Supporting Information
 Preparation of Bis-Enynes 8a-f, 8j-k, 18a-c, 20. A Representative Procedure. Scheme S1

8k
1-Nonen-3-yn-5-ol (4). To a mixture of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(99 \mathrm{mg}, 0.086 \mathrm{mmol})$ and $\mathrm{CuI}(98$ $\mathrm{mg}, 0.51 \mathrm{mmol}$) were added $\mathrm{Et}_{2} \mathrm{NH}(20 \mathrm{~mL})$ and 1-heptyn-3-ol 3 ($4.7 \mathrm{~mL}, 37 \mathrm{mmol}$) under an argon atmosphere at room temperature. The reaction mixture was cooled with water bath, and vinyl bromide in THF ($1.0 \mathrm{M}, 47 \mathrm{~mL}, 47 \mathrm{mmol}$) was added. After 5 min , the water bath was removed and the reaction mixture was stirred at room temperature for 1.5 h . The mixture was poured into ice water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with 2 N HCl aq. and dried over MgSO_{4}. Evaporation of the solvent gave an oil, which was further purified by silica gel column chromatography (hexane : AcOEt = $10: 1$) to give $4(4.5 \mathrm{~g}, 89 \%)$: yellow oil; ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 5.80(\mathrm{ddd}, J=17.6,11.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=17.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.46$ (dd, $J=10.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{dd}, J=$ $7.2,7.2 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13}{ }^{3} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 127.1, 116.6, 90.9, 83.3, 62.7, 37.4, 27.2, 22.3, 13.9; IR (neat) 3335, 3101, 3047, 3013, 2959, 2934, 2862, 2222, 1468, 1412, 1161, 1030, $1009 \mathrm{~cm}^{-1} ;$ HMRS Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}: 138.1044$. Found: 138.1040 .

1-Butyl-4-penten-2-ynyl (Z)-3-bromo-2-propenoate (6). To a mixture of (Z)-3-bromo-2-propenoic acid $5^{1}(4.5 \mathrm{~g}, 30 \mathrm{mmol})$ and DMAP $(0.37 \mathrm{~g}, 3.0 \mathrm{mmol})$ were added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ solution of $4(4.2 \mathrm{~g}, 30 \mathrm{mmol})$ under an argon atmosphere at room temperature. The reaction mixture was cooled to 0 _, and DCC (7.4 $\mathrm{g}, 36 \mathrm{mmol}$) was added and the mixture was stirred for 5 min . After stirring for additional 1 h at room temperature, the reaction mixture was filtered with celite and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with 0.5 N HCl aq. and saturated NaHCO_{3} aq., and dried over MgSO_{4}. Evaporation of the solvent gave an oil, which was further purified by silica gel column chromatography (hexane : $\mathrm{AcOEt}=30$: 1) to give $\mathbf{6}(6.8 \mathrm{~g}, 84 \%)$: colorless oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.62$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.80 (ddd, $J=17.5,10.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.65$ (dd, $J=17.5$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.57$ (ddd, $J=6.6,6.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{dd}, J=10.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-$ $1.75(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) 162.7,127.9,124.0,122.2,116.3,86.7,84.1,64.8,34.4,27.1,22.1,13.8$; IR (neat) 3074, 3049, 3013, 2957, 2934, 2864, 2149, 1736, 1612, 1333, 1204, $1159 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{2}$: C, 53.15; H, 5.58. Found: C, $53.41 ; \mathrm{H}, 5.70$.
1-Butyl-4-penten-2-ynyl (Z)-5-trimethylsilyl-2-penten-4-ynoate (7). To a mixture of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(300 \mathrm{mg}, 0.26 \mathrm{mmol})$ and $\mathrm{CuI}(100 \mathrm{mg}, 0.52 \mathrm{mmol})$ were added $\mathrm{Et}_{3} \mathrm{~N}(40$ mL), a THF (20 mL) solution of $\mathbf{6}(5.4 \mathrm{~g}, 20 \mathrm{mmol})$, and (trimethylsilyl)acetylene (3.4 $\mathrm{mL}, 24 \mathrm{mmol}$) under an argon atmosphere at room temperature. The reaction mixture was stirred for 1 h . Then the mixture was poured into ice water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with 0.5 N HCl aq., and dried over MgSO_{4}. Evaporation of the solvent gave an oil, which was further purified by silica gel column chromatography (hexane : $\mathrm{AcOEt}=50: 1$) to give $7(5.3 \mathrm{~g}, 92 \%)$: yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 6.16 (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.07 (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.79 (ddd, $J=$ $17.5,10.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67-5.56(\mathrm{~m}, 2 \mathrm{H}), 5.48(\mathrm{dd}, J=10.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.78$ $(\mathrm{m}, 2 \mathrm{H}), 1.46-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.22(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 163.3, 128.8, 127.7, 123.2, 116.5, 108.8, 100.6, 87.2, 83.9, 64.5, 34.5, 27.1, 22.2, 13.9, -0.4; IR (neat) 3015, 2959, 2934, 2864, 2151, 1736, 1717, 1607, 1252, $1161,1034 \mathrm{~cm}^{-1} ;$ HMRS Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}: 288.1544$. Found: 288.1553.
1-Butyl-4-penten-2-ynyl (Z)-2-penten-4-ynoate ($\mathbf{8 k}$): To a mixture of KF ($1.5 \mathrm{~g}, 26$ $\mathrm{mmol})$ in $\mathrm{MeOH}(40 \mathrm{~mL})$ was slowly added a THF $(20 \mathrm{~mL})$ solution of $7(3.8 \mathrm{~g}, 13$ mmol) at $0^{\circ} \mathrm{C}$ under an argon atmosphere and the mixture was kept stirring for 40 min . The mixture was poured into water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with saturated brine, and dried over MgSO_{4}. Evaporation of the solvent gave an oil, which was further purified by silica gel column chromatography (hexane : $\mathrm{AcOEt}=$ 50 : 1) to give $\mathbf{8 k}(2.8 \mathrm{~g}, 98 \%)$: yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 6.21 (d, $J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=11.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{ddd}, J=17.5,10.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.64(\mathrm{dd}, J=17.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{ddd}, J=6.6,6.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=10.7$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{dd}, J$ $=7.2,7.2 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 163.2, $130.2,127.9,122.7,116.4,89.7$, 86.9, 84.0, 79.5, 64.8, 34.4, 27.1, 22.2, 13.9; IR (neat) 3292, 3101, 3080, 3032, 3013, 2959, 2934, 2864, 1732, 1611, 1541, 1508, 1458, 1398, 1277, 1221, $1165 \mathrm{~cm}^{-1}$; HMRS Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}: 216.1149$. Found: 216.1140 .

