (2*Z*)-(6-fluoro-9-methyl-4,5-dihydro-3-benzoxepin-1(2*H*)-ylidene)acetate (23). Following the general procedure for polysubstituted aryl iodides on a 0.200 mmol scale using 19 and 5, 23 was isolated as a colourless oil (41.2 mg, 78%) by flash chromatography using acetone/hexane (3 \rightarrow 5%) as eluant. IR (neat) v = 2977, 2860, 1709, 1628, 1482, 1238, 1181 cm⁻¹; ¹H NMR δ 7.12 (m, 1H), 6.96 (t, 1H, *J* = 8.4 Hz), 5.72 (t, 1H, *J* = 2.4 Hz), 4.87 (d, 2H, *J* = 2.4 Hz), 4.22 (q, 2H, *J* = 7.2 Hz), 3.78 (br s, 2H), 2.94 (br s, 2H), 2.32 (s, 3H), 1.32 (t, 3H, *J* = 7.2 Hz); ¹³C NMR δ 165.8, 161.6, 161.5, 159.1, 155.9, 140.4, 140.3, 130.5, 130.4, 130.0, 129.9, 1229, 122.7, 118.7, 115.1, 114.8, 110.7, 68.5, 67.1, 64.5, 60.3, 25.0, 24.9, 20.0, 14.2; HRMS calcd for C₁₅H₁₇O₃F 264.1162, found 264.1154.



Ethyl (2Z)-4,5-dihydrooxepino[4,5-*f*]quinolin-1(2*H*)-ylideneacetate (24). Following the general procedure for polysubstituted aryl iodides on a 0.200 mmol scale using 20 and 5, 24 was isolated as yellow oil (40.8 mg, 72%) by flash chromatography using 70% Et₂O/hexane as

eluant. IR (neat) v = 3075, 2957, 2860, 1710, 1502, 1200, 1164, 1105 cm⁻¹; ¹H NMR δ 8.89 (d, 1H, *J* = 4.2 Hz), 8.44 (d, 1H, *J* = 8.7 Hz), 8.10 (d, 1H, *J* = 8.7 Hz), 7.56 (d, 1H, *J* = 8.7 Hz), 7.41 (dd, 1H, *J* = 8.7, 4.2 Hz), 5.86 (t, 1H, *J* = 2.1 Hz), 5.01 (d, 2H, *J* = 2.1 Hz), 4.26 (q, 2H, *J* = 7.2 Hz), 3.95 (br m, 1H), 3.79 (br m, 1H), 3.34 (br m, 1H), 2.80 (br m, 1H), 1.34 (t, 3H, *J* = 7.2 Hz); ¹³C NMR δ 165.7, 160.4, 149.7, 147.9, 135.3, 134.3, 133.3, 130.3, 129.8, 125.8, 121.4, 120.3, 68.6, 66.8, 60.4, 33.9, 14.2; HRMS calcd for C₁₇H₁₇NO₃ 283.1208, found 283.1205.



Methyl (2*Z*)-[(4*S*)-4-methyl-4,5-dihydronaphtho[1,2-*d*]oxepin-1-(2*H*)-ylidene]acetate (27). Following the general procedure for polysubstituted aryl iodides on a 0.200 mmol scale using 25 and 26, 27 was isolated as 1.2:1 mixture of 27 and unreacted 26 (82 mg, 72% yield of 27) by flash chromatography using 15% Et₂O/hexane. Analytically pure material could be obtained by further purification by flash chromatography using 5% acetone/hexane as eluant to obtained 27 as a white solid. [α]²⁵_D: +20.2 (c 1.0, CHC_b); IR (film) v = 2932, 2865, 1707, 1212, 1175, 1101 cm⁻¹; ¹H NMR δ 8.11 (d, 1H, *J* = 7.5 Hz), 7.82 (m, 2H), 7.45 (m, 2H), 7.28 (d, 1H, *J* = 7.5 Hz), 5.96 (t, 1H, *J* = 2.4 Hz), 5.06 (m, 2H), 4.42 (m, 1H), 3.79 (s, 3H), 3.40 (m, 1H), 2.57 (d, 1H, *J* = 14.4 Hz), 1.08 (d, 3H, *J* = 6.3 Hz); ¹³C NMR δ 166.4, 162.5, 134.8, 133.2, 131.9, 130.7, 128.5, 128.3, 127.6, 126.5, 125.1, 125.0, 118.1, 72.0, 69.2, 51.4, 38.8, 20.4; HRMS calcd for C₁₈H₁₈O₃ 282.1256, found 282.1249.

