Proline Based P,N Ligands in Palladium Catalyzed Asymmetric π-allyl Additions.

Scott R. Gilbertson,* Dejian Xie and Zice Fu
Department of Chemistry
Washington University
St. Louis, Missouri 63130

Compounds appearing in the supplementary section that are not in the body of the paper are numbered with Roman numerals.
(2S, 2'S, 4R)-N-tert-Boc-2-[[N-[(2'-methoxycarbonyl-2'-isopropyl)methyl]-1'-amino]carbonyl]-4-hydroxyl-proline (7).

A mixture of N - t-Boc-L-hydroxylproline $(3.50 \mathrm{~g}, 15.1 \mathrm{mmol})$, EDC $(5.80 \mathrm{~g}, 30.2$ mmol), and $\mathrm{HOBt}\left(4.10 \mathrm{~g}, 30.2 \mathrm{mmol}\right.$) was stirred in 60 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ for 5 min. In a separate flask, L-valine methyl ester hydrochloride ($3.80 \mathrm{~g}, 22.7 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(4.20 \mathrm{~mL}, 30.2 \mathrm{mmol})$ were stirred for 10 min in $60 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ after which the mixture was added to the active ester. The resulting clear solution was warmed to room temperature and stirred for 1 day. After evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the residue was dissolved in EtOAc / $\mathrm{H}_{2} \mathrm{O}(4 / 1, \mathrm{v} / \mathrm{v})$. The organic layer was washed with 1 N HCl (aq.), saturated NaHCO_{3} (aq.), $\mathrm{H}_{2} \mathrm{O}$ and brine then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation leaving a residue that was subjected to column chromatography (eluant: EtOAc/n-hexanes ($95 / 5, \mathrm{v} / \mathrm{v}$) to yield $4.68 \mathrm{~g}(90 \%)$ as a white foamy solid: The NMR
spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45$ $(\mathrm{m}, 1 \mathrm{H}), 6.85(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~m}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{dqq}, J=6.0$, 6.8 and $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) 0.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,171.7,155.5,154.5,80.2,69.2,68.6,60.0,58.2,57.0$, 54.6, 54.1, 51.6, 39.3, 36.2, 30.7, 27.9, 17.7, 17.6, 17.5, 17.3; IR (film) 3408.0, 3017.5, 2972.1, 1739.7, 1683.7, 1521.8, 1395.4, 1216.1, 1161.1, $745.1,668.3 \mathrm{~cm}^{-1} ;$ MS-FAB m/z (\% rel intensity) $345\left(\mathrm{MH}^{+}, 25\right), 289(22), 245$ (100); HRFAB Calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}$ $\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 345.2025$, measured m/e 345.2036; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 55.80; H, 8.19. Found C, 55.36; H, 7.87.

(2S, 2'S, 4R)-N-tert-Boc-2-[[N-[(2'-hydroxymethyl-2'-isopropyl)methyl]-1'-amino]carbonyl]-4-hydroxyl-proline (8).

To a solution of (2S, 2'S, 4R)-N-tert-Boc-2-[[N-[(2'-methoxycarbonyl-2'-isopropyl)methyl]-1'-amino]carbonyl]-4-hydroxyl-proline (7) (4.68 g, 13.4 mmol) in 200 mL of THF, lithium borohydride solution ($13.4 \mathrm{~mL}, 26.6 \mathrm{mmol}, 2 \mathrm{M}$ in THF) was slowly added at $0^{\circ} \mathrm{C}$. The cooling bath was removed, and stirring was continued at room temperature for 16 h . The reaction was quenched by adding 2 N HCl , and THF was evaporated under reduced pressure. The residue was dissolved in EtOAc / $\mathrm{H}_{2} \mathrm{O}(4 / 1, v / v)$, and the aqueous layer was extracted with EtOAc three times. The combined organic layers were then washed with a small amount of 1 N NaOH and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave $3.68 \mathrm{~g}(87 \%)$ of $\mathbf{5}$ as a white foam. This material was used for next step without further purification. The sample was judged by

NMR to be at least 90% pure: The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.88$ and $6.72(2 \mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 3 \mathrm{H}), 3.55-$ $3.20(\mathrm{~m}, 5 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~m}, 9 \mathrm{H}), 0.75(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}+1$ drop of DMSO- d_{6}) $\delta 173.5,172.5,155.7,154.5,80.5,69.2$, $68.6,62.7,62.6,58.9,58.8,56.9,56.8,54.5,37.1,37.0,28.8,28.1,19.3,18.8,18.7,18.1$; IR (film) 3410.0, 3320.0, 3055.1, 2986.6, 1675.1, 1533.3, 1420.5, 1265.2, 1163.0, 895.8, $739.7,668.3 \mathrm{~cm}^{-1}$; MS-FAB m/z (\% rel intensity) 317 ($\mathrm{MH}^{+}, 100$), 303 (58); HRFAB Calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e}$ 317.2076, measured m/e 317.2071.

(2S, 5'S, 4R)-N-tert-Boc-2-(4',5'-dihydro-5'-isopropyl-1',3'-oxazole-2'-yl)-4-(methylsulfonyl)oxyl-proline (12).

A sample of $\mathbf{8}(3.58 \mathrm{~g}, 11.3 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{3} \mathrm{~N}(200 \mathrm{~mL}, 3 / 1$, $\mathrm{v} / \mathrm{v})$ and the solution was cooled to $0^{\circ} \mathrm{C}$. To the solution, $\mathrm{MsCl}(3.5 \mathrm{~mL} 45.2 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was slowly added, with stirring through an addition funnel after which the reaction was stirred at room temperature for 16 h . This resulted in a dark-brownish solution with the precipitation of ammonium salt. The solvent was removed by evaporation, leaving a residue that was dissolved in EtOAc / $\mathrm{H}_{2} \mathrm{O}(4 / 1$, v/v). The organic solution was then washed with water twice and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave the crude product which was purified by flash chromatography (eluant: EtOAc/n-hexanes/Et3N, 84/15/1) to afford a brownish viscous oil: The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.14(\mathrm{~m}, 1 \mathrm{H})$, $4.48(\mathrm{dd}, J=7.3$ and $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=8.8$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.80(\mathrm{~m}, 2 \mathrm{H})$,
3.74-3.57 (m, 2H), 2.92 (s, 3H), 2.53-2.35 (m, 1H), 2.23-2.17 (m, 1H), $1.61(\mathrm{~m}, 1 \mathrm{H}), 1.33$
(minor) and 1.29 (major) (s, 9 H), $0.79(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9,153.5,80.1,78.0,77.6,71.7,71.4,70.0,52.9,52.5$, $52.0,51.8,38.3,37.7,36.6,32.2,32.0,28.0,18.2,18.1,17.6,17.4$; IR (film) 3019.4, 2970.2, 1700.2, 1690.0, 1405.1, 1368.4, 1215.1, 1173.6, 967.2, $901.7,756.1,668.3 \mathrm{~cm}^{-1}$; MS-FAB m/z (\% rel intensity) $377\left(\mathrm{MH}^{+}\right.$, 65), 321 (100); HRFAB Calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 377.1746$, measured $\mathrm{m} / \mathrm{e} 377.1735$.

(2S, 5'S, 4S)-N-tert-Boc-2-(4',5'-dihydro-5'-isopropyl-1',3'-oxazole-2'-yl)-4-diphenylphosphinothioyl-proline (15).

$\mathrm{Ph}_{2} \mathrm{PH}(0.59 \mathrm{~mL}, 3.4 \mathrm{mmol})$ was added to a $-78{ }^{\circ} \mathrm{C}$ suspension of $\mathrm{NaNH}_{2}(0.17 \mathrm{~g}$, 4.25 mmol) in degassed THF. After stirring for 15 min . the reaction mixture was allowed to warm to room temperature and stirring was continued for 3 h . To this orange solution was added a solution of $\mathbf{1 2}(0.64 \mathrm{~g}, 1.7 \mathrm{mmol}$ in 15 mL of THF) and the reaction mixture was stirred at room temperature for 12 h . Next $\mathrm{S}_{8}(0.11 \mathrm{~g}, 3.4 \mathrm{mmol}$ in 15 mL THF) was added at $0{ }^{\circ} \mathrm{C}$ and the stirring was continued for 2 h at room temperature. After removal of solvent under reduced pressure, the residue was treated with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat.) and extracted with EtOAc three times. The EtOAc solutions were combined, and evaporated to the crude phosphine that was chromatographed on silica gel with $\mathrm{EtOAc} /$ hexane $/ \mathrm{Et}_{3} \mathrm{~N}$ $(66 / 33 / 1, \mathrm{v} / \mathrm{v} / \mathrm{v})$ to afford $0.55 \mathrm{~g}(65 \%)$ of $\mathbf{1 5}$ as a white solid: $\mathrm{Rf}_{\mathrm{f}}=0.30(\mathrm{EtOH} / n-$ hexanes: 2/1); mp $76-78{ }^{\circ} \mathrm{C}$; The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89-7.81(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 6 \mathrm{H}), 4.52(\mathrm{dd}$, $J_{\mathrm{HH}}=8.1$ and $\left.8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.23(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 2 \mathrm{H}), 3.30$
$(\mathrm{m}, 1 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~m}, 9 \mathrm{H}), 0.92\left(\mathrm{~d}, J_{\mathrm{HH}}=6.6 \mathrm{~Hz}\right.$, $3 \mathrm{H}), 0.85\left(\mathrm{~d}, J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,153.5,131.8(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{\mathrm{CP}}=10.1 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d}, J_{\mathrm{CP}}=12.1 \mathrm{~Hz}\right), 80.2,72.0,70.4,60.3$, $55.3\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 47.4,37.6\left(\mathrm{~d}, J_{\mathrm{CP}}=61.4 \mathrm{~Hz}\right), 32.3\left(\mathrm{~d}, J_{\mathrm{CP}}=25.1 \mathrm{~Hz}\right), 28.3$, 18.6, 18.1; ${ }^{31} \mathrm{P}\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 44.12$ (major) and 43.94 (minor), $44.20\left(45^{\circ} \mathrm{C}\right)$; IR (film) 3019.4, 2978.9, 1695.0, 1479.0, 1405.1, 1216.1, 1160.1, 1104.2, 758.0, $669.3 \mathrm{~cm}^{-1}$; MS-FAB m/z (\% rel intensity) 499 (MH^{+}, 100), 399 (13), 281 (25), 219 (35); HRFAB Calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 499.2184$ measured m/e 499.2189; Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}$ PS: C, 65.04; H, 6.76. Found C, 64.89; H. 7.07.

(2S, 2'S, 4R)-N-tert-Boc-2-[[N-[(2'-methoxycarbonyl-2'-phenyl)methyl]-1'-amino]-carbonyl]-4-hydroxyl-proline (9).