4-Penten-2-ynyl (Z)-2-penten-4-ynoate (8a): yellow oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) 6.24(\mathrm{dd}, J=11.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=11.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dddd}, J=$ $17.6,10.7,1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dd}, J=17.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=10.8,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.89(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{dd}, J=2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $163.5,129.6,128.4,123.2,116.2,90.0,85.3,83.2,79.4,52.8$; IR (neat) 3287 , 2943, 2235, 2098, 1732, 1653, 1614, 1558, 1506, 1456, 1435, 1404, 1362, 1281, 1221, 1167, 1040, $1024 \mathrm{~cm}^{-1} ;$ HMRS Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{2}: 160.0524$. Found: 160.0560.

4-Penten-2-ynyl (Z)-2-undecen-4-ynoate (8b): brown oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}) 6.19 (ddd, $\left.J=11.4,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.04(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.80$ (dddd, $J=$ $17.6,10.6,1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J=17.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=10.7,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.86(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.43$ (ddd, $J=7.0,7.0,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.26(\mathrm{~m}, 8 \mathrm{H})$, 0.87 (dd, $J=6.9,6.9 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13}{ }^{3} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 164.0, 128.2, 126.2, 125.3 , $116.3,105.4,85.1,83.6,77.6,52.4,31.3,28.6,28.3,22.5,20.1,14.0$; IR (neat) 3101,

3013, 2955, 2932, 2858, 2239, 2208, 1732, 1716, 1609, 1456, 1431, 1412, 1362, 1277, 1229, 1209, 1163, 1040, $1020 \mathrm{~cm}^{-1}$; HMRS Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}: 244.1462$. Found: 244.1463; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 78.65; H, 8.25. Found: C, 78.58; H, 8.48.

4-Penten-2-ynyl (Z)-5-phenyl-2-penten-4-ynoate (8c): yellow oil; ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.59-7.53 (m, 2H), 7.35-7.28 (m, 3H), 6.41 (d, $\left.J=11.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.15$ (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.80$ (dddd, $J=17.5,10.9,1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.66$ (dd, $J=17.6,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=10.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) 163.9, 132.2, 129.3, 128.4, 128.3, 126.9, 124.1, 122.4, 116.3, 102.1, 86.2, 85.3, 83.5, 52.7; IR (neat) 3101, 3080, 3057, 3034, 3015, 2961, 2937, 2872, 2855, 2235, $2199,1730,1715,1609,1489,1443,1412,1362,1281,1266,1207,1163,1030 \mathrm{~cm}^{-1}$; HMRS Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{2}$: 236.0837. Found: 236.0812.