Methyl (1Z,4R)-1-(2-methoxy-2-oxoethylidene)-4,9-dimethyl-1,2,4,5-tetrahydro-3-

benzoxepine-7-carboxylate (29). Following the general procedure for polysubstituted aryl iodides on a 0.200 mmol scale using **28** and **26**, **29** was isolated as slightly yellow oil (35.5 mg, 55%, 71% based on recovered **28**) by flash chromatography using Et₂O/hexane (10 \rightarrow 20%) as eluant. [α]²⁵_D: +116.5 (c 0.97, CHC_b); IR (neat) v = 2952, 1725, 1710, 1630, 1434, 1218, 1102, 913 cm⁻¹; ¹H NMR (-20°C) δ 7.90 (s, 1H), 7.64 (s, 1H), 5.77 (t, 1H, *J* = 2.5 Hz), 4.97 (s, 2H), 4.02 (m, 1H), 3.94 (s, 3H), 3.78 (s, 3H), 3.23 (dd, 1H, *J* = 14.0, 7.0 Hz), 2.49 (d, 1H, *J* = 14.0 Hz), 2.42 (s, 3H), 1.08 (d, 3H, *J* = 6.5 Hz); ¹³C NMR δ 166.9, 166.1, 162.2, 142.6, 135.0, 130.9, 128.9, 127.3, 117.9, 72.3, 68.9, 52.3, 51.6, 38.2, 20.8, 20.0; HRMS calcd for C₁₇H₂₀O₅ 304.1311, found 304.1318.

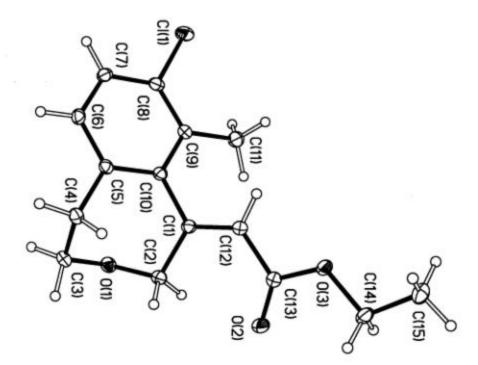


Table 1. Crystal data and structure refinement for k01311.

k01311

C15 H17 CI O3

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 27.47° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I > 2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole

280.74 150(1) K 0.71073 Å Monoclinic P2(1)/c a = 8.8182(2) Å $\alpha = 90^{\circ}$. b = 10.7490(2) Å $\beta = 103.1660(10)^{\circ}$. c = 15.0338(3) Å γ = 90°. 1387.55(5) Å3 4 1.344 Mg/m3 0.276 mm⁻¹ 592 0.30 x 0.26 x 0.20 mm³ 2.78 to 27.47°. 0 < =h < =11, 0 < =k < =13, -19 < =l < =1914760 3163 [R(int) = 0.032] 99.7 % Semi-empirical from equivalents 0.9468 and 0.9217 Full-matrix least-squares on F2 3163 / 0 / 175 1.045 R1 = 0.0347, wR2 = 0.0843 R1 = 0.0439, wR2 = 0.08980.013(3) 0.292 and -0.272 e.Å-3