(2S, 2'S, 4R)-N-tert-Boc-2-[[N-[(2'-methoxycarbonyl-2'-phenyl)methyl]-1'-amino]-carbonyl]-4-hydroxyl-proline (9) was prepared by the procedure described above, using L-phenylglycine methyl ester hydrochloride in 95% yield as a white semi-solid: The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.04$ and $7.20(2$ broad singlets from one proton, 1 H$), 7.34(\mathrm{~m}, 5 \mathrm{H}), 5.53(\mathrm{~m}$, $1 \mathrm{H})$, 4.48-4.38 (m, 2H), 3.70 (s, 3H), 3.64-3.40 (m, 2H), 2.59 (br s, 1H), 2.34-2.04 (m, 2 H), 1.44 and 1.33 (two broad singlets from t-Boc group, 9 H); ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.3,171.4,170.8,155.5,154.4,135.8,128.6,128.3,128.2,128.1,127.1$, $127.0,126.9,80.3,69.1,68.7,59.0,58.2,56.1,54.3,52.4,39.0,36.5,28.8,27.5$; IR 3416.7, 3019.4, 1744.5, 1683.8, 1405.1, 1216.1, $922.0,756.1,568.0 \mathrm{~cm}^{-1} ;$ MS-FAB m/z
(\% rel intensity) 379 ($\mathrm{MH}^{+}, 23$), 323 (23), 279 (100); HRFAB Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}$ $\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 379.1869$, measured m/e 379.1859; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 60.31; H, 6.93. Found C, 59.92; H, 6.80.
(2S, 2'S, 4R)-N-tert-Boc-2-[[N-[(2'-methoxycarbonyl-2'-phenyl)methyl]-1'-amino]-carbonyl]-4-hydroxyl-proline (10)

Compound $\mathbf{1 0}$ was prepared by the procedure described for $\mathbf{7}$, using (2S, 2'S, 4R)-N-tert-Boc-2-[[N-[(2'-methoxycarbonyl-2'-phenyl)methyl]-1'-amino]-carbonyl]-4-hydroxyl-proline (II). The product was obtained in 90% yield as a white foam: The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56$ $(\mathrm{m}, 1 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 5 \mathrm{H}), 5.10-5.01(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.36(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.00(\mathrm{~m}, 6 \mathrm{H})$, 2.32-2.06 (m, 2H), 1.47-1.26 (m, 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 173.1, 172.6, 172.2, 155.6, 155.1, 154.8, 154.6, 138.9, 138.6, 128.3, 127.2, 126.7, 126.5, 80.5, 80.4, 69.2, $68.7,65.8,65.0,59.3,58.8,55.5,55.3,54.4,39.4,38.0,37.0,28.0,27.9$; IR (film) $3419.6,3335.0,3019.4,1683.8,1540.1,1418.6,1216.1,1162.0,757.0,668.3 \mathrm{~cm}^{-1}$; MSFAB m/z (\% rel intensity) 351 (MH^{+}, 65), 295 (55), 251 (100); HRFAB Calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 351.1920$, measured m/e 351.1919.
(2S, 5'S, 4R)-N-tert-Boc-2-(4',5'-dihydro-5'-phenyl-1',3'-oxazole-2'-yl)-4-(methylsulfonyl)oxyl-proline (13).

(6)

13 was prepared by the procedure described for $\mathbf{1 2}$, using the diol $\mathbf{1 0}$, and was obtained in 56% yield as a yellowish vicious oil: The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.32(\mathrm{~m}, 1 \mathrm{H})$, 5.26-5.17 (m, 1H), 4.76-4.60 (m, 2H), 4.18-4.07 (m, 1H), 3.92-3.75 (m, 2H), 3.05 (2s, $3 \mathrm{H}), 2.74-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $168.3,167.7,153.5,153.3,142.0,141.7,128.5,128.4,127.5,126.5,126.3,126.1,80.5$, $78.0,77.7,75.4,75.2,74.9,74.7,69.4,69.2,52.9,52.7,52.5,52.0,51.8,38.4,38.1,37.9$, 36.9, 36.7, 28.1; IR (film) 3019.4, 1700.2, 1405.1, 1368.4, 1216.1, 1173.6, 940.0, 901.7, $764.7,669.3 \mathrm{~cm}^{-1}$; MS-FAB m/z (\% rel intensity) 411 ($\mathrm{MH}^{+}, 30$), 355 (100); HRFAB Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 411.1590$, measured m/e 411.1572.

(2S, 5'S, 4S)-N-tert-Boc-2-(4',5'-dihydro-5'-phenyl-1',3'-oxazole-2'-yl)-4-diphenylphosphinothioyl-proline (16).

To a $-78{ }^{\circ} \mathrm{C}$ suspension of $\mathrm{NaNH}_{2}(0.061 \mathrm{~g}, 1.56 \mathrm{mmol})$ in degassed THF was added $\mathrm{Ph}_{2} \mathrm{PH}(0.24 \mathrm{~mL}, 1.37 \mathrm{mmol})$. After stirring for 15 min . the cooling bath was removed and the solution was allowed to warm to room temperature where stirring was continued for 3 h . During this time the solution turned deep orange. Then $\mathbf{1 3}$ ($0.53 \mathrm{~g}, 1.30$ mmol) in 15 mL of THF was transferred over via canula, stirring was continued for 12 h at room temperature. After this time the solvent was removed under reduced pressure. The residue was treated with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat.) and extracted with EtOAc three times. The EtOAc solutions were combined, and evaporated to yield the crude phosphine. The crude phosphine was treated with 15 mL of methanol and 15 mL of water containing $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
$(1.60 \mathrm{~g}, 10.4 \mathrm{mmol})$ the suspension was heated to $45-50{ }^{\circ} \mathrm{C}$, during which the solution turned clear. After stirring overnight the methanol was removed by evaporation, leaving a residue that was taken up with $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}$ (4:1). The aqueous layer was extracted with EtOAc twice, and the EtOAc solution was washed with $\mathrm{H}_{2} \mathrm{O}$, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to give crude phosphine sulfide that was chromatographed on silica gel by using gradient elution (EtOAc/Hexanes/Et ${ }_{3} \mathrm{~N}$, 50/49/1 to $66 / 33 / 1$, v/v/v) to yield $13(0.25 \mathrm{~g}, 36 \%)$ as a white solid: $\mathrm{R}_{\mathrm{f}}=0.25(\mathrm{EtOH} / n$-hexanes: $1 / 1)$; $\mathrm{mp} 86-88^{\circ} \mathrm{C}$; The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.92-7.82 (m, 4H), 7.55-7.43 (m, 6H), 7.32-7.20 (m, 5H), $5.20\left(\mathrm{dd}, J_{\mathrm{HH}}=9.8\right.$ and $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62\left(J_{\mathrm{HH}}=8.5\right.$ and $\left.8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.17(\mathrm{~m}, 2 \mathrm{H}), 3.86-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.36$ $(\mathrm{m}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7$, $143.4,141.9,131.8\left(\mathrm{~d}, J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{\mathrm{CP}}=10.1 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right)$, $128.6\left(\mathrm{~d}, J_{\mathrm{CP}}=7.6 \mathrm{~Hz}\right), 127.5,126.6,126.4,80.2,75.0,69.4,55.2\left(\mathrm{~d}, J_{\mathrm{CP}}=11.0 \mathrm{~Hz}\right)$, $47.3,37.6\left(\mathrm{~d}, J_{\mathrm{CP}}=60.1 \mathrm{~Hz}\right), 31.9\left(\mathrm{~d}, J_{\mathrm{CP}}=47.1 \mathrm{~Hz}\right), 28,2,28.1 ;{ }^{31} \mathrm{P}\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 44.3$ (major), 44.1 (minor); IR (film) 3019.4, 2980.8, 1695.3, 1404.1, 1216.1, 1160.1, $755.1,668.3 \mathrm{~cm}^{-1}$; MS-FAB m/z (\% rel intensity) 539 (MLi^{+}, 49), 439 (90), 294 (20); HRFAB Calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PSLi}\left(\mathrm{MLi}^{+}\right) \mathrm{m} / \mathrm{e} 539.2109$, measured m/e 539.2115; Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}: \mathrm{C}, 67.52 ; \mathrm{H}, 6.42$. Found C, 67.67; H. 6.21.
(2S, 2'S, 4R)-N-tert-Boc-2-[[N-[(2'-hydroxymethyl-2'-tert-butyl)methyl]-1'-amino]-carbonyl]-4-hydroxyl-proline (11).

(8)

Compound 11 was prepared by the procedure described for ($2 \mathrm{~S}, 2^{\prime} \mathrm{R}, 4 \mathrm{R}$)-N-tert-Boc-2-[[N-[(2'-hydroxymethyl-2'-isopropyl)methyl]-1'-amino]-carbonyl]-4-hydroxylproline (7), using (S)-tert-lucinol. It was obtained in 87% yield as a white foam: The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.00 and $6.40(2 \mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.49-3.40(\mathrm{~m}, 4 \mathrm{H}), 2.41(\mathrm{~m}$, 1 H), $2.11(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}+1$ drop of DMSO- d_{6}) $\delta 172.6,156.1,80.8,69.3,62.3,59.7,59.0,54.5,36.9,33.3,28.2,26.6$; IR (film) 3365.6, 2967.3, 1675.1, 1558.4, 1405.1, 1162.0, 1047.0, 1027.0, 909.4, 732.9, $647.1 \mathrm{~cm}^{-1}$; MS-FAB m/z (\% rel intensity) 331 ($\mathrm{MH}^{+}, 100$), 275 (82), 231 (100), 154 (100); HRFAB Calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 331.2233$, measured m/e 331.2229 .

(2S, 5'S, 4R)-N-tert-Boc-2-(4',5'-dihydro-5'-isopropyl-1',3'-oxazole-2'-yl)-4-(methylsulfonyl)oxyl-proline (14).

A sample of $11(3.60 \mathrm{~g}, 10.9 \mathrm{mmol})$ was dissolved in 200 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{3} \mathrm{~N}$ $(3 / 1, \mathrm{v} / \mathrm{v})$ and then cooled to $0^{\circ} \mathrm{C}$. It was then added to a solution of $\mathrm{MsCl}(3.4 \mathrm{~mL}, 43.6$ mmol) in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ after which the reaction mixture was refluxed for 20 h . The solvent was removed from the resulting dark-brownish solution by evaporation, leaving a residue that was dissolved in $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}(4 / 1, \mathrm{v} / \mathrm{v})$. The organic solution was washed with water twice and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent by evaporated gave the crude product that was purified by flash chromatography (eluant: EtOAc/nhexanes/Et3N, 79/20/1) to afford $3.82 \mathrm{~g}(90 \%)$ of $\mathbf{1 4}$ as a brownish vicious oil: The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.28$
$(\mathrm{m}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=7.3$ and $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.75(\mathrm{~m}, 3 \mathrm{H}), 3.09(\mathrm{~s}$, $3 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 1.47$ (minor) and 1.44 (major) ($\mathrm{s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,153.3,80.1,78.0,77.6,75.4,75.2,68.7,52.9,52.5$, 51.8, 38.3, 37.8, 36.6, 33.4, 28.0, 25.5; IR (film) 3019.4, 2976.9, 1700.2, 1690.0, 1405.1, $1367.5,1216.1,1173.6,966.3,901.7,757.0,668.3 \mathrm{~cm}^{-1}$; MS-FAB m/z (\% rel intensity) $391\left(\mathrm{MH}^{+}, 95\right), 335$ (100); HRFAB Calcd for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e}$ 391.1903, measured m/e 391.1901.