4-Penten-2-ynyl (Z)-6-hydroxy-2-hexen-4-ynoate (8d): brown oil; ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 6.22 (ddd, $\left.J=11.5,1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.14(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ (dddd, $J=17.4,10.8,1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{dd}, J=17.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dd}, J=$ 10.7, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.87 (d, $J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.49 (s, 2H), 2.03 (s, 1H), ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 163.9, 128.5, 127.4, 124.1, 116.1, 101.2, 85.3, 83.2, 82.0, 52.8, 51.5; IR (neat); 3449, 3101, 3044, 3013, 2928, 2856, 2235, 2201, 1717, 1609, 1435, 1410, 1362, 1277, 1229, 1169, 1119, $1018 \mathrm{~cm}^{-1}$; HMRS Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3}:$ 190.0630. Found: 190.0629 .

4-Methyl-4-penten-2-ynyl (Z)-2-penten-4-ynoate (8e): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.24(\mathrm{dd}, J=11.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=11.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.33$ (s, 1H), $5.26(\mathrm{dd}, J=1.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{dd}, J=2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.87$ (dd, $J=1.1,1.1 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $163.4,129.7,125.8,123.1,123.0$, 89.9, 87.8, 81.5, 79.3, 52.7, 23.0; IR (neat) 3288, 3098, 2932, 2856, 2233, 2118, 1732, 1612, 1404, 1362, 1281, 1221, $1167 \mathrm{~cm}^{-1}$; HMRS Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2}: 174.0680$. Found: 174.0668.

4-Methyl-4-penten-2-ynyl (Z)-2-octen-4-ynoate (8f): brown oil; ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 6.19 (ddd, $J=11.3,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.05 (d $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.32 (s , 1 H), 5.25 (dddd, $J=1.6,1.6,1.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.86$ (s, 2H), 2.42 (ddd, $J=7.1,7.1,2.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.87(\mathrm{dd}, J=1.2,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.61$ (ddddd, $J=7.3,7.3,7.3,7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 1.01 (dd, $J=7.4,7.4 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 163.9, 126.3, 125.9, 125.1, 122.9, 105.0, 87.6, 81.9, 77.7, 52.5, 23.1, 22.0, 21.8, 13.5; IR (neat) 3098, 2964, 2936, 2874, 2235, 2208, 1732, 1609, 1433, 1412, 1362, 1339, 1277, 1229, 1209, 1163, 1088, 1030, $1011 \mathrm{~cm}^{-1}$; HMRS Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$: 216.1149. Found: 216.1129.
1-Phenyl-4-penten-2-ynyl (\boldsymbol{Z})-2-penten-4-ynoate (8j) : yellow oil; ${ }^{1}$ H NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.56-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 3 \mathrm{H}), 6.66(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ (dd, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=11.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{ddd}, J=17.5,10.9,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.70(\mathrm{dd}, J=17.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dd}, J=10.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 162.9, 136.7, 129.9, 129.0, 128.6, 128.5, 127.8, 123.2, $116.2,90.1,85.9,85.8,79.4,66.2$; IR (neat) 3287, 3090, 3067, 3036, 3013, 2973, 2941, $2228,2098,1732,1611,1495,1456,1398,1313,1273,1219,1171,1151,1001 \mathrm{~cm}^{-1}$; HMRS Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{2}: 236.0837$. Found: 236.0844 .
5-Hexen-3-ynyl (Z)-2-penten-4-ynoate (18a): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}) 6.22 (dd, $\left.J=11.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.14$ (dd, $J=11.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.75 (dddd, $J=$ $17.5,10.9,2.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.57 (dd, $J=17.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=10.9,2.4 \mathrm{~Hz}$, 1 H), 4.28 (dd, $J=6.9,6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.61 (dd, $J=2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.69 (ddd, $J=6.9$, $6.9,2.0 \mathrm{~Hz}, 2 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 164.0, 130.3, 126.5, 122.5, 117.1, 89.5,
86.1, 80.7, 79.4, 62.5, 19.7; IR (neat) 3285, 3099, 3045, 3011, 2964, 2910, 2230, 2098, 1732, 1614, 1404, 1286, 1227, 1177, $1013 \mathrm{~cm}^{-1}$; HMRS Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{2}\left(\mathrm{M}^{+}-\mathrm{H}\right)$: 173.0602. Found: 173.0599.