	x	У	z	U(eq)
Cl(1)	5276(1)	2805(1)	6322(1)	35(1)
O(1)	710(1)	6594(1)	7519(1)	25(1)
O(2)	1850(1)	9590(1)	5961(1)	36(1)
O(3)	2823(1)	9206(1)	4727(1)	27(1)
C(1)	1893(1)	6855(1)	6210(1)	21(1)
C(2)	1138(2)	7467(1)	6916(1)	24(1)
C(3)	-745(2)	6003(1)	7147(1)	27(1)
C(4)	-801(1)	5412(1)	6213(1)	25(1)
C(5)	710(1)	4757(1)	6211(1)	21(1)
C(6)	799(2)	3471(1)	6210(1)	23(1)
C(7)	2205(2)	2872(1)	6235(1)	24(1)
C(8)	3522(2)	3593(1)	6282(1)	24(1)
C(9)	3514(1)	4894(1)	6306(1)	22(1)
C(10)	2059(1)	5472(1)	6247(1)	20(1)
C(11)	5023(2)	5612(1)	6447(1)	32(1)
C(12)	2396(2)	7500(1)	5570(1)	24(1)
C(13)	2303(2)	8863(1)	5464(1)	25(1)
C(14)	2820(2)	10530(1)	4540(1)	31(1)
C(15)	3357(2)	10692(1)	3669(1)	33(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for k01311. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

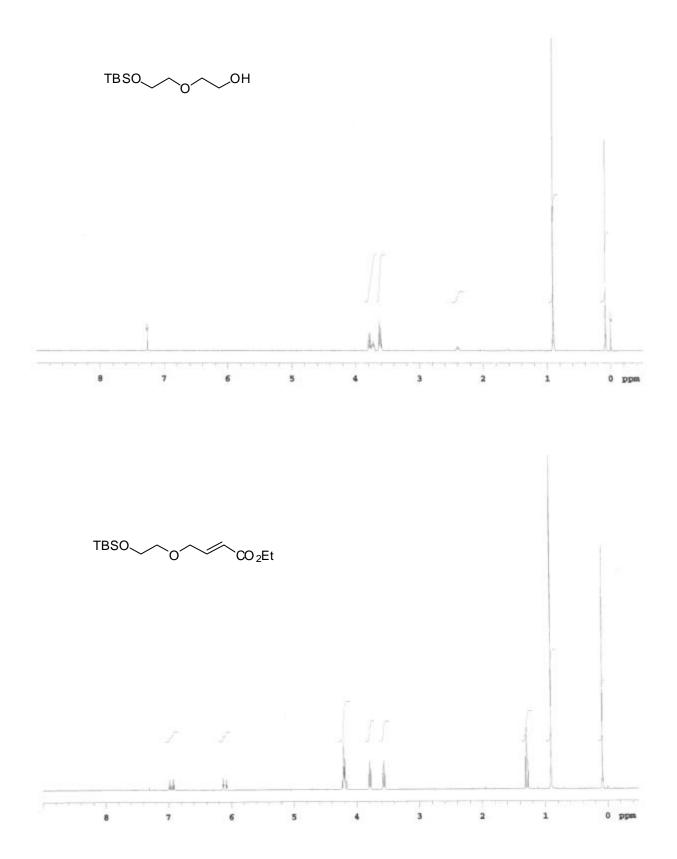
Cl(1)-C(8)	1.7525(13)	
O(1)-C(2)	1.4145(16)	
O(1)-C(3)	1.4265(16)	
O(2)-C(13)	1.2104(16)	
O(3)-C(13)	1.3437(15)	
O(3)-C(14)	1.4509(16)	
C(1)-C(12)	1.3414(18)	
C(1)-C(10)	1.4927(17)	
C(1)-C(2)	1.5253(17)	
C(3)-C(4)	1.5313(18)	
C(4)-C(5)	1.5079(17)	
C(5)-C(6)	1.3845(18)	
C(5)-C(10)	1.4079(17)	
C(6)-C(7)	1.3898(18)	
C(7)-C(8)	1.3846(19)	
C(8)-C(9)	1.3992(19)	
C(9)-C(10)	1.4095(17)	
C(9)-C(11)	1.5107(18)	
C(12)-C(13)	1.4731(18)	
C(14)-C(15)	1.501(2)	
C(2)-O(1)-C(3)	113.05(10)	
C(13)-O(3)-C(14)	116.31(10)	
C(12)-C(1)-C(10)	119.71(11)	
C(12)-C(1)-C(2)	122.97(12)	
C(10)-C(1)-C(2)	117.32(11)	
O(1)-C(2)-C(1)	112.46(11)	
O(1)-C(3)-C(4)	112.53(10)	
C(5)-C(4)-C(3)	110.59(10)	
C(6)-C(5)-C(10)	119.86(11)	
C(6)-C(5)-C(4)	121.12(11)	
C(10)-C(5)-C(4)	118.96(11)	
C(5)-C(6)-C(7)	120.85(12)	
C(8)-C(7)-C(6)	118.36(12)	

