SUPPORTING INFORMATION

Iterative Synthesis and Characterization of Cross-

conjugated iso-Polydiacetylenes

Yuming Zhao, Katie Campbell and Rik R. Tykwinski*

Department of Chemistry, University of Alberta,

Edmonton AB T6G 2G2, CANADA

- 1. General experimental details.
- ¹H and ¹³C NMR spectra for compounds 9-16, 18,19, 20-24, 27 and 29; ¹H NMR spectra for compounds 17 and 19.
- 3. X-ray crystallographic details for **12**.
- 4. Electronic absorption spectra for:
 - a. TMS-end-capped *iso*-PDA oligomers: 13, 15, 17, and 23.
 - b. Adamantylidene substituted *iso*-PDA oligomers: 27 and 28.
 - c. The comparison of pentamers 15, 16 and 28
 - d. Compound 21 in various solvents.
 - e. Compound 15 at various concentrations.
- 5. Approximated Band-gaps (Eg) for TMS and TIPS End-capped iso-PDAs.

General experimental details. Column chromatography: *silica gel-60* (230-400 mesh) from *General Intermediates of Canada*. Thin layer chromatography (TLC): aluminum sheet coated with *silica gel* F_{254} from *Whatman*; visualization by UV light or KMnO₄ stain. Melting point: *Fisher-Johns* or *Gallenkamp* apparatus; uncorrected. UV-Vis spectra: *Pharmacia Biotech Ultrospec 300* or *Varian Cary 400* at rt; λ in nm (ϵ in L · M⁻¹ · cm⁻¹). IR spectra (cm⁻¹): *Nicolet Magna-IR 750* (neat) or *Nic-Plan IR Microscope* (solids). ¹H- and ¹³C-NMR: *Varian Gemini-300* or *-500* and *Bruker AM-300* instruments, at rt in benzene-d₆ or CDCl₃; solvent peaks (7.15 and 7.24 ppm for ¹H and 127.9 and 77.0 ppm for ¹³C) as reference. EI MS (m/z): *Kratos MS 50* instrument. ES MS (m/z): *Micromass Zabspec oaTOF* or *PE Biosystems Mariner TOF* instruments; solvent: CH₃NO₂. Elemental analyses were performed by the Microanalytical Service, Department of Chemistry-University of Alberta.

Fig. S1. ¹H NMR Spectrum of Compound **9**.

Fig. S2. ¹³C NMR Spectrum of Compound 9.

Fig. S3. ¹H NMR Spectrum of Compound **10**.

Fig. S4. ¹³C NMR Spectrum of Compound **10**.

Fig. S5. ¹H NMR Spectrum of Compound **11**.

Fig. S6. ¹³C NMR Spectrum of Compound **11**.

Fig. S7. ¹H NMR Spectrum of Compound **12**.

Fig. S8. ¹³C NMR Spectrum of Compound **12**.

Fig. S9. ¹H NMR Spectrum of Compound **13**.

Fig. S10. ¹³C NMR Spectrum of Compound **13**.

Fig. S11. ¹H NMR Spectrum of Compound **14**.

Fig. S12. ¹³C NMR Spectrum of Compound **14**.

Fig. S13. ¹H NMR Spectrum of Compound **15**.

Fig. S14. ¹³C NMR Spectrum of Compound **15**.

Fig. S15. ¹H NMR Spectrum of Compound **16**.

Fig. S16. ¹³C NMR Spectrum of Compound **16**.

Fig. S17. ¹H NMR Spectrum of Compound **17**.

Fig. S18. ¹H NMR Spectrum of Compound 18.