5-Hexen-3-ynyl (Z)-2-octen-4-ynoate (18b): brown oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}) 6.16 (ddd, $\left.J=11.5,2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.03(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.75$ (dddd, $J=$ $17.6,10.8,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.56$ (dd, $J=17.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=10.8,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.25$ (dd, $J=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.67$ (ddd, $J=7.0,7.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.42$ (ddd, $J=$ $7.1,7.1,2.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.60 (ddddd, $J=7.3,7.3,7.3,7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.01 (dd, $J=7.4$, $7.4 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 164.5, 126.8, 126.4, 124.6, 117.1, 104.6, 86.2, 80.6, 77.8, 62.1, 22.0, 21.8, 19.8, 13.5; IR (neat) 3099, 3011, 2964, 2936, 2905, 2874, 2833, 2259, 2208, 1728, 1609, 1456, 1414, 1381, 1339, 1277, 1231, 1173, 1119, 1070, $1013 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 77.75; H, 7.46. Found: C, 77.65; H, 7.59.

5-Hexen-3-ynyl (Z)-5-phenyl-2-penten-4-ynoate (18c): colorless oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.54-7.50 (m, 2H), 7.36-7.29 (m, 3H), $6.38(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.14 (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.73 (dddd, $J=17.5,10.9,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.55 (dd, $J=$ $17.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=10.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.70$ (ddd, $J=7.0,7.0,1.8 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 164.4, 132.0, 129.2, 128.3 , $127.5,126.5,123.5,122.5,117.0,101.7,86.3,86.1,80.7,62.3,19.8$; IR (neat) 3099, 3080, 3057, 3011, 2961, 2907, 2230, 2201, 1724, 1609, 1489, 1443, 1412, 1337, 1286, 1265, 1209, 1169, 1070, $1015 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2}: \mathrm{C}, 81.58 ; \mathrm{H}, 5.64$. Found: C, 81.46; H, 5.80.
6-Hepten-4-ynyl (Z)-2-penten-4-ynoate (20): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) 6.19(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=11.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.74$ (dddd, $J=17.5$, $10.9,2.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=17.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=10.9,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.27 (dd, $J=6.1,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ (ddd, $J=7.0,7.0,2.0 \mathrm{~Hz}$, 2 H), 1.90 (dddd, $J=6.6,6.6,6.6,6.6 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 164.3 , $130.6,125.9,122.0,117.3,89.2,80.0,79.5,63.3,27.6,16.1$; IR (neat) 3287, 3099, 3044, 3009, 2961, 2899, 2845, 2228, 2098, 1728, 1614, 1404, 1288, 1223, $1178 \mathrm{~cm}^{-1}$; HMRS Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}$: 188.0837. Found: 188.0783.
Preparation of Bis-Enynes $\mathbf{8 g - i}$, 18d. A Representative Procedure. Scheme S2

2-Propynyl (Z)-3-bromo-2-propenoate (24). To a mixture of (Z)-3-bromo-2propenoic acid $5(10.5 \mathrm{~g}, 70 \mathrm{mmol})$ and DMAP $(0.86 \mathrm{~g}, 7.0 \mathrm{mmol})$ were added $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (90 mL) and 2-propyn-1-ol ($4.4 \mathrm{~mL}, 77 \mathrm{mmol}$) under an argon atmosphere at room
temperature. The reaction mixture was cooled to 0 _, and DCC ($17.3 \mathrm{~g}, 84 \mathrm{mmol}$) was added and the mixture was stirred for 5 min . After stirring for additional 45 min at room temperature, the reaction mixture was filtered with celite and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with 0.5 N HCl aq. and saturated NaHCO_{3} aq., and dried over MgSO_{4}. Evaporation of the solvent gave an oil, which was further purified by silica gel column chromatography (hexane : $\mathrm{AcOEt}=30: 1$) to give 23 (11.2 g, 84\%): colorless oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.08 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $6.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{dd}, J=2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 162.8, 123.3, 123.2, 77.1, 75.2, 52.1; IR (neat) 3296, 3078, 3053, 2945, 2129, 1732, 1614, 1435, 1371, 1333, 1275, 1205, 1159, $1024 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{BrO}_{2}$: C, 38.13; H, 2.67. Found: C, $38.33 ; \mathrm{H}, 2.78$.