(2S, 5'S, 4S)-N-tert-Boc-2-(4',5'-dihydro-5'-tert-butyl-1',3'-oxazole-2'-yl)-4-diphenylphosphinothioyl-proline (17).

Compound 17 was prepared by the procedure described for 15 , using 14 , and was obtained in 22% yield as a white solid: $\mathrm{Rf}_{\mathrm{f}}=0.4$ (EtOAc / n-hexanes: $3 / 2$); mp $78-80^{\circ} \mathrm{C}$; The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.89-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.30(\mathrm{~m}, 6 \mathrm{H}), 4.56\left(\mathrm{dd}, J_{\mathrm{HH}}=7.8\right.$ and $\left.9.3 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 4.20-4.12 (m, 2H). $3.84(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H})$, $1.40(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,153.4,131.7\left(\mathrm{~d}, J_{\mathrm{CP}}=3\right.$ $\mathrm{Hz}), 131.0\left(\mathrm{~d}, J_{\mathrm{CP}}=9.8 \mathrm{~Hz}\right), 128.74\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 128.67\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 80.1$, $75.5,68.9,55.3\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 47.3,37.4\left(\mathrm{~d}, J_{\mathrm{CP}}=60.2 \mathrm{~Hz}\right), 33.5,32.0,28.2,25.6$; ${ }^{31} \mathrm{P}\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 44.11$ (major), 43.89 (minor); IR (film) 2977.0, 2905.6, 2865.0, 1693.4, 1478.4, 1404.1, 1367.5, 1246.0, 1161.1, 1104.2, 999.1, 960.0, 909.4, 731.0, 649.0 cm^{-1}; MS-FAB m/z (\% rel intensity) $513\left(\mathrm{MH}^{+}, 100\right), 413$ (20), 295 (25); HRFAB Calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 513.2341$, measured m/e 513.2322.
(2S, 2'R, 4R)-N-tert-Boc-2-[[N-[(2'-hydroxymethyl-2'-isopropyl)methyl]-1'-amino]-carbonyl]-4-hydroxyl-proline (I).

A mixture of N - t-Boc-L-hydroxylproline $(7.40 \mathrm{~g}, 32.3 \mathrm{mmol})$, EDC $(12.38 \mathrm{~g}, 64.6$ $\mathrm{mmol})$, HOBt $8.73 \mathrm{~g}(64.6 \mathrm{mmol})$ and D-valinol $(5.00 \mathrm{~g}, 48.5 \mathrm{mmol})$ were stirred in 200 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 1 day. After which the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed and the residue was dissolved in EtOAc. The organic layer was washed with 1 N HCl (aq.), saturated NaHCO_{3} (aq.), $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation leaving a residue that was subjected to column chromatography (gradient eluant: EtOAc to 5% of $\mathrm{MeOH} / \mathrm{EtOH}, \mathrm{v} / \mathrm{v}$) to yield the product $(3.65 \mathrm{~g}, 36 \%)$ as a white foam: The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.90$ and $6.70(2$ broad singlets, 1 H$), 4.44(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H})$, $3.71(\mathrm{~m}, 3 \mathrm{H}), 3.60-3.46(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~m} ., 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz} 3 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ +1 drop of DMSO- d_{6}) $\delta 173.0,155.4,80.7,69.6,63.0,59.2,57.2,55.0,38.0,28.9$ (minor) and 28.2 (major), 19.5, 18.7; IR (film) 3416.7, 3326.1, 1675.1, 1533.8, 1419.5, 1216.1, 1163.0, $761.8,669.3 \mathrm{~cm}^{-1}$; MS-FAB m/z (\% rel intensity) $317\left(\mathrm{MH}^{+}, 100\right), 217$ (91); HRFAB Calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 317.2076$, measured m/e 317.2075.
(2S, 5'R, 4R)-N-tert-Boc-2-(4',5'-dihydro-5'-isopropyl-1',3'-oxazole-2'-yl)-4-(methylsulfonyl)oxyl-proline (II).

(2S, 5'R, 4R)-N-tert-Boc-2-(4',5'-dihydro-5'-isopropyl-1',3'-oxazole-2'-yl)-4-(methylsulfonyl)oxyl-proline (II) was prepared by the procedure described for 8, using the diol (2S, 2'R, 4R)-N-tert-Boc-2-[[N-[(2'-hydroxymethyl-2'-isopropyl)methyl]-1'-amino]-carbonyl]-4-hydroxyl-proline (I), and was obtained in 54% yield as a brownish vicious oil: The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.30(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.05(\mathrm{~s}$, $3 H), 2.48(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 H), 1.00(\mathrm{~m}, 3 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=$ 6.4 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.2,153.5,80.4,77.7,72.5,71.9,70.8$, 70.2, 52.9, 52.1, 51.7, 38.5, 38.0, 36.8, 32.9, 32.1, 28.2, 19.0; IR 3019.4, 2097.2, 1693.3, 1405.2, 1368.4, 1216.1, 1173.6, 967.2, $900.7,758.9,668.3 \mathrm{~cm}^{-1}$; MS-FAB m/z (\% rel intensity) 377 (MH^{+}, 70), 321 (100); HRFAB Calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e}$ 377.1746, measured m/e 377.1741.
(2S, 5'R, 4S)-N-tert-Boc-2-(4',5'-dihydro-5'-isopropyl-1',3'-oxazole-2'-yl)-4-diphenylphosphinothioyl-proline (The phosphine sulfide of 21).

(2S, 2'R, 4S)-N-tert-Boc-2-(4',5'-dihydro-5'-isopropyl-1',3'-oxazole-2'-yl)-4-diphenylphosphinothioyl-proline (21) was prepared by the procedure described for 15, using (2S, 2'R, 4R)-N-tert-Boc-2-(4',5'-dihydro-5'-isopropyl-1',3'-oxazole-2'-yl)-4-
(methylsulfonyl)oxyl-proline (II), and was obtained in 39% yield as a white solid: $\mathrm{R}_{\mathrm{f}}=$ 0.30 (EtOAc/n-hexanes: 2/1); mp $77-80^{\circ} \mathrm{C}$; The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88-7.81(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.44(\mathrm{~m}$, $6 \mathrm{H}), 4.53\left(\mathrm{dd}, J_{\mathrm{HH}}=8.1\right.$ and $\left.8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.33\left(\mathrm{dd}, J_{\mathrm{HH}}=8.5\right.$ and $\left.8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.90(\mathrm{dd}$, $J_{\mathrm{HH}}=8.8$ and $\left.8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.84-3.62(\mathrm{~m}, 4 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H})$, $1.70(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.27\left(\mathrm{~d}, J_{\mathrm{HH}}=6.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.01\left(\mathrm{~d}, J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,153.5,131.8\left(\mathrm{~d}, J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{CP}}=3.0\right.$ $\mathrm{Hz}), 131.1\left(\mathrm{~d}, J_{\mathrm{CP}}=10.0 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 80.3$, $72.8,71.2,62.2,54.9\left(\mathrm{~d}, J_{\mathrm{CP}}=11.0 \mathrm{~Hz}\right), 47.5,37.8\left(\mathrm{~d}, J_{\mathrm{CP}}=61.0 \mathrm{~Hz}\right), 32.4\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ 51.5 Hz), 28.3, 19.4, 18.8; ${ }^{31} \mathrm{P}\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 44.2$; IR (film) 3054.1, 2984.7, $1696.3,1400.2,1265.2,1160.1,738.7 \mathrm{~cm}^{-1} ;$ MS-FAB m$/ \mathrm{z}$ (\% rel intensity) $505\left(\mathrm{MLi}^{+}\right.$, 37), 405 (66), 294 (21), 160 (100); HRFAB Calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PSLi}\left(\mathrm{MLi}^{+}\right) \mathrm{m} / \mathrm{e}$ 505.2266 measured m/e 505.2274; Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}: \mathrm{C}, 65.04 ; \mathrm{H}, 6.76$. Found C, 64.58; H. 6.87.

(2S, 2R', 4R)-N-tert-Boc-2-[[N-[(2'-methoxycarbonyl-2'-phenyl)methyl]-1'-amino]-carbonyl]-4-hydroxyl-proline (III).

(2S, 2R', 4R)-N-tert-Boc-2-[[N-[(2'-methoxycarbonyl-2'-phenyl)methyl]-1'-amino]-carbonyl]-4-hydroxyl-proline (III) was prepared by the procedure described above, using D-phenylglycine methyl ester hydrochloride, in 92% yield as a white semisolid: The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.02$ and $7.04(2$ broad singlets from one proton, 1 H$), 7.35(\mathrm{~m}, 5 \mathrm{H}), 5.63-5.50$
$(\mathrm{m}, 1 \mathrm{H}), 4.40(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.10(\mathrm{~m}, 3 \mathrm{H}), 2.40-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.50$ and 1.30 (2 broad singlets from t-Boc group 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,171.6$, $171.5,171.0,155.1,136.1,128.9,128.7,128.5,128.3,127.2,80.8,69.1,69.0,59.9,58.4$, 56.4, 55.9, 54.8, 52.6, 39.3, 36.7, 28.0; IR 3414.8, 2980.8, 1740.7, 1683.8, 1507.3, $1401.5,1161.1,920.0,756.1,568.3 \mathrm{~cm}^{-1}$; MS-FAB m/z (\% rel intensity) $379\left(\mathrm{MH}^{+}, 33\right)$, 323 (20), 279 (100); Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 60.31 ; H, 6.93. Found C, 60.59; H, 6.97.

(2S, 2'R, 4R)-N-tert-Boc-2-[[N-[(2'-hydroxymethyl-2'-phenyl)methyl]-1'-amino]-carbonyl]-4-hydroxyl-proline (IV).