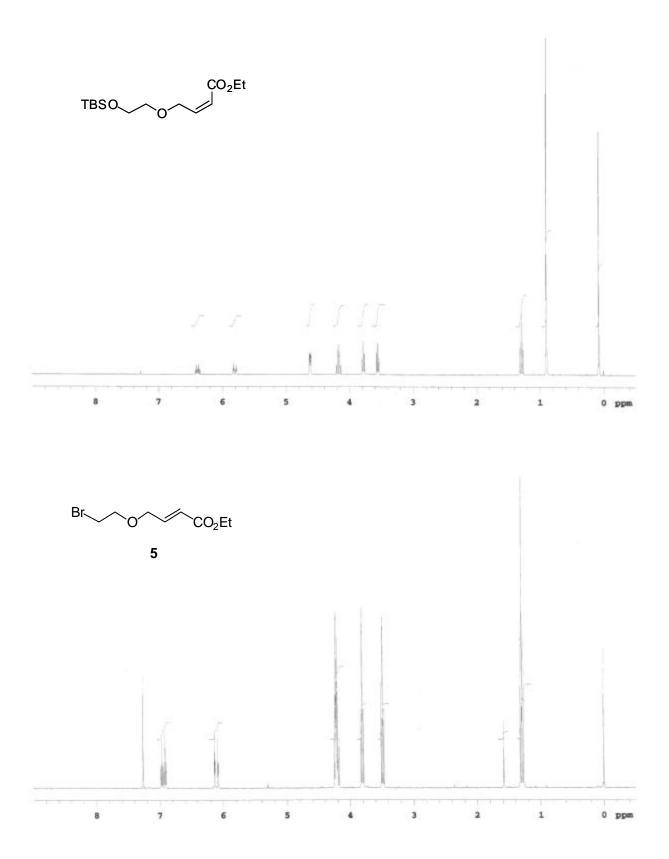
Table 3. Bond lengths [Å] and angles [*] for k01311.

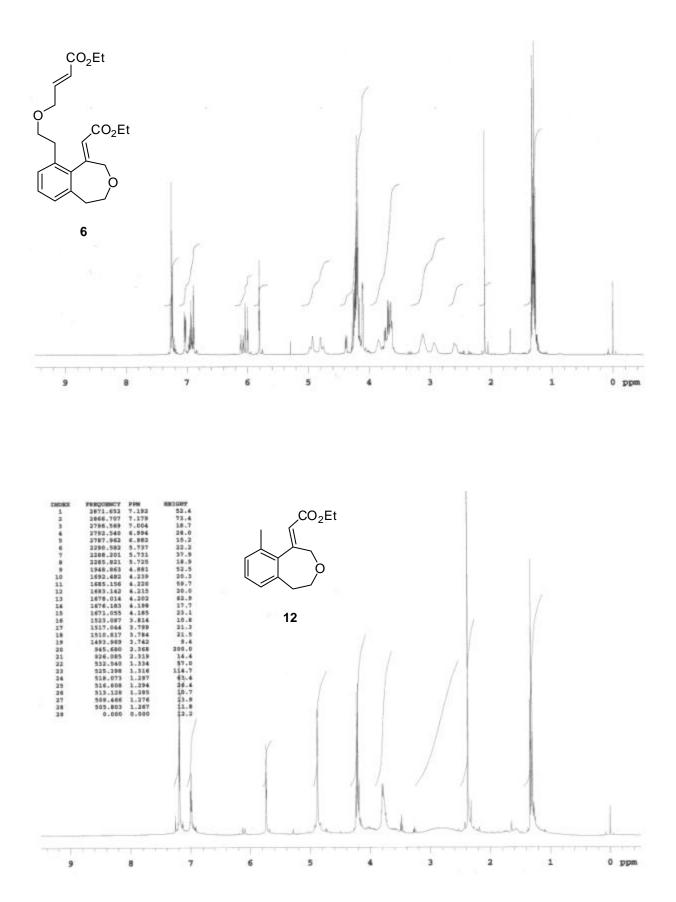
C(7)-C(8)-C(9)	123.47(12)
C(7)-C(8)-Cl(1)	117.04(10)
C(9)-C(8)-Cl(1)	119.49(10)
C(8)-C(9)-C(10)	116.69(11)
C(8)-C(9)-C(11)	120.26(11)
C(10)-C(9)-C(11)	122.94(12)
C(5)-C(10)-C(9)	120.70(12)
C(5)-C(10)-C(1)	117.85(11)
C(9)-C(10)-C(1)	121.45(11)
C(1)-C(12)-C(13)	124.92(12)
O(2)-C(13)-O(3)	123.62(12)
O(2)-C(13)-C(12)	126.42(12)
O(3)-C(13)-C(12)	109.95(11)
O(3)-C(14)-C(15)	107.18(11)