2-Propynyl (Z)-5-trimethylsilyl-2-penten-4-ynoate (25). To a mixture of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(150 \mathrm{mg}, 0.13 \mathrm{mmol})$ and $\mathrm{CuI}(50 \mathrm{mg}, 0.26 \mathrm{mmol})$ were added THF $(6 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(20$ mL) and (trimethylsilyl)acetylene ($7.0 \mathrm{~mL}, 50 \mathrm{mmol}$). Then a THF (4 mL) soution of $24(1.9 \mathrm{~g}, 10 \mathrm{mmol})$ was added for 1 h under an argon atmosphere at room temperature. The reaction mixture was stirred for additional 30 min at this temperature. Then the mixture was poured into ice water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with $0.5 \mathrm{~N} \mathrm{HCl} \mathrm{aq} .\mathrm{and} \mathrm{dried} \mathrm{over} \mathrm{MgSO}_{4}$. Evaporation of the solvent gave an oil, which was further purified by silica gel column chromatography (hexane : $\mathrm{AcOEt}=$ $30: 1)$ to give 25 ($1.3 \mathrm{~g}, 63 \%$): colorless oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $6.19(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{dd}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 0.23(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 163.5, 128.1, 123.9, 109.4, 100.4, 77.5, 75.0, 51.9, -0.4; IR (neat) 3294, 3078, 3034, 2961, 2901, 2151, 2131, 1736, 1717, 1607, 1404, 1279, 1252, 1221, 1161, $1042 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 64.04 ; \mathrm{H}$, 6.84. Found: C, 64.12; H, 6.96.

Methyl (Z)-3-bromo-2-propenoate (26) was prepared according to the literature. ${ }^{1}$
(Z)-5-Methoxycarbonyl-4-penten-2-ynyl (Z)-5-trimethylsilyl-2-penten-4-ynoate (27). To a mixture of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(45 \mathrm{mg}, 0.039 \mathrm{mmol})$ and $\mathrm{CuI}(15 \mathrm{mg}, 0.078 \mathrm{mmol})$ were added $\mathrm{Et}_{3} \mathrm{~N}(6 \mathrm{~mL})$ and a THF (2 mL) solution of $25(0.62 \mathrm{~g}, 3.0 \mathrm{mmol})$ and methyl (Z)-3-bromo-2-propenoate $26(0.58 \mathrm{~g}, 3.6 \mathrm{mmol}$) under an argon atmosphere at room temperature. The rection mixture was stirred for 40 min . Then the mixture was poured into ice water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with 0.5 N HCl aq. and dried over MgSO_{4}. Evaporation of the solvent gave an oil, which was further purified by silica gel column chromatography (hexane : $\mathrm{AcOEt}=10: 1$) to give 27 ($0.54 \mathrm{~g}, 63 \%$): brown oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 6.21-6.10 (m, 4H), 5.00 (d, J $=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 0.22(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 164.8, 163.4, 129.0, 128.1, 124.0, 122.1, 109.4, 100.4, 95.0, 82.9, 52.6, 51.5, -0.5; IR (neat) 3078, 3032, 2957, 2901, 2856, 2214, 2149, 1732, 1718, 1609, 1439, 1404, 1360, 1279, 1252, 1232, 1198, 1163, $1038 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 62.04 ; \mathrm{H}, 6.25$. Found: C, 61.87; H, 6.36.
(Z)-5-Methoxycarbonyl-4-penten-2-ynyl (Z)-2-penten-4-ynoate (8g). To a mixture of $\mathrm{KF}(0.20 \mathrm{~g}, 3.4 \mathrm{mmol})$ in $\mathrm{MeOH}(6 \mathrm{~mL})$ was slowly added a THF (4 mL) soution of $27(0.49 \mathrm{~g}, 1.7 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under an argon atmosphere and the mixture was kept stirring for 40 min . The mixture was poured into water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with saturated brine, and dried over MgSO_{4}. Evaporation of the solvent gave an oil, which was further purified by silica gel column chromatography (hexane : $\mathrm{AcOEt}=7: 1$) to give $\mathbf{8 g}(0.29 \mathrm{~g}, 77 \%)$: white solid, mp