(2S, 2'R, 4R)-N-tert-Boc-2-[[N-[(2'-hydroxymethyl-2'-phenyl)methyl]-1'-amino]-carbonyl]-4-hydroxyl-proline (IV) was prepared by the procedure described for $\mathbf{8}$, using (2S, 2R', 4R)-N-tert-Boc-2-[[N-[(2'-methoxycarbonyl-2'-phenyl)methyl]-1'-amino]-carbonyl]-4-hydroxyl-proline (III). The product was obtained in 90% yield as a white foam: The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.71$ and $7.40(2$ broad singlets, 1 H$), 7.26(\mathrm{~m}, 5 \mathrm{H}), 5.05(\mathrm{~m}, 1 \mathrm{H}), 4.46-4.29(\mathrm{~m}$, $4 \mathrm{H}), 3.74(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.21-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~m}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.1,172.7,155.2,154.9,138.9,138.6,128.4,127.3,126.6,88.5,69.5$, 68.7, 65.7, 65.2, 59.5, 59.0, 55.4, 55.1, 39.3, 38.0, 28.1; IR (film) 3410.9, 3328.9, 2980.0, $3935.5,1672.2,1536.2,1417.6,1368.4,909.4,730.0,649.0 \mathrm{~cm}^{-1}$, MS-FAB m/z (\% rel intensity) $351\left(\mathrm{MH}^{+}, 25\right), 295(28), 251$ (100); HRFAB Calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right)$ $\mathrm{m} / \mathrm{e} 351.1920$, measured m/e 351.1930 .
(2S, 5'R, 4R)-N-tert-Boc-2-(4',5'-dihydro-5'-phenyl-1',3'-oxazole-2'-yl)-4-(methylsulfonyl)oxyl-proline (V).

(2S, 5'R, 4R)-N-tert-Boc-2-(4',5'-dihydro-5'-phenyl-1',3'-oxazole-2'-yl)-4-(methylsulfonyl)oxyl-proline (\mathbf{V}) was prepared by the procedure described for 16, using the diol (2S, 2'R, 4R)-N-tert-Boc-2-[[N-[(2'-hydroxymethyl-2'-phenyl)methyl]-1'-amino]-carbonyl]-4-hydroxyl-proline (IV), and was obtained in 60% yield as a yellowish viscous oil: The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.37-7.24 (m, 5H), $5.32(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~m}, 1 \mathrm{H}), 4.77-4.63(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.07$ $(\mathrm{m}, 1 \mathrm{H}), 3.92-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.42(\mathrm{~m}, 1 \mathrm{H}), 1.47$ and 1.44 (2 s, overlap), 9H); ${ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 167.8,167.6,153.5,141.9,141.4$, $128.5,127.5,126.5,126.3,80.5,78.0,77.7,75.2,74.7,69.5,52.8,52.1,51.7,38.4,38.2$, 36.8, 28.1; IR (film) 3020.4, 2981.8, 1697.3, 1402.2, 1368.4, 1216.1, 1174.6, 966.3, 909.4, $752.2,668.3 \mathrm{~cm}^{-1}$; MS-FAB m/z (\% rel intensity) $411\left(\mathrm{MH}^{+}, 30\right)$; HRFAB Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 411.1590$, measured m/e 411.1572.
(2S, 5'R, 4S)-N-tert-Boc-2-(4',5'-dihydro-5'-phenyl-1',3'-oxazole-2'-yl)-4-diphenylphosphinothioyl-proline (The phosphine sulfide of 22).

(2S, 2'R, 4S)-N-tert-Boc-2-(4',5'-dihydro-5'-phenyl-1',3'-oxazole-2'-yl)-4-diphenylphosphinothioyl-proline (XI) was prepared by the procedure described for 12, using (2S, 2'R, 4R)-N-tert-Boc-2-(4',5'-dihydro-5'-phenyl-1',3'-oxazole-2'-yl)-4-(methylsulfonyl)oxyl-proline (VII), and was obtained in 35% yield as a white solid: $\mathrm{R}_{\mathrm{f}}=$ 0.25 (EtOAc/n-hexanes: 1/1); mp $85-87{ }^{\circ} \mathrm{C}$; The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.45(\mathrm{~m}$, $6 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.20\left(\mathrm{dd}, J_{\mathrm{HH}}=9.0\right.$ and $\left.9.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.62\left(\mathrm{dd}, J_{\mathrm{HH}}=8.1\right.$ and $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~m} .2 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 1.47$ ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8,153.4,141.9,131.8\left(\mathrm{~d}, J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right.$), $131.0\left(\mathrm{~d}, J_{\mathrm{CP}}=10.0 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d}, J_{\mathrm{CP}}=12.1 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, J_{\mathrm{CP}}=7.0 \mathrm{~Hz}\right), 127.5,126.7$, $126.4,80.3,75.0,69.4,54.3\left(\mathrm{~d}, J_{\mathrm{CP}}=145.2 \mathrm{~Hz}\right), 47.3,37.6\left(\mathrm{~d}, J_{\mathrm{CP}}=59.6 \mathrm{~Hz}\right), 31.9(\mathrm{~d}$, $J_{\mathrm{CP}}=47.6 \mathrm{~Hz}$), 28.2; ${ }^{31} \mathrm{P}\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 44.3$ (major), 44.1 (minor); IR (film) 3019.4, 2980.8, 1695.3, 1405.1, 1216.1, 1160.1, $756.1,668.3 \mathrm{~cm}^{-1} ;$ MS-FAB m/z (\% rel intensity) 533 ($\mathrm{MH}^{+}, 100$), 433 (30), 315 (25), 259 (27), 219 (30), 154 (25); HRFAB Calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 533.2028$, measured m/e 533.2032.
(2S, 2'S, 4S)-N-tert-Boc-2-[[N-[(2'-hydroxymethyl-2'-methoxycarbonyl)methyl]-1'-amino]-carbonyl]-4-diphenylphosphinothioyl-proline (VI)

A mixture of (2S, 4S)-N-Boc-2-carboxyl-4-diphenylphosphinothioyl-proline $(0.45 \mathrm{~g}, 1.04 \mathrm{mmol}), \operatorname{EDC}(0.4 \mathrm{~g}, 2.1 \mathrm{mmol}), \operatorname{HOBt}(0.28 \mathrm{~g}, 2.1 \mathrm{mmol})$ was stirred in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ for 5 min . In a separated flask, L-Serine methyl ester hydrochloride ($0.24 \mathrm{~g}, 1.5 \mathrm{mmol}$) and $\mathrm{Et} 3 \mathrm{~N}(0.28 \mathrm{~mL}, 0.2 \mathrm{~mol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were
stirred for 10 min after which the mixture was added to the active ester. The resulting clear solution was warmed to room temperature and stirred for 1 day. After evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the residue was dissolved in $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}(4 / 1, \mathrm{v} / \mathrm{v})$. The organic layer was washed with 1 N HCl (aq.), saturated NaHCO_{3} (aq.), $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation leaving a residue that was subjected to column chromatography (eluant: EtOAc / n-hexanes $(90 / 10, \mathrm{v} / \mathrm{v})$ to yield $0.53 \mathrm{~g}(96 \%)$ of VI as a white foamy solid: The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.81(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 6 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.94(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 2.55(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8171.0,170.4,154.1$, $131.9,131.7,131.6,131.1\left(\mathrm{~d}, J_{\mathrm{CP}}=10.1 \mathrm{~Hz}\right), 130.0\left(\mathrm{~d}, J_{\mathrm{CP}}=10.1 \mathrm{~Hz}\right), 130.5,128.8(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 81.3,62.6,61.2,54.6,52.5,47.7,37.5,30.7$, 28.1; ${ }^{31} \mathrm{P}\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 46.6,45.7$ and 44.8; IR (film) 3414.8, 3019.7, 2980.5, 1745.3, 1678.6, 1518.8, 1413.5, 1438.1, 1392.6, 1217.9, 1162.2, 1102.8, 1050.5, 928.9, 771.7, 668.9; MS-FAB m/z (\% rel intensity) 553 (MH^{+}, 45), 433 (100); HRFAB Calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PS}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 533.1875$, Found 533.1879.

(2S, 5'R, 4S)-N-tert-Boc-2-(4',5'-dihydro-5'-methoxylcarbonyl-1',3'-oxazole-2'-yl)-4-diphenylphosphinothioyl-proline (The phosphine sulfide of 23).

To a solution of (2S, 2'S, 4S)-N-tert-Boc-2-[[N-[(2'-hydroxymethyl-2'-methoxycarbonyl)methyl]-1'-amino]-carbonyl]-4-diphenylphosphinothioyl-proline (VI) $(0.63 \mathrm{~g}, 1.2 \mathrm{mmol})$ in 15 mL of THF, Burgess reagent $(0.37 \mathrm{~g}, 1.5 \mathrm{mmol})$ in 10 mL of

THF was slowly added at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and stirring was continued for 1 h . After which the solution was heated to reflux for 3 h . After cooling down the THF solvent was removed and the residue was subjected to column chromatograph (eluent: EtOAc/Hexanes/Et3N, 66/33/1) to afford $0.57 \mathrm{~g}(93 \%)$ as a white solid: $\mathrm{mp} 80^{\circ} \mathrm{C}$ (gel); The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.43(\mathrm{~m}$, $6 \mathrm{H})$, 4.75-4.68 (m, 1H), 4.61-4.45 (m, 3H), 3.77 (s, 3H), $3.76(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H})$, 2.65-2.45 (m, 1H), 2.27-2.19 (m, 1H), $1.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9$, $169.7,153.5,140.0\left(\mathrm{~d}, J_{\mathrm{CP}}=10.1 \mathrm{~Hz}\right), 131.8,131.7,128.7\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 80.5,69.4$, 68.0, $54.8\left(\mathrm{~d}, J_{\mathrm{CP}}=11.5 \mathrm{~Hz}\right), 52.4,47.3\left(\mathrm{~d}, J_{\mathrm{CP}}=6.0 \mathrm{~Hz}\right), 37.5\left(\mathrm{~d}, J_{\mathrm{CP}}=60.1 \mathrm{~Hz}\right), 32.3$, 28.0; ${ }^{31} \mathrm{P}\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 44.3$; IR (film) 3054.4, 2987.1, 1742.5, 1696.3, 1551.9, 1421.9, 1265.0, 1159.3, 896.0, 737.0, 703.7; MS-FAB m/z (\% rel intensity) $515\left(\mathrm{MH}^{+}\right.$, 100), 415 (53), 219 (65); HRFAB Calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PS}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 515.1769$, Found 515.1767.

(2S, 4R)-N-tert-Boc-2-(4',5'-dihydro-5',5'-dimethyl-1',3'-oxazole-2'-yl)-4-hydroxylproline (VII) ${ }^{1}$.