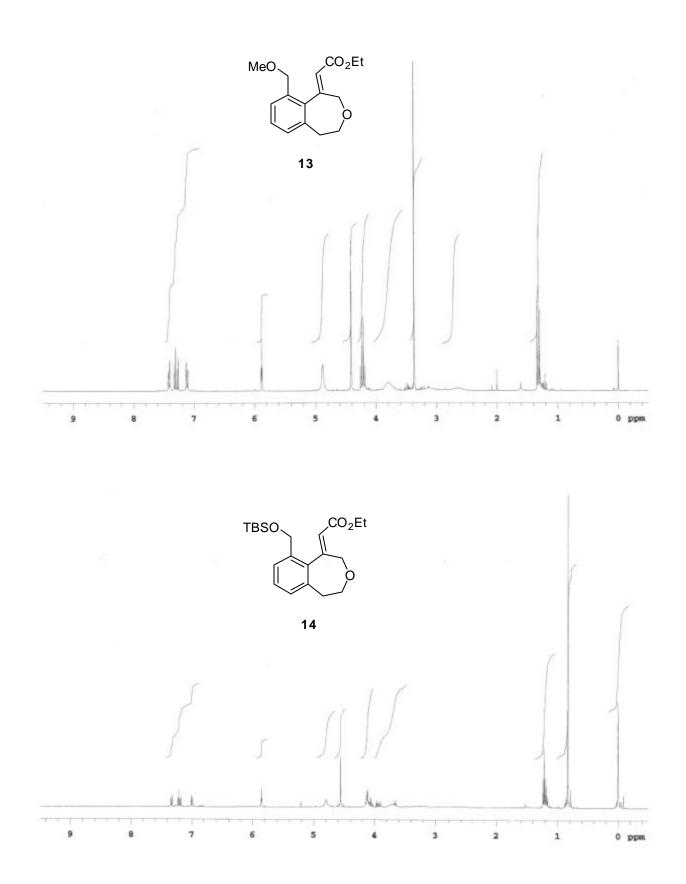
Symmetry transformations used to generate equivalent atoms:

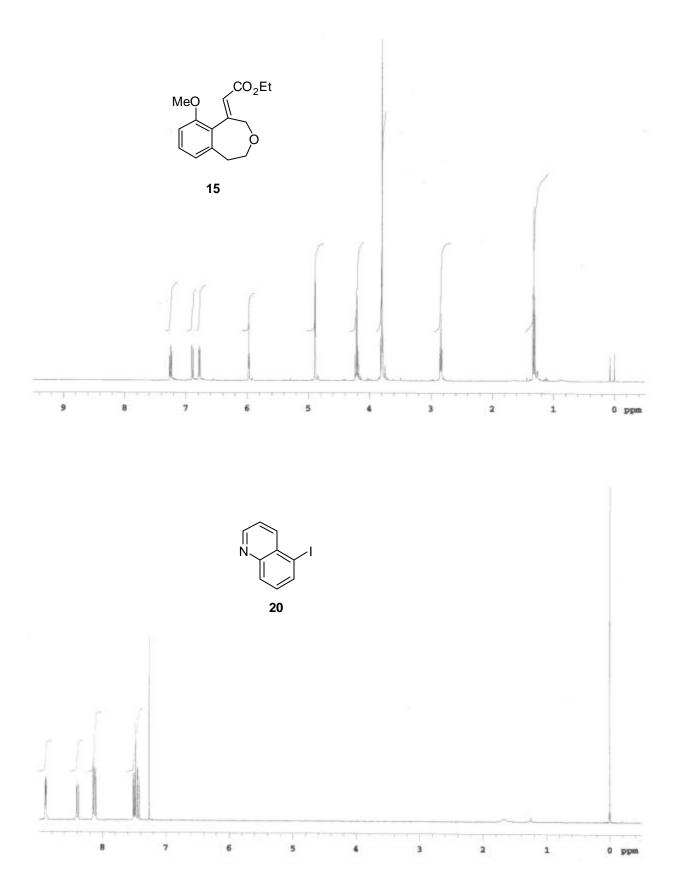
.


	UII	U ²²	U33	U ²³	U13	U12
Cl(1)	30(1)	29(1)	46(1)	-2(1)	12(1)	10(1)
O(1)	29(1)	27(1)	21(1)	0(1)	9(1)	2(1)
O(2)	55(1)	22(1)	40(1)	-1(1)	26(1)	3(1)
O(3)	38(1)	18(1)	26(1)	2(1)	13(1)	1(1)
C(1)	19(1)	19(1)	24(1)	-2(1)	5(1)	1(1)
C(2)	26(1)	23(1)	25(1)	-1(1)	9(1)	2(1)
C(3)	25(1)	29(1)	32(1)	0(1)	15(1)	1(1)
C(4)	20(1)	27(1)	28(1)	-1(1)	8(1)	-1(1)
C(5)	22(1)	23(1)	18(1)	0(1)	7(1)	0(1)
C(6)	27(1)	24(1)	21(1)	-1(1)	9(1)	-4(1)
C(7)	34(1)	18(1)	23(1)	0(1)	10(1)	0(1)
C(8)	26(1)	24(1)	23(1)	-1(1)	9(1)	5(1)
C(9)	22(1)	23(1)	23(1)	-1(1)	8(1)	1(1)
C(10)	23(1)	20(1)	18(1)	-1(1)	7(1)	1(1)
C(11)	21(1)	28(1)	48(1)	-2(1)	10(1)	-1(1)
C(12)	27(1)	21(1)	26(1)	-2(1)	10(1)	0(1)
C(13)	27(1)	22(1)	26(1)	0(1)	9(1)	0(1)
C(14)	43(1)	19(1)	33(1)	5(1)	11(1)	3(1)
C(15)	41(1)	29(1)	29(1)	6(1)	7(1)	-4(1)


Table 4. Anisotropic displacement parameters $(\dot{A}^2 x \ 10^3)$ for k01311. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2} U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$


	x	У	z	U(eq)
H(2A)	1875	8075	7275	29
H(2B)	199	7928	6597	29
H(3A)	-1591	6624	7085	33
H(3B)	-930	5351	7575	33
H(4A)	-1671	4809	6069	30
H(4B)	-992	6065	5736	30
H(6A)	-113	2991	6192	28
H(7A)	2261	1990	6220	29
H(11A)	5827	5186	6903	48
H(11B)	4869	6453	6660	48
H(11C)	5352	5660	5867	48
H(12A)	2847	7045	5154	29
H(14A)	3532	10970	5048	38
H(14B)	1759	10875	4474	38
H(15A)	3389	11580	3527	50
H(15B)	2632	10267	3171	50
H(15C)	4399	10333	3741	50


54


Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for k01311.