97.7-98.3 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 6.27-6.10 (m, 4H), $5.00(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 164.7, 163.2, 129.4, $129.0,123.3,122.1,94.7,90.2,83.0,79.2,52.7,51.5$; IR (KBr) 3258, 3084, 2997, 2951, 2212, 2097, 1728, 1716, 1616, 1560, 1441, 1402, 1360, 1232, 1213, $1178 \mathrm{~cm}^{-1} ;$ HMRS Calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{O}_{2}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$: 203.0344. Found: 203.0327.
(Z)-5-Methoxycarbonyl-4-penten-2-ynyl (Z)-2-octen-4-ynoate (8h): brown oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 6.23-6.05 (m, 4H), 4.98 (d, $J=1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.75 (s, 3H), 2.42 (ddd, $J=7.1,7.1,2.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.60 (ddddd, $J=7.3,7.3,7.3,7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.01 (dd, $J=7.4,7.4 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13} \mathrm{C}^{\mathrm{C}} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 164.8, 163.7, 128.9, 125.9, 125.4 , $122.1,105.2,95.2,82.8,77.7,52.4,51.4,22.0,21.7,13.4$; IR (neat) 3080, 3020, 2966, 2907, 2874, 2245, 2208, 1732, 1609, 1437, 1410, 1360, 1279, 1232, 1197, $1161 \mathrm{~cm}^{-1}$; HMRS Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}: 260.1048$. Found: 260.1051 .
(\boldsymbol{E})-6,6,7,7,8,8,9,9,10,10,11,11,11-Tridecafluoro-4-undecen-2-ynyl (Z)-2-octen-4ynoate (8i): colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.30$ (ddd, $J=15.9,2.1,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.22$ (ddd, $J=11.5,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.11$ (ddd, $J=15.7,12.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.05$ (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 2.42$ (ddd, $J=7.0,7.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.61$ (ddddd, $J=$ $7.5,7.3,7.3,7.3,7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 1.01 (dd, $J=7.4,7.4 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) 163.6, $127.6\left(\mathrm{dd}, J_{\text {C-F }}=22.6,22.6 \mathrm{~Hz}\right.$), 125.7, 125.6, 123.5-106.9 (m), 120.0 (dd, $J_{\text {C-F }}=11.3,11.3 \mathrm{~Hz}$), 105.4, $90.9,81.3,77.8,51.9,22.2,21.9,13.5$; IR (neat) 3074, 3040, 2968, 2939, 2878, 2210, 1734, 1641, 1609, 1431, 1414, 1364, 1240, 1202, 1167, 1146, 1121, 1067, $1032 \mathrm{~cm}^{-1}$; HMRS Calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~F}_{13} \mathrm{O}_{2}$: 520.0707. Found: 520.0688.
(Z)-6-Methoxycarbonyl-5-hexen-3-ynyl (Z)-2-penten-4-ynoate (18d): yellow solid, mp 46.5-47.5 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 6.25-6.04 (m, 4H), 4.33 (dd, $J=$ $6.9,6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.73 (s, 3H), 3.62 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.84 (ddd, $J=6.8,6.8,2.0 \mathrm{~Hz}$, 2 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 165.0, 163.9, 130.2, 127.9, 123.4, 122.5, 98.7, 89.6, 79.4, 78.8, 62.1, 51.4, 20.4; IR (KBr) 3294, 3092, 3038, 2959, 2905, 2214, 2097, 1720, 1605, 1439, 1406, 1238, 1192, $1128 \mathrm{~cm}^{-1}$; HMRS Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}_{4}\left(\mathrm{M}^{+}-\mathrm{H}\right)$: 231.0657. Found: 231.0669.