The oxazoline ring was formed by the procedure reported by Vorbriiggen, and Krolikiewicz (Tetrahedron Lett. 1981, 45, 4471). N-t-Boc-4-hydroxylproline (10 g, 0.043 mol), 2-amino-2-methyl-1-propanol ($6.2 \mathrm{~mL}, 0.065 \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}(18.1 \mathrm{~mL}, 0.13 \mathrm{~mol})$ and CCl_{4} ($12.5 \mathrm{~mL}, 0.13 \mathrm{~mol}$) were mixed together in $\mathrm{CH}_{3} \mathrm{CN} /$ pyridine ($150 \mathrm{~mL}, 1: 1$). After
cooling the solution to $0{ }^{\circ} \mathrm{C}, \mathrm{Ph}_{3} \mathrm{P}(34 \mathrm{~g}, 0.13 \mathrm{~mol})$ in $\mathrm{CH}_{3} \mathrm{CN} / \operatorname{pyridine}(150 \mathrm{~mL}, 1: 1)$ was added through an addition funnel. The cooling bath was removed, and the mixture was allowed to stir at room temperature for 24 h . After removal of the precipitate, by filtration, the filtrate was evaporated and the residue was dissolved in EtOAc. The organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The EtOAc was removed in vacuo to yield a white solid. The desired product was purified by silica gel chromatography, first using EtOAc to removed the PPH_{3} and $\mathrm{PH}_{3} \mathrm{P}(\mathrm{O})$, than using gradient eluant ($1-4 \% \mathrm{MeOH} / \mathrm{EtOAc}$) to gave the product ($10.8 \mathrm{~g}, 88 \%$) as a white semi-solid: The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18$ and $6.47(2 \mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.44(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=8.7$ and 7.5 Hz , $1 \mathrm{H}), 3.95(\mathrm{dd}, J=8.7$ and $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.61-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.45$ and $1.44(2 \mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,155.5,80.7,80.1,79.3$, 66.9, 59.5, 55.6, 39.8, 37.8, 28.2, 27.9; IR (film) 3405.1, 2973.1, 2935.5, 1700.0, 1684.7, 1457.1, 1419.5, 1216.1, 1047.3, $758.0,668.3 \mathrm{~cm}^{-1}$; MS-FAB m/z (\% rel intensity) 285 ($\mathrm{MH}^{+}, 100$), 229 (73); HRFAB Calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e}$ 285.1814, measured m/e 285.1815.

(2S, 4R)-N-tert-Boc-2-(4',5'-dihydro-5',5'-dimethyl-1',3'-oxazole-2'-yl)-4-(methyl-

 sulfonyl)oxyl-proline (VIII).

To a solution of ($2 \mathrm{~S}, 4 \mathrm{R}$)-N-tert-Boc-2-(4',5'-dihydro-5',5'-dimethyl-1',3'-oxazole-2'-yl)-4-hydroxyl-proline (VII) ($10.50 \mathrm{~g}, 0.037 \mathrm{~mol}$) in 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{Et}_{3} \mathrm{~N}(15.40 \mathrm{~mL}, 0.11 \mathrm{~mol})$, followed by addition of $\mathrm{MsCl}(4.30 \mathrm{~mL}, 0.055 \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$.

The reaction was stirred for 2 h . After which the solvent was removed under vacuo to yield a residue that was then subjected to chromatography using $1 \% \mathrm{Et}_{3} \mathrm{~N} / \mathrm{EtOAc}$, affording the desired product ($8.2 \mathrm{~g}, 60 \%$) as a brownish vicious oil: The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.30(\mathrm{~m}, 1 \mathrm{H})$, $4.58(\mathrm{dd}, J=6.1$ and $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-$ $3.71(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$, $1.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.9,153.5,80.5,79.3,77.7,67.2,52.9$, 51.9, 38.6, 38.0, 28.2, 28.0; IR (film) 3020.4, 2977.0, 1597.3, 1400.0, 1363.6, 1216.1, 1173.6, $970.1,906.5,765.7,667.3 \mathrm{~cm}^{-1}$; MS-FAB m/z (\% rel intensity) $363\left(\mathrm{MH}^{+}, 75\right)$, 307 (100); HRFAB Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 363.1590$, measured m/e 363.1670; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 49.71$; H, 7.23; Found C, 49.88; H, 6.97.
(2S, 4S)-N-tert-Boc-2-(4',5'-dihydro-5',5'-dimethyl-1',3'-oxazole-2'-yl)-4-diphenylphosphinothioyl-proline (Phosphine sulfide of 24).

(2S,
4S)-N-tert-Boc-2-(4',5'-dihydro-5',5'-dimethyl-1',3'-oxazole-2'-yl)-4-diphenylphosphinothioyl-proline (24) was prepared by the procedure described for 15, using (2S, 4R)-N-tert-Boc-2-(4',5'-dihydro-5',5'-dimethyl-1',3'-oxazole-2'-yl)-4-(methylsulfonyl)-oxyl-proline (VIII), and was obtained in 25% yield as a white solid after recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - n-hexanes: $\mathrm{Rf}_{\mathrm{f}}=0.2(\mathrm{EtOAc} / n$-hexanes: $3 / 2$); $\mathrm{mp}=$ $89-91{ }^{\circ} \mathrm{C}$; The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.94-7.81(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 6 \mathrm{H}), 4.50(\mathrm{dd}, J \mathrm{HH}=8.3$ and 8.3 Hz ,
$1 \mathrm{H}), 4.02(\mathrm{~d}, \mathrm{JHH}=8.1,1 \mathrm{H}), 3.91(\mathrm{~d}, \mathrm{JHH}=8.1,1 \mathrm{H}), 3.70(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 2.55$ $(\mathrm{m}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl3) $\delta 163.5,153.5,131.8(\mathrm{~d}, ~ J \mathrm{CP}=3.0 \mathrm{~Hz}), 131.1(\mathrm{~d}, J \mathrm{CP}=10.1 \mathrm{~Hz}), 128.8(\mathrm{~d}, ~ J С Р=$ $12.1 \mathrm{~Hz}), 128.5(\mathrm{~d}, ~ J \mathrm{CP}=27.5 \mathrm{~Hz}), 80.3,79.4,67.1,55.0(\mathrm{~d}, J \mathrm{CP}=11.1 \mathrm{~Hz}), 47.4(\mathrm{~d}, J \mathrm{CP}$ $=6.1 \mathrm{~Hz}), 37.6(\mathrm{~d}, J \mathrm{CP}=60.0 \mathrm{~Hz}), 33.2,28.3,28.1 ;{ }^{31} \mathrm{P}(120 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 44.1$; IR (film) 3019.4, 2977.0, 1695.3, 1404.1, 1216.1, 1160.1, $758.0,668.3 \mathrm{~cm}^{-1}$; MS-FAB m/z (\% rel intensity) $485\left(\mathrm{MH}^{+}, 100\right), 368$ (48), 267 (15); HRFAB Calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}$ $\left(\mathrm{M}^{+}\right) \mathrm{m} / \mathrm{e} 484.1949$, measured m/e 484.1949.

Sample procedure for Raney nickel reduction.

(2S, 5'S, 4S)-N-tert-Boc-2-(4',5'-dihydro-5'-isopropyl-1',3'-oxazole-2'-yl)-4-diphenylphosphino-proline (18).

Phosphine sulfide 15 ($50 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added to Raney nickel (0.5 g), in $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL})$, that had been washed with methanol (three times), ether (three times), and degassed $\mathrm{CH}_{3} \mathrm{CN}$ (three times). The reaction mixture was stirred at room temperature for 8 h , by which time the ${ }^{31} \mathrm{P}$ NMR spectrum indicated the complete reduction of the phosphine sulfide to the phosphine. The Raney nickel was then filtrated through a syringe filter. Evaporation of solvent afforded $40 \mathrm{mg}(86 \%)$ of $\mathbf{1 8}$ as a white solid that was ready to use for catalysis: The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.20(\mathrm{~m}, 10 \mathrm{H}), 4.39(\mathrm{dd}, \mathrm{J}=7.8$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ $(\mathrm{m}, 1 \mathrm{H}), 3.94-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 1.92$ $(\mathrm{m}, 1 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.9,153.6,133.33\left(J_{\mathrm{CP}}=11.6 \mathrm{~Hz}\right), 133.0\left(J_{\mathrm{CP}}=19.1\right.$ $\mathrm{Hz}), 129.1,128.6\left(J_{\mathrm{CP}}=6.8 \mathrm{~Hz}\right), 79.9,71.9,70.2,55.64\left(\mathrm{~d}, J_{\mathrm{CP}}=8.0 \mathrm{~Hz}\right), 50.7\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=28.0 \mathrm{~Hz}), 36.3\left(\mathrm{~d}, J_{\mathrm{CP}}=20.0 \mathrm{~Hz}\right), 35.2\left(\mathrm{~d}, J_{\mathrm{CP}}=9.0 \mathrm{~Hz}\right), 32.5,28.3,18.6,17.9 ;{ }^{31} \mathrm{P}$ ($120 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-9.24$ (major) and -10.0 (minor); MS-FAB m/z (\% rel intensity) 467 $\left(\mathrm{MH}^{+}, 100\right), 411$ (30), 254 (37), 185 (50); HRFAB Calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e}$ 467.2463, measured m/e 467.2471.

(2S, 4S)-2-carboxyl-4-diphenylphosphinothioyl-proline hydrochloride (25)

A suspension of 50 mL of $3 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}$ containing $1.1 \mathrm{~g}(2.20 \mathrm{mmol})$ of ($\left.2 \mathrm{~S}, 2 ' \mathrm{~S}, 4 \mathrm{~S}\right)-\mathrm{N}$ -tert-Boc-2-(4',5'-dihydro-5'-isopropyl-1',3'-oxazole-2'-yl)-4-diphenylphosphinothioylproline (15) was heated to reflux. After all materials dissolved in solution, refluxing was continued for another 2 h . The reaction was cooled down to room temperature and stored at $-20^{\circ} \mathrm{C}$ overnight and the resulting white precipitate was collected by filtration.

Recrystallization from $\mathrm{H}_{2} \mathrm{O}$ gave a $0.60 \mathrm{~g}(75 \%)$ of $\mathbf{3 5}$ as needle crystals: mp 133-136 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+2$ drops of DMSO- d_{6}) $\delta 8.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), 7.96-7.84 (m, $4 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 6 \mathrm{H}), 5.43(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.64\left(\mathrm{dd}, \mathrm{J}_{\mathrm{HH}}=8.4\right.$ and $\left.9.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.06(\mathrm{~m}$, $1 \mathrm{H}), 3.58(\mathrm{~m}, 2 \mathrm{H}), 5.44(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}+2$ drops of DMSO- d_{6}) δ $169.6,131.96\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right), 131.1,130.9,130.8,129.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=10.1 \mathrm{~Hz}\right), 128.8(\mathrm{~d}$, $\left.\mathrm{J}_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 59.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=10.0 \mathrm{~Hz}\right), 46.7,37.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=\right.$ $79.3 \mathrm{~Hz}), 29.5 ;{ }^{31} \mathrm{P}\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}+2\right.$ drops of DMSO- $\left.d_{6}\right) \delta 45.5$;

MS-FAB Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{PS} \mathrm{m} / \mathrm{z}$ (\% rel intensity) 332 ($\mathrm{MH}^{+}, 100$); HRFAB Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{PS}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 332.0874$, measured 322.0872.