Preparation of Enyne-Diynes 16. A Representative Procedure.
Scheme S3

5-Phenyl-2,4-pentadiyn-1-ol (30) was prepared according to the literature. ${ }^{2}$
5-Phenyl-2,4-pentadiynyl (Z)-3-bromo-2-propenoate (31). To a mixture of (Z)-3-bromo-2-propenoic acid $5(1.8 \mathrm{~g}, 12 \mathrm{mmol})$ and DMAP $(0.15 \mathrm{~g}, 1.2 \mathrm{mmol})$ were added
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.3 \mathrm{~mL})$ and a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ solution of 5-phenyl-2,4-pentadiyn-1-ol 30 (1.9 $\mathrm{g}, 12 \mathrm{mmol}$) under an argon atmosphere at room temperature. The reaction mixture was cooled to 0_{\sim}, and DCC ($2.9 \mathrm{~g}, 14 \mathrm{mmol}$) was added and the mixture was stirred for 5 min . After stirring for additional 35 min at room temperature, the reaction mixture was filtered with celite and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with 0.5 N HCl aq. and saturated NaHCO_{3} aq. and dried over MgSO_{4}. Evaporation of the solvent gave a solid, which was further purified by silica gel column chromatography (hexane : $\mathrm{AcOEt}=20: 1$) to give $31(1.3 \mathrm{~g}, 38 \%)$: yellow solid, mp 63.5-64.2 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.49-7.46 (m, 2H), 7.39-7.20 (m, 3H), 7.09 $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 162.8, 132.7, 129.5, 128.4, 123.3, 121.1, 79.0, 75.6, 73.0, 71.6, 52.7; IR (KBr) 3082, $3065,3049,2928,2251,2224,1732,1686,1655,1609,1578,1560,1541,1508,1491$, 1437, 1373, 1337, 1204, 1165, 1070, $1024 \mathrm{~cm}^{-1}$; HMRS Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrO}_{2}: 287.9786$. Found: 287.9795.
5-Phenyl-2,4-pentadiynyl (\boldsymbol{Z})-5-trimethylsilyl-2-penten-4-ynoate (32). To a mixture of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(30 \mathrm{mg}, 0.026 \mathrm{mmol})$ and $\mathrm{CuI}(10 \mathrm{mg}, 0.052 \mathrm{mmol})$ were added $\mathrm{Et}_{3} \mathrm{~N}(4 \mathrm{~mL})$, a THF (1 mL) solution of $31(0.29 \mathrm{~g}, 1.0 \mathrm{mmol})$, and (trimethylsilyl)acetylene ($0.21 \mathrm{~mL}, 1.5 \mathrm{mmol}$) under an argon atmosphere at room temperature. The reaction mixture was stirred for 3.5 h . Then the mixture was poured into ice water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with 0.5 N HCl aq. and dried over MgSO_{4}. Evaporation of the solvent gave a solid, which was further purified by silica gel column chromatography (hexane : $\mathrm{AcOEt}=50: 1$) to give 32 $(0.19 \mathrm{~g}, 63 \%)$: yellow solid, mp 43.2-44.2 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.49-7.45 $(\mathrm{m}, 2 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 3 \mathrm{H}), 6.21(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}$, 2H), 0.24 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 163.4, 132.6, 129.4, 128.4, 128.0, 124.0, 121.1, 109.6, 100.4, 78.8, 76.0, 73.1, 71.4, 52.5, -0.4; IR (KBr) 3084, 3065, 3038, 2957, 2928, 2901, 2864, 2251, 2224, 2147, 1730, 1605, 1489, 1443, 1402, 1364, 1250, 1223, 1161, $1034 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Si}$: C, 74.47; H, 5.92. Found: C, 74.35; H, 6.02 .

5-Phenyl-2,4-pentadiynyl (Z)-2-penten-4-ynoate (16a). To a mixture of KF (62 mg , $1.1 \mathrm{mmol})$ in $\mathrm{MeOH}(1.3 \mathrm{~mL})$ was slowly added a THF $(1.3 \mathrm{~mL})$ solution of 32 (111 $\mathrm{mg}, 0.36 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under an argon atmosphere and the mixture was kept stirring for 45 min . The mixture was poured into water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with saturated brine, and dried over MgSO_{4}. Evaporation of the solvent gave a solid, which was further purified by silica gel column chromatography (hexane : $\mathrm{AcOEt}=20: 1)$ to give $\mathbf{1 6 a}(43 \mathrm{mg}, 51 \%)$: white solid, $\mathrm{mp} 86.2-87.7{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.49-7.46 (m, 2H), 7.39-7.27(m, 3H), $6.24(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.18$ (dd, $J=11.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) 163.2,132.6,129.5,129.3,128.4,123.5,121.1,90.2,79.3,78.8,75.8,73.0$, 71.4, 52.6; IR (KBr) 3269, 3055, 3038, 2930, 2255, 2225, 2093, 1728, 1686, 1611, 1491, 1441, 1402, 1367, 1223, 1175, 1119, 1072, 1026, $1003 \mathrm{~cm}^{-1}$; HMRS Calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{2}: 234.0680$. Found: 234.0700.

5-Phenyl-2,4-pentadiynyl (\mathbf{Z})-2-octen-4-ynoate (16b): yellow solid, mp 32.5-33.5 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.49-7.45 (m, 2H), 7.38-7.27 (m, 3H), 6.21 (ddd, $J=$ $11.5,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.89$ (s, 2H), 2.43 (ddd, $J=7.1,7.1$, $2.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.62 (ddddd, $J=7.3,7.3,7.3,7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.02$ (dd, $J=7.4,7.4 \mathrm{~Hz}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 163.8, 132.6, 129.4, 128.4, 125.9, 125.6, 121.1, 105.5,
78.6, 77.8, 76.1, 73.1, 71.2, 52.3, 22.0, 21.8, 13.5; IR (KBr) 3080, 3065, 3036, 2963, 2934, 2909, 2874, 2831, 2249, 2208, 1732, 1607, 1491, 1412, 1364, 1275, 1231, 1207, $1155,1117 \mathrm{~cm}^{-1}$; HMRS Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{2}: 276.1149$. Found: 276.1153 .