(2S, 4S)-N-Fmoc-2-carboxyl-4-diphenylphosphinothioyl-proline (X)

To a solution of $0.16 \mathrm{~g}(0.436 \mathrm{mmol})$ of $\mathbf{2 5}$ in 10 mL of acetone was added $0.19 \mathrm{~g}(2.26$ mmol) of NaHCO_{3} in 5 mL of $\mathrm{H}_{2} \mathrm{O}$, followed by addition of $\mathrm{FMOC}-\mathrm{OSu}(0.183 \mathrm{~g}, 0.54$ mmol), and the reaction mixture was allowed to stir overnight. Evaporation of acetone and the aqueous residue was acidified with 0.5 N of HCl to $\mathrm{pH}=3-4$, and was extracted with ethyl acetate (3 X 15 mL). The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give a white foamy solid. The crude product was purified by column chromatography, first using EtOAc / hexanes (1/1, v/v) to remove the excess FMOC-OSu, then using EtOAc/ hexanes/HOAC (60/40/1, v/v/v) to collect 0.26 g (100\%) of \mathbf{X} as a white solid: mp $118{ }^{\circ} \mathrm{C}$ (shrink), $121^{\circ} \mathrm{C}$ (gel); The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.91-7.79 (m, 4H), 7.69-7.63 (m, 2H), 7.58-7.46 (m, 8H), 7.37-7.15 (m, 4H), 4.52-4.30 $(\mathrm{m}, 2 \mathrm{H}), 4.27-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3,175.4,154.8,154.1,143.8,143.5,143.4,141.1$, $132.0,131.1\left(\mathrm{~d}, J_{\mathrm{CP}}=10.1 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, J_{\mathrm{CP}}=12.5 \mathrm{~Hz}\right), 127.6,127.0\left(\mathrm{~d}, J_{\mathrm{CP}}=7.6 \mathrm{~Hz}\right)$, $124.88\left(\mathrm{~d}, J_{\mathrm{CP}}=27.1 \mathrm{~Hz}\right), 124.85\left(\mathrm{~d}, J_{\mathrm{CP}}=7.0 \mathrm{~Hz}\right), 119.8,67.8,67.6,59.1\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $10.0 \mathrm{~Hz}), 58.4\left(\mathrm{~d}, J_{\mathrm{CP}}=10.0 \mathrm{~Hz}\right), 38.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=61.1 \mathrm{~Hz}\right), 38.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=59.1 \mathrm{~Hz}\right), 31.7$, 30.4; ${ }^{31} \mathrm{P}\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 43.87$ and $43.77 ;{ }^{31} \mathrm{P}\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 43.87$ and 43.77; IR (film) 3019.6, 1704.8, 1522.5, 1475.1, 1423.0, 1214.9, 1103.4, 1037.8, 924.8, 768.0, 669.2; MS-FAB m/z (\% rel intensity) 554 ($\mathrm{MH}^{+}, 12$), 292 (78), 266 (100); HRFAB Calcd for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{PS}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 544.1572$, measured 544.1564.

(2S, 2'S, 4S)-N-Fmoc-2-[[N-[(2'-hydroxymethyl-2'-isopropyl)methyl]-1'-amino]-

 carbonyl]-4-diphenylphosphinothioyl-proline (XI).

A mixture of (2S, 4S)-N-Fmoc-2-carboxyl-4-diphenylphosphinothioyl-proline (X) $(0.70 \mathrm{~g}, 1.3 \mathrm{mmol}), \mathrm{EDC}(0.50 \mathrm{~g}, 2.6 \mathrm{mmol}), \mathrm{HOBt}(0.35 \mathrm{~g}, 2.6 \mathrm{mmol})$ was stirred in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ for 5 min . To this solution (S)-valinol ($0.20 \mathrm{~g}, 2.0 \mathrm{mmol}$) was added. The reaction mixture was warmed to room temperature and stirred for 1 day. After evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the residue was dissolved in $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}(4 / 1, v / v)$. The organic layer was washed with 1 N HCl (aq.), saturated NaHCO_{3} (aq.), $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation leaving a residue that was subjected to column chromatography (eluant: EtOAc) to yield $0.78 \mathrm{~g}(93 \%)$ as a white solid: mp 105-107 ${ }^{\circ} \mathrm{C}$; The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.24(\mathrm{~m}, 18 \mathrm{H}), 6.22(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.56-4.28 (m, 3H), $4.17(\mathrm{~m}, 6 \mathrm{H}), 2.63-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,155.4,143.5,141.2$, 132.0, 132.1, 131.1, 130.9, 128.9 (d, $\left.J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 127.0,124.9,120.0,119.9,68.1$, $63.3,62.0,57.3,48.1,47.0,37.7\left(\mathrm{~d}, J_{\mathrm{CP}}=59.1 \mathrm{~Hz}\right), 31.1,28.9,19.5,19.0 ;{ }^{31} \mathrm{P}(120 \mathrm{MHz}$, CDCl_{3}) $\delta 44.8$; IR (film) 3054.4, 2986.9, 1688.6, 1517.7, 1421.7, 1267.5, 1106.4, 896.0, 730.5; MS-FAB m/z (\% rel intensity) 639 (MH ${ }^{+}$, 30), 179 (100); HRFAB Calcd for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{PS}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e}$ 639.2446, Found 639.2443.

(2S, 5'R, 4S)-N-Fmoc-2-(4',5'-dihydro-5'-isopropyl-1', 3'-oxazole-2'-yl)-4-

 diphenylphosphinothioyl-proline sulfide (26).
was prepared by the procedure described above for $\mathbf{1 5}$, using XI, in 86% yield as a white solid: mp $70{ }^{\circ} \mathrm{C}$ (gel); The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.16(\mathrm{~m}, 18 \mathrm{H}), 4.91-3.61(\mathrm{~m}, 8 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 2.57$ $(\mathrm{m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~m}, 1 \mathrm{H}), 0.90-0.79(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.7,165.3,154.2,153.9,143.9,143.8,143.6,143.4,141.0,131.8$, 131.7, 131.0, 130.8, $128.7\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 127.5,126.8,125.0,124.8,119.7 ;{ }^{31} \mathrm{P}(120$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 44.3$; IR (film) 3054.4, 2986.9, 1705.6, 1421.7, 1353.8, 1264.6, 1165.8, 1104.3, 896.1, 747.3; MS-FAB m/z (\% rel intensity) 621 ($\mathrm{MH}^{+}, 100$), 403 (30); HRFAB Calcd for $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 621.2341$, Found 621.2337.
(2S, 4S)-N-Cbz-2-carboxyl-4-diphenylphosphinothioyl-proline (XII).

To a solution of $0.60 \mathrm{~g}(1.64 \mathrm{mmol})$ of $\mathbf{2 5} \mathrm{in} 20 \mathrm{~mL}$ of acetone was added 0.69 g (8.18 mmol) of NaHCO_{3} in 10 mL of $\mathrm{H}_{2} \mathrm{O}$, followed by addition of benzyl chloroformate $(0.31 \mathrm{~g}, 1.80 \mathrm{mmol})$, and the reaction mixture was allowed to stir overnight. Evaporation of acetone and the aqueous residue was acidified with 0.5 N of HCl to $\mathrm{pH}=3-4$, and was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give a white foamy solid. The crude product was purified by column chromatography using EtOAc/ hexanes/HOAC (50/50/1, $\mathrm{v} / \mathrm{v} / \mathrm{v})$ to collect $0.74 \mathrm{~g}(97 \%)$ of $\mathbf{2 5}$ as a white solid: $\mathrm{mp} 85^{\circ} \mathrm{C}$ (gel); The NMR spectra
are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.90(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 7.88-7.81(\mathrm{~m}, 4 \mathrm{H}), 7.46(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.14(\mathrm{~m}, 5 \mathrm{H}), 5.10\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $4.39(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.5,175.5,154.8,154.0,135.9,131.9,131.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=12.5 \mathrm{~Hz}\right)$, $128.80\left(\mathrm{~d}, J_{\mathrm{CP}}=12.5 \mathrm{~Hz}\right), 128.0,127.9,127.7,125.2,67.5,67.4,59.2\left(\mathrm{~d}, J_{\mathrm{CP}}=10.1 \mathrm{~Hz}\right)$, $58.6\left(\mathrm{~d}, J_{\mathrm{CP}}=10.4 \mathrm{~Hz}\right), 47.6\left(\mathrm{~d}, J_{\mathrm{CP}}=38.6 \mathrm{~Hz}\right), 38.4\left(\mathrm{~d}, J_{\mathrm{CP}}=59.6 \mathrm{~Hz}\right), 37.9\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $59.6 \mathrm{~Hz}), 31.5,30.5 ;{ }^{31} \mathrm{P}\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 44.1$ and 43.92; IR (film) 3019.7, 3000.0, 1704.7 1525.2, 1422.5, 1216.9, 1402.4, 928.9, 771.6, 669.1; MS-FAB m/z (\% rel intensity) $466\left(\mathrm{MH}^{+}, 100\right), 422(10)$; HRFAB Calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{PS}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e}$ 466.1242, measured 422.1253. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{PS}: \mathrm{C}, 64.51 ; \mathrm{H}, 5.20$. Found C, 63.64; H. 4.91.
(2S, 2'S, 4s)-N-Cbz-2-[[N-[(2'-hydroxymethyl-2'-isopropyl)methyl]-1'-amino]-carbonyl]-4-diphenylphosphinothioyl-proline (XIII).

was prepared by the procedure described above for 15 , using ($2 \mathrm{~S}, 4 \mathrm{~S}$)-N-Cbz-2-carboxyl-4-diphenylphosphinothioyl-proline, in 90% yield as a white foam: The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.79$ (m, $4 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.33(\mathrm{~m}, 5 \mathrm{H}), 6.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=8.7$ and $8.4 \mathrm{~Hz}), 3.85-3.40(\mathrm{~m}, 6 \mathrm{H}), 2.60-2.37(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, 0.88 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,155.2,135.9,131.8$, $131.1(\mathrm{~d}, ~ J c p=12.1 \mathrm{~Hz}), 131.0(\mathrm{~d}, J \mathrm{cp}=10.6 \mathrm{~Hz}), 128.8(\mathrm{~d}, J \mathrm{cp}=12.6 \mathrm{~Hz}), 128.7(\mathrm{~d}, J \mathrm{cp}$ $=12.5 \mathrm{~Hz}), 128.5,128.2,128.1,67.6,63.1,61.9,57.0,48.3,37.7(\mathrm{~d}, ~ J c p=59.0 \mathrm{~Hz})$,
28.7, 19.5, 18.9; ${ }^{31} \mathrm{P}\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 45.4$; IR (film) 3054.5, 2987.3, 1689.3, 1422.1,
1263.0, 1183.0, 896.1, 731.8; MS-FAB m/z (\% rel intensity) 550 (M+, 75), 333 (23), 219 (22), 154 (100); HRFAB Calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{PS}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 550.2055$, Found 550.2036.
(2S, 5'R, 4S)-N-Cbz-2-(4',5'-dihydro-5'-isopropyl-1',3'-oxazole-2'-yl)-4-diphenylphosphinothioyl-proline (27).

A sample of (2S, 2'S, 4s)-N-Cbz-2-[[N-[(2'-hydroxymethyl-2'-isopropyl)methyl]-1'-amino]-carbonyl]-4-diphenylphosphinothioyl-proline (XIII) ($0.28 \mathrm{~g}, 0.51 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{3} \mathrm{~N}(20 \mathrm{~mL}, 3 / 1, \mathrm{v} / \mathrm{v})$ and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. To the solution, $\mathrm{MsCl}(0.18 \mathrm{~g}, 0.15 \mathrm{mmol})$ was slowly added. The cooling bath was removed and the mixture was stirred for 16 h resulting in a dark-brownish solution with the precipitation of ammonium salt. The solvent removed by evaporation, leaving a residue that was dissolved in EtOAc / $\mathrm{H}_{2} \mathrm{O}(4 / 1, v / v)$. The organic solution was then washed with water twice and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give a crude product that was purified by flash chromatography (eluant: EtOAc/n-hexanes/Et3N, 74/25/1) to afford $0.23 \mathrm{~g}(85 \%)$ of $\mathbf{2 7}$ as a white foam: The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.48(\mathrm{~m}, 6 \mathrm{H}), 7.30(\mathrm{~m}, 5 \mathrm{H})$, 5.26-4.95 (m, 2H), $4.62(\mathrm{dd}, J=7.8$ and $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-3.65(\mathrm{~m}, 5 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H})$, $2.54(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.57(\mathrm{~m}, 1 \mathrm{H}), 0.87-0.77(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.7,154.0,136.4,131.8,131.7,131.0,130.9,128.7\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right)$, $128.2,127.8,71.8,70.3,55.3\left(\mathrm{~d}, J_{\mathrm{CP}}=11.0 \mathrm{~Hz}\right), 55.1\left(\mathrm{~d}, J_{\mathrm{CP}}=11.0 \mathrm{~Hz}\right), 47.9,47.3,38.3$ $\left(\mathrm{d}, J_{\mathrm{CP}}=61.1 \mathrm{~Hz}\right), 37.6\left(\mathrm{~d}, J_{\mathrm{CP}}=60.2 \mathrm{~Hz}\right), 32.2,32.1,31.2,18.5,17.9 ;{ }^{31} \mathrm{P}(120 \mathrm{MHz}$, CDCl_{3}) $\delta 44.0$; IR 3054.4, 2987.1, 1705.3, 1603.7, 1551.9, 1437.0, 1421.8, 1359.3,
1262.9, 1170.4, 896.1, 743.0; MS-FAB m/z (\% rel intensity) 532 ($\mathrm{MH}^{+}, 77$), 315 (28), 154 (100); HRFAB Calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 532.1949$, Found 532.1940.

4S-N-Piv-2-carboxyl-4-diphenylphosphinothioyl-proline (XIV, mixture of two

 diastereoisomers)

To a suspension of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing $25(0.30 \mathrm{~g}, 0.82 \mathrm{mmol})$ was added Et 3 N ($0.45 \mathrm{~mL}, 3.24 \mathrm{mmol}$), and stirred for 15 min ., followed by the addition of pivaloyl chloride $(0.30 \mathrm{~mL}, 2.44 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The resulting clear solution was stirred at room temperature for 2 h . The reaction was quenched by addition of 2 N HCl and stirred for 10 minutes. The organic layer was washed with water and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of solvent gave a crude product that was purified by flash column (EtOAc/Hexanes/HOAc, 50/49/1) to give 0.31 g (91%) as a white solid (mixtures of two diastereoisomers: ratio, ca $1 / 1$): mp $82^{\circ} \mathrm{C}$ (gel); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d 9.85 (br $\mathrm{s}, 2 \mathrm{H}), 7.96-7.82(\mathrm{~m}, 8 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 12 \mathrm{H}), 4.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=8.4$ Hz and $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-3.72(\mathrm{~m}, 5 \mathrm{H}), 3.3(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~s}$, 9H), 1.19 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.6,176.9,175.4,132.09,132.05$, $131.17\left(\mathrm{~d}, J_{\mathrm{CP}}=10.1 \mathrm{~Hz}\right), 131.14\left(\mathrm{~d}, J_{\mathrm{CP}}=10.5 \mathrm{~Hz}\right), 131.0,130.8,129.1,129.0,128.9$, $128.8,62.0,62.1,60.9,49.0,48.4,40.1,39.3,39.1,38.6,38.2,27.2,27.1 ;{ }^{31} \mathrm{P}$ (120 MHz , CDCl_{3}) $\delta 48.66$ and 46.73; IR (film) 3019.7, 1731.4, 1611.6, 1531.4, 1415.6, 1352.6, 1215.5, 1103.4, 1045.3, 929.2, 765.8, 669.2; MS-FAB m/z (\% rel intensity) $416\left(\mathrm{MH}^{+}\right.$, 100), 332 (20), 279 (18), 185 (37), 154 (72); HRFAB Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{PS}\left(\mathrm{MH}^{+}\right)$ m/e 416.1449, Found 416.1444.
(2'S, 4s)-N-Piv-2-[[N-[(2'-hydroxymethyl-2'-isopropyl)methyl]-1'-amino]-carbonyl]-4-diphenylphosphinothioyl-proline (29 and 31, mixtures of two diastereoisomers)

was prepared by the procedure described above for 11, using 4S-N-Piv-2-carboxyl-4-diphenylphosphinothioyl-proline (XIV), in 90% yield as a white solid: $\mathrm{mp} 70^{\circ} \mathrm{C}$ (shrink), $80^{\circ} \mathrm{C}$ (gel); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96-7.82(\mathrm{~m}, 8 \mathrm{H}$), 7.58-7.46(m, $12 \mathrm{H}), 6.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.62$ and $4.59(\mathrm{dd}, \mathrm{J}=8.4 \mathrm{~Hz}$ and $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-3.95(\mathrm{~m}, 4 \mathrm{H}), 3.73-3.50(\mathrm{~m}, 6 \mathrm{H}), 3.33(\mathrm{~m}$, 2H), 2.71-2.56 (m, 4H), 2.32-2.40 (m, 2H), 1.89-1.80(m, 2H), 1.20 (s, 9H), 1.19 (s, 9H), 0.95-0.89 (m, 12H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8178.3, 178.1, 172.6, 171.1, 133.0, $132.07,132.04,131.9,131.87,131.27,131.25,1341.14,131.11,131.0,130.8,129.1$, $129.0,128.9,128.8,128.75,128.77,63.5\left(\mathrm{~d}, J_{\mathrm{CP}}=9.5 \mathrm{~Hz}\right), 62.5\left(\mathrm{~d}, J_{\mathrm{CP}}=10.0 \mathrm{~Hz}\right), 57.7$, $57.2,49.3\left(\mathrm{~d}, J_{\mathrm{CP}}=6.0 \mathrm{~Hz}\right), 48.1,39.7,39.1,39.0,38.3,29.0,28.9,28.0,27.4,27.3,19.6$, 19.5, 18.8, 18.6; ${ }^{31} \mathrm{P}\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 46.2$ and 43.7; IR (film) 3420.1, 3019.6, $1670.4,1603.7,1529.6,1477.8,1414.8,1351.9,1215.3,1044.4,925.9,774.9,669.2$; MS-FAB m/z (\% rel intensity) $501\left(\mathrm{MH}^{+}, 78\right), 398$ (16), 283 (25), 219 (50), 152 (100); HRFAB Calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 501.2341$, Found 501.2323. (2S, 5'R, 4S)-N-Piv-2-(4',5'-dihydro-5'-isopropyl-1',3'-oxazole-2'-yl)-4-diphenylphosphinothioyl-proline (28) and (2R, 5'R, 4S)-N-Piv-2-(4',5'-dihydro-5'-isopropyl-1',3'-oxazole-2'-yl)-4-diphenylphosphinothioyl-proline (31).

28

31
was prepared by the procedure described above for 12, using (2'S, 4S)-N-Piv-2-[[N-[(2'-hydroxymethyl-2'-isopropyl)methyl]-1'-amino]-carbonyl]-4-diphenylphosphinothioylproline (17). The crude mixture was separated and purified by column chromatograph (eluent: $\mathrm{EtOAc} / \mathrm{Et} 3 \mathrm{~N}, ~ 99 / 1$) to afford two diastereoisomers.

Compound 28 (39%): $\mathrm{Rf}_{\mathrm{f}}=0.12$ (EtOAc); mp $117^{\circ} \mathrm{C}$ (gel); The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.77$ (m, 4H), 7.53-7.41 (m, 6H), 4.81 (dd, J = 8.4 and $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.18-4.09 (m, 1H), 3.96-3.80 $(\mathrm{m}, 4 \mathrm{H}), 3.36-3.23(\mathrm{~m} ., 1 \mathrm{H}), 2.39-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.1,166.2$, $131.94\left(\mathrm{~d}, J_{\mathrm{CP}}=6.0 \mathrm{~Hz}\right), 311.90\left(\mathrm{~d}, J_{\mathrm{CP}}=6.0 \mathrm{~Hz}\right), 131.1,131.0,130.8,128.9\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $12.0 \mathrm{~Hz}), 128.8\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 71.7,70.2,56.4\left(\mathrm{~d}, J_{\mathrm{CP}}=11.0 \mathrm{~Hz}\right), 48.7\left(\mathrm{~d}, J_{\mathrm{CP}}=6.5\right.$ $\mathrm{Hz}), 39.4\left(\mathrm{~d}, J_{\mathrm{CP}}=60.2 \mathrm{~Hz}\right), 38.7,32.4,29.7,27.3,18.6,18.0 ;{ }^{31} \mathrm{P}\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 43.0; IR 3054.4, 2987.1, 1670.4, 1625.9, 1548.1, 1440.0, 1421.9, 1264.9, 896.0, 739.9, 710.0; MS-FAB m/z (\% rel intensity) 483 ($\mathrm{MH}^{+}, 100$), 265 (175), 152 (43); HRFAB Calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PS}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 483.2235$, Found 483.2233.

Compound 31 (36\%): $\mathrm{R}_{\mathrm{f}}=0.24(\mathrm{EtOAc})$; The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.81(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 6 \mathrm{H})$, $4.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.85(\mathrm{~m}, 5 \mathrm{H}), 2.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.82-1.76$ (m, 2H), $1.20(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.2,167.2,131.9\left(\mathrm{~d}, J_{\mathrm{CP}}=7.0 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{CP}}=7.0 \mathrm{~Hz}\right), 131.2$, $131.0,130.9,128.9\left(\mathrm{~d}, J_{\mathrm{CP}}=13.5 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, J_{\mathrm{CP}}=12.2 \mathrm{~Hz}\right), 71.6,70.0,56.2,47.9$,
$38.9,38.0,32.2,29.6,27.4,18.6,17.6 ;{ }^{31} \mathrm{P}\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 45.8$; IR (film) 3054.5, 2986.9, 1675.3, 1640.0, 1532.2, 1421.9, 1265.1, 896.0, 736.8, 705.1; MS-FAB m/z (\% rel intensity) $483\left(\mathrm{MH}^{+}, 100\right), 256$ (40), 219 (30), 152 (43); HRFAB Calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PS}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 483.2235$, Found 483.2231.

(2S, 4S)-N-acetyl-2-methoxycarbonyl-4-diphenylphosphinothioyl-proline (23)

To a solution of (2S, 4S)-2-methoxycarbonyl-4-diphenylphosphinothioyl-proline (25) ($0.14 \mathrm{~g}, 0.41 \mathrm{mmol})$ in 10 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $0.11 \mathrm{~mL}(1.2 \mathrm{mmol})$ of acetic anhydride at $0^{\circ} \mathrm{C}$. The reaction mixture was then stirred at room temperature for 2 hours. A small amount of ice-water was added to quench the reaction. The organic layer was washed with $1 \mathrm{~N} \mathrm{HCl}, \mathrm{NaHCO}_{3}$ (sat), brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give a residue which was subjected to column chromatography using 5% of MeOH in EtOAc to collect a 0.15 g (96\%) of white foamy solid: The NMR spectra are reported for a mixture of two rotamers (trans / cis: 3/1), ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.75$ $(\mathrm{m}, 4 \mathrm{H}), 7.51-7.38(\mathrm{~m}, 6 \mathrm{H}), 4.46-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.83(\mathrm{~m}, 1$ and $1 / 3 \mathrm{H}), 3.69$ and $3.63(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~m}, 1$ and $1 / 3 \mathrm{H}), 3.29(\mathrm{~m}, 1 / 3 \mathrm{H}), 2.64-2.29(\mathrm{~m}, 1$ and $1 / 3 \mathrm{H}), 2.17(\mathrm{~m}$, $2 / 3 \mathrm{H}$), 1.93 and $1.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,171.0,169.2,168.7$, 131.9, 131.8, 131.2, $130.8(\mathrm{~d}, ~ J c p=10.0 \mathrm{~Hz}), 130.5,130.1,128.9,128.7,128.6,59.7$, $58.9(\mathrm{~d}, ~ J c p=10.5 \mathrm{~Hz}), 52.7,52.2,48.4(\mathrm{~d}, J \mathrm{cp}=5.9 \mathrm{~Hz}), 46.9,38.6(\mathrm{~d}, J \mathrm{cp}=59.2 \mathrm{~Hz})$, 32.0, 30.0, 22.2, 21.7; ${ }^{31} \mathrm{P}\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 45.4,44.2$; IR (film) 2983.4., 1744.1, 1658.1, 1466.0, 1446.4, 1373.7, 1244.9, 1051.5, 917.5, 847.1, 738.9; MS-FAB m/z (\% rel intensity) $388\left(\mathrm{MH}^{+}, 45\right), 328(45), 218$ (100); HRFAB Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{PS}\left(\mathrm{MH}^{+}\right)$ m/e 388.1136, Found 388.1130.
(2S, 4S)-N-Acetyl-2-carboxyl-4-diphenylphosphinothioyl-proline (XV).

Lithium hydroxide monohydrate ($76 \mathrm{mg}, 1.80 \mathrm{mmol}$) was added to a stirred solution of (2S, 4S)-N-acetyl-2-methoxycarbonyl-4-diphenylphosphinothioyl-proline (26) ($0.14 \mathrm{~g}, 0.36 \mathrm{mmol})$ in 15 mL of $\mathrm{THF} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(10 / 3 / 2, \mathrm{v} / \mathrm{v} / \mathrm{v})$. After warming back to room temperature, the reaction mixture was continued to stir for 2 hours.

Evaporation of organic solvent and the aqueous residue was acidified with 0.5 N HCl to $\mathrm{pH}=$ 3-4 and extracted with diethyl ether. The ether layer was then washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give $0.13 \mathrm{~g}(97 \%)$ of product as a white solid: mp $100^{\circ} \mathrm{C}$ (shrink), $110^{\circ} \mathrm{C}$ (gel); The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.9(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.97-7.81(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.44$ $(\mathrm{m}, 6 \mathrm{H}), 4.88-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.07-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.21$ $(\mathrm{m}, 1 \mathrm{H}), 1.96$ and $1.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.4,170.8,131.8(\mathrm{~m})$, 131.3-130.8 (m), 129.0, 128.9, 128.8, 128.7, 59.4, 48.9, 47.2; ${ }^{31} \mathrm{P}\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 45.0 and 44.0, IR (film) 3054.5, 2987.1, 1736.4, 1649.9, 1605.1, 1437.2, 1421.9, 1262.9, 1103.0, 896.1, 738.4, 644.1; MS-FAB m/z (\% rel intensity) 374 (MH^{+}, 45), 185 (38); HRFAB Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{PS}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 374.0980$, Found m/e 374.0976.

(2S, 2'S, 4S)-N-Acetyl-2-[[N-[(2'-hydroxymethyl-2'-isopropyl)methyl]-1'-amino]-

 carbonyl]-4-diphenylphosphinothioyl-proline (XVI)

A mixture of (2S, 4S)-N-Acetyl-2-carboxyl-4-diphenylphosphinothioyl-proline (XV) $(0.13 \mathrm{~g}, 0.35 \mathrm{mmol}), \mathrm{EDC}(0.13 \mathrm{~g}, 0.70 \mathrm{mmol}), \mathrm{HOBt}(95 \mathrm{mg}, 0.70 \mathrm{mmol})$ was
stirred in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ for 5 min . To this solution (S) -valinol ($72 \mathrm{mg}, 0.70$ mmol) was added. The reaction mixture was warmed to room temperature and stirred for 1 day. After evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the residue was dissolved in EtOAc / $\mathrm{H}_{2} \mathrm{O}(4 / 1$, v / v). The organic layer was washed with 1 N HCl (aq.), saturated NaHCO_{3} (aq.), $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation leaving a residue that was subjected to column chromatography (eluant: $5 \% \mathrm{MeOH}$ in EtOAc) to yield $0.15 \mathrm{~g}(91 \%)$ in 90% yield as a white solid: $\mathrm{mp} 75^{\circ} \mathrm{C}$ (shrink), $85^{\circ} \mathrm{C}$ (gel); The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.94-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.43(\mathrm{~m}, 6 \mathrm{H}),[6.73(\mathrm{~d}, J=9.0 \mathrm{~Hz})$ and $6.47(\mathrm{~d}, J=8.4 \mathrm{~Hz})$, $1 \mathrm{H}], 4.41(\mathrm{dd}, J=7.2 \mathrm{~Hz}$ and $10.2 \mathrm{~Hz}, 1 \mathrm{H})$, [4.11 (m) and $3.96(\mathrm{~m}), 1 \mathrm{H}], 3.76-3.49(\mathrm{~m}$, $5 \mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}),[2.65-2.48(\mathrm{~m})$ and $2.30-2.21(\mathrm{~m}), 2 \mathrm{H}], 2.03$ and $2.00(\mathrm{~s}, 3 \mathrm{H}), 1.87-$ $1.75(\mathrm{~m}, 1 \mathrm{H}), 0.94-0.88(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8171.6,171.3,170.9$, 170.6, $132.0(\mathrm{~m}), 131.3-130.9(\mathrm{~m}), 129.0-128.8(\mathrm{~m}), 63.1,63.0,62.7,61.5(\mathrm{~d}, \mathrm{Jcp}=$ $10.5 \mathrm{~Hz}), 57.5,56.8,49.2,47.6,38.1(\mathrm{~d}, J \mathrm{cp}=59.6 \mathrm{~Hz}), 33.4,30.4,28.8,22.7,21.7$, 19.5, 19.0; ${ }^{31} \mathrm{P}\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 45.6$ and 45.3; IR (film) 3019.7, 2978.0, 1651.0, $1601.8,1521.5,1601.8,1521.5,1476.7,1422.2,1211.6,1045.6,928.9,767.8,669.2$, 627.6; MS-FAB m/z (\% rel intensity) 459 (MH^{+}, 52), 328 (46), 219 (100), 110 (100); HRFAB Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 459.1871$, Found m/e 459.1872.
(2S, 5'R, 4S)-N-Acetyl-2-(4',5'-dihydro-5'-isopropyl-1',3'-oxazole-2'-yl)-4-diphenylphosphinothioyl-proline (phosphine sulfide of 30)

To a solution of (2S, 2'S, 4S)-N-Acetyl-2-[[N-[(2'-hydroxymethyl-2'-isopropyl)methyl]-1'-amino]-carbonyl]-4-diphenylphosphinothioyl-proline (XVI) (0.14 g , 0.31 mmol) in 15 mL of THF, Burgess reagent ($95 \mathrm{mg}, 0.40 \mathrm{mmol}$) was slowly added at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and stirring was
continued for 1 h . After which the solution was heated to reflux for 3 h . After cooling down the THF solvent was removed and the residue was subjected to column chromatograph (eluent: EtOAc/methanol/Et3N, 92/7/1) to afford 0.10 g (75%) as a white foam: The NMR spectra are reported for a mixture of two rotamers, ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, CDCl3) $\delta 7.89-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.39(\mathrm{~m}, 6 \mathrm{H}), 4.66-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.11(\mathrm{~m}, 1 \mathrm{H})$, 4.05-3.84 (m, 3H), 3.60-3.18 (m, 2H), 2.71-2.15 (m, 2H), 1.95 and $1.94(\mathrm{~s}, 3 \mathrm{H}), 1.71-$ $1.60(\mathrm{~m}, 1 \mathrm{H}), 0.89-0.76(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) d169.6, 168.7, 165.4, 132.1-131.7 (m), 131.1-130.8 (m), 129.0-128.7 (m), 72.0, 71.7, 70.8, 70.2, 55.7 (d, $J \mathrm{cp}=11.0 \mathrm{~Hz}) 48.6,46.9,38.4(\mathrm{~d}, J \mathrm{cp}=60.1 \mathrm{~Hz}), 37.1(\mathrm{~d}, J \mathrm{cp}=59.6 \mathrm{~Hz}), 32.4,32.2$, 30.9, 22.5, 21.7, 18.6, 18.5, 18.1, 17.8; 31P (120 MHz, CDCl3) d 44.5 and 43.9; IR (film) 3054.1, 2986.7, 1650.9, 1551.1, 1436.4, 1421.9, 1265.0, 1102.1, 909.0, 947.9, 650.7;

MS-FAB m/z (\% rel intensity) 441 (MH+, 100), 328 (10), 218 (32); HRFAB Calcd for $\mathrm{C}_{2} 4 \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PS}\left(\mathrm{MH}^{+}\right) \mathrm{m} / \mathrm{e} 441.1766$, Found m/e 441.1777.

Procedure for π-ally allylation. The phosphine oxazoline ligand was mixed with $\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}$ in degassed solvent, followed by addition of the cyclic allylic acetate. To this mixture a solution containing dimethyl malonate (3 eq.), TBAF (3 eq.) and BSA (3 eq.) was added slowly through a addition funnel (30 minutes). After the reaction was completed, water was added to quench the reaction and the organic solvent was removed by evaporation. The water layer was then extracted with dimethyl ether twice and the ether solution was washed with saturated NaHCO_{3}, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of solvent gave a residue that was chromatographed by using EtOAc/nhexanes (10/90, v/v) as an eluant to afford a colorless oil.