6-Vinyl-4,5-dihydro-3H-benzo[c]oxepin-1-one (21). A mixture of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(140$ $\mathrm{mg}, 0.12 \mathrm{mmol}$) and $\operatorname{DPPF}(130 \mathrm{mg}, 0.32 \mathrm{mmol})$ in dry toluene (595 mL) in 1 L flask was kept at 100 _. To this mixture was slowly added a toluene (5 mL) solution of $\mathbf{2 0}$ ($56 \mathrm{mg}, 0.30 \mathrm{mmol}$) for 5 h with syringe pump. After stirring for additional 1.5 h , toluene was evaporated and the resulting mixture was passed through a short silica gel column chromatography (hexane and $\mathrm{Et}_{2} \mathrm{O}$). The residue was further purified by silica gel column chromatography (hexane : $\mathrm{AcOEt}=10: 1$) to give $21(12 \mathrm{mg}, 22 \%)$: yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.63-7.57 (m, 2H), 7.31 (dd, $J=7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.99 (dd, $J=17.3,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dd}, J=17.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, 11.1,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.12(\mathrm{dd}, J=6.2,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{dd}, J=7.1,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.07$ (dddd, $J=7.1,6.9$, $6.5,6.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 172.5, 136.5, 134.2, 133.6, 132.7, 130.3, 129.3, 127.2, 118.1, 66.2, 27.4, 24.3; IR (neat) 3067, 2961, 2926, 2878, 2856, 1722, $1470,1285,1259,1182,1111,1059 \mathrm{~cm}^{-1}$; HMRS Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}: 188.0837$. Found: 188.0835.

Synthesis of 3-n-Butylphthalide.

3-Butyl-4-formylphthalide (22). Into a methanol (15 mL) solution of $9 \mathbf{k}$ (520 mg , 2.4 mmol) at $-78{ }^{\circ} \mathrm{C}$ was bubbled a stream of O_{3} in O_{2} until the solution became blue and this color maintained for 2 min . The reaction was purged with O_{2} until the blue color disappeared, then dimethyl sulfide $(1.0 \mathrm{~mL})$ was added. The mixture warmed to room temperature with stirring. Then the mixture was poured into water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to give 22 ($500 \mathrm{mg}, 96 \%$): yellow solid, mp 51.0-51.8 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $10.13(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ (dd, $J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dd}, J=7.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.60(\mathrm{~m}$, $1 \mathrm{H}), 1.53-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $190.8,169.2,149.9,138.3,131.1,130.6,129.8,127.8,82.7,32.8,27.0,22.1,13.7$; IR (neat) $3069,3034,2959,2932,2862,2743,1757,1701,1595,1350,1265,1223,1086$, $1045,1003 \mathrm{~cm}^{-1}$; HMRS Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}$: 218.0942. Found: 218.0943.
3-Butylphthalide (23). To a mixture of $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(460 \mathrm{mg}, 0.50 \mathrm{mmol})$ in toluene $(1.0 \mathrm{~mL})$ was added a toluene (1.0 mL) solution of $22(110 \mathrm{mg}, 0.50 \mathrm{mmol})$ at room temperature. Then the mixture was stirred at $120^{\circ} \mathrm{C}$ for 1 h . The mixture was passed through a short silica gel column chromatography (hexane and $\mathrm{Et}_{2} \mathrm{O}$). The residue was further purified by silica gel column chromatography (hexane : $\mathrm{EtOAc}=10: 1$) to give 23 ($75 \mathrm{mg}, 78 \%$): colorless oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.88(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.65(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.46(\mathrm{dd}, J=7.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.29(\mathrm{~m}, 4 \mathrm{H})$, $0.89(\mathrm{dd}, J=7.1,7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 170.6, 150.1, 133.9, 129.0, $126.2,125.7,121.7,81.4,34.4,26.8,22.4,13.8$; IR (neat) 3069, 3057, 3032, 2957, 2934, 2872, 1763, 1466, 1286, 1213, $1063 \mathrm{~cm}^{-1}$; HMRS Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}: 190.0993$. Found: 190.0995.

References

(1) Weir, J. R.; Patal, B. A.; Heck, R. F. J. Org. Chem. 1980, 45, 4926-4931.
(2) Alami, M.; Ferri, F. Tetrahedron. Lett. 1996, 37, 2763-2766.

(

19.6.79T
第

Lr...

[^0]
n
\square
\square
\vdots
\square

らヶ゙ㄷ

，

ESE．

$$
5569 \text { i. }
$$

- 5 - 1.

\qquad
\qquad

 \qquad

ARS-0ी

Teg'but
05E⒍6T.-

588.

$454 \cdot 8:$
zrer. .
$5595 \mathrm{C}-\mathrm{C}$
$5 \sin$
2ity

5FT

$$
\begin{aligned}
& \pm \frac{8}{8}
\end{aligned}
$$

[^0]:

