Supplementary Material

Synthesis of Bicyclic Ortho Esters by Epoxy Ester Rearrangements and Study of Their Ring Opening Reactions

Peter Wipf* and Diana C. Aslan
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Experimental protocols and spectral characterization for 11b, 11c, 12b, 12c, 29a, 29b, 31a, and 31b; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all new compounds.

4-(1,2-Dimethyl-1-phenethyl-propoxy)-2-methyl-butane-1,2-diol (11b). According to the procedure described for 11 a , oily $11 \mathrm{~b}(0.21 \mathrm{~g}, 72 \%)$ was obtained as a $1: 1$ mixture of diastereomers from acetal $9(0.25 \mathrm{~g}, 1.0 \mathrm{mmol})$ and ${ }^{i} \operatorname{PrMgBr}\left(2 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 2.0 \mathrm{~mL}\right)$: IR (neat) 3468, 2933, 1718, 1069, $699 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.33-7.19(\mathrm{~m}, 5 \mathrm{H}), 3.88(\mathrm{bs}, 1 \mathrm{H}), 3.69-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.58(\mathrm{~m}$,
 1.72-1.63 (m, 1 H), $1.24(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.96-0.90(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 142.7$, 128.6, 128.4, $125.9,80.3,72.8,70.3,57.4,38.1,38.0,37.4,33.7,29.8,24.5,24.4,19.0,17.7,17.2 ;$ HRMS (EI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{3}\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$ 251.1654, found 251.1647.

2-Methyl-4-(1-methyl-1,3-diphenyl-propoxy)-butane-1,2-diol (11c). According to the procedure described for 11a, oily $11 \mathrm{c}(0.21 \mathrm{~g}, 63 \%)$ was obtained from acetal $9(0.25 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr}\left(3 \mathrm{M}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O}, 1.3 \mathrm{~mL}$): IR (neat) 3450, 2928, 1719, $1453 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.45-7.13$ (m, 10 H), 3.96-3.73 (m, 2 H), 3.24-3.07 (m, 3 H), $2.93(\mathrm{bs}, 1 \mathrm{H}), 2.57-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{t}, \mathrm{J}=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 144.5,142.2$, $128.3,128.2,128.2,127.0,126.0,125.7,78.7,73.0,69.1,59.3,44.3,39.8,30.3,24.7,24.5,23.5 ;$ HRMS (EI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{3}$ 329.2117, found 329.2122.

3,4-Dimethyl-1-phenyl-pentan-3-ol (12b). According to the procedure described for compound 12a, oily 12b (33 mg, 85\%) was obtained from 11b ($59 \mathrm{mg}, 0.20 \mathrm{mmol}$), pyridinium chlorochromate ($0.34 \mathrm{~g}, 1.6 \mathrm{mmol}, 8$ eq.), $4 \AA$ molecular sieves (0.30 g) and $3.6 \mathrm{~mL}(9 \mathrm{eq}$.) of 0.5 M solution of piperidinium acetate in benzene: IR (neat) 3462, 2963, 1455, $1373 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.33-$ $7.20(\mathrm{~m}, 5 \mathrm{H}), 2.75-2.68(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, \mathrm{~J}$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 142.9,128.4,125.8,74.8,41.9,37.1,30.0,23.1,17.6,17.0 ;$ HRMS (EI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{18}\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)$ 174.1409, found 174.1408.

2,4-Diphenyl-butan-2-ol (12c). According to the procedure described for compound 12a, oily 12c (36 mg, 80\%) was obtained from 11c ($66 \mathrm{mg}, 0.20 \mathrm{mmol}$), pyridinium chlorochromate ($0.34 \mathrm{~g}, 1.6$ mmol, 8 eq.), 4Å molecular sieves (0.30 g) and $3.6 \mathrm{~mL}(9 \mathrm{eq}$.) of 0.5 M solution of piperidinium acetate in benzene: IR (neat) 3448, 2930, 1495, 1446, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.7$ Hz, 2 H), 7.31-7.25 (m, 3 H), 7.18-7.13 (m, 3 H), 2.74-2.56 (m, 1 H), 2.52-2.40 (m, 1 H), 2.19-2.12 (m, 2 H), 1.80 (bs, 1 H), 1.64 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR $\delta 147.6,142.3,128.5,128.4,126.8,125.8,124.9,74.8$, 46.0, 30.6, 30.5; HRMS (EI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O} 226.1358$, found 226.1353.
(2,5,5-Trimethyl-2-phenethyl-[1,3]dioxan-4-yl)-methanol (29a). According to the procedure described for 9 , oily 29 a ($0.22 \mathrm{~g}, 84 \%$) was obtained from ortho ester 15 ($0.25 \mathrm{~g}, 1.0 \mathrm{mmol}$) and $\mathrm{CH}_{3} \mathrm{MgBr}\left(3 \mathrm{M}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O}, 1.0 \mathrm{~mL}, 3.0 \mathrm{mmol}, 3$ eq.): IR (neat) 3440, 2958, 2871, 1378, 1251, 1131, $1036 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.34-7.19(\mathrm{~m}, 5 \mathrm{H}), 3.76-3.58(\mathrm{~m}, 4 \mathrm{H}), 3.26(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{t}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{dd}, J=6.9,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.80$ (s, 3 H); ${ }^{13} \mathrm{C}$ NMR $\delta 141.9,128.6,128.3,126.0,100.3,77.8,71.7,61.9,32.9,31.4,30.7,26.8,21.7$, 18.9; HRMS (EI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{2}$ 249.1855, found 249.1839.
(5,5-Dimethyl-2-phenethyl-2-phenyl-[1,3]dioxan-4-yl)-methanol (29b). According to the procedure described for 9 , oily $\mathbf{2 9 b}(0.26 \mathrm{~g}, 79 \%$) was obtained as a $3: 1$ mixture of diastereomers from ortho ester 15 ($0.25 \mathrm{~g}, 1.0 \mathrm{mmol}$) and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr}\left(3 \mathrm{M}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O}, 1.0 \mathrm{~mL}, 3.0 \mathrm{mmol}, 3$ eq.). Major isomer: IR (neat) 3426, 2958, 1149, 1124, $1027 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.63(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.47-7.32 (m, $3 H$), $7.28-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.74-3.64(\mathrm{~m}, 3 \mathrm{H}), 3.37(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.85-2.78 (m, 1 H), 2.55-2.48 (m, 1 H), 2.44-2.35 (m, 2 H), 2.11-2.07(m, 1 H), $1.99(\mathrm{bs}, 1 \mathrm{H}), 0.97$ (s, $3 \mathrm{H}), 0.93$ (s, 3 H); ${ }^{13} \mathrm{C}$ NMR $\delta 142.5,141.3,128.7,128.4,128.3,128.1,128.0,127.3,125.6,101.3$, 78.0, 71.8, 61.9, 34.9, 32.5, 30.1, 22.6, 19.2; HRMS (EI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} 326.1882$, found 326.1875.
(2-Methyl-2-phenethyl-hexahydro-benzo[1,3]dioxin-8a-yl)-methanol (31a). According to the procedure described for 9 , oily $31 \mathrm{a}(0.17 \mathrm{~g}, 57 \%)$ was obtained from ortho ester $16(0.27 \mathrm{~g}, 1.0$ mmol) and $\mathrm{CH}_{3} \mathrm{MgBr}\left(3 \mathrm{M}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O}, 1.0 \mathrm{~mL}, 3.0 \mathrm{mmol}$, 3 eq.): IR (neat) 3399, 2933, $1040 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.33-7.17(\mathrm{~m}, 5 \mathrm{H}), 4.02(\mathrm{dd}, J=4.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=5.5,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (dd, $J=6.5,11.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.41 (dd, $J=5.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.81(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-1.31$ (m, 12 H), 1.49 (s, $3 H$); ${ }^{13} \mathrm{C}$ NMR $\delta 142.5,128.4,125.8,99.2,75.3,67.4,61.0,43.8,34.1,32.3,30.3,26.1$, 25.8, 22.8, 22.4; HRMS (EI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3} 290.1882$, found 290.1880.

3-Phenyl-propionic acid 2-oxo-cyclohexylmethyl ester (31b). According to the procedure described for 9 , 31b ($0.24 \mathrm{~g}, 68 \%$) was obtained from ortho ester $16(0.27 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr}$ (3 M solution in $\mathrm{Et}_{2} \mathrm{O}, 1.0 \mathrm{~mL}, 3.0 \mathrm{mmol}, 3$ eq.) as a colorless solid: $\mathrm{Mp} .100-101{ }^{\circ} \mathrm{C}$ (hexanes); IR (neat) 3083, 2939, 1447, $1032 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.15(\mathrm{~m}, 8 \mathrm{H}), 4.19$ (dd, $J=$ $3.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=3.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.31,3.17\left(\mathrm{AB}\right.$ of $\mathrm{ABX}, J_{A B}=11.7 \mathrm{~Hz}, J_{A X}=4.5 \mathrm{~Hz}$, $\left.J_{B X}=8.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.90(\mathrm{dt}, J=4.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dt}, J=4.5,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-1.93(\mathrm{~m}, 4 \mathrm{H})$,
1.78-1.28 (m, 8 H$){ }^{;}{ }^{3} \mathrm{C}$ NMR δ 144.8, 142.4, 128.5, 128.3, 127.8, 125.6, 99.8, 75.3, 66.7, 65.9, 62.7, 48.2, 34.1, 32.6, 30.0, 25.8, 24.3, 21.5, 15.3; HRMS (EI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{3} 226.1358$, found 226.1353.

ppm

䎏

0

25.013
(

-144.454
-142.160
$\begin{array}{r}128.300 \\ 128.227 \\ -128.159 \\ -127.039 \\ -125.965 \\ 125.699\end{array}$

59.332
44.344
39.776
30.311
$-\quad 24.677$
24.544
23.514

(

ppm

EXPND
PROCND
NAME
EXPNO

ppm

-5.30628

 \qquad Date_-
Time
INSTRUM
PROBHD
PULPROG
TD
SOLVENT
NS
DS
SWH
FIDRES
AQ
RG
DW
DE
TE
D1
P1
DE
SFO1
NUC1
PL1 8P 00.0
HI
ZHW 8000EET•00S
jasn 00.9
Jas 00000000 . $\downarrow ~$
Y 0.062
y 0.062
sesn 00.9
sasn 009'99

ZH IIL6टट
$\mathrm{ZH} \angle O G^{\circ} \angle O G \angle$
LOG' LOGL

- ∞
$\stackrel{9}{9}$
29
32768 JEI I zoads

00000 S

PROCN NAME
EXPNO Current
NAME Current Data Parameters

53.50
42.74
41.28
$-\quad 38.23$
$-\quad 35.09$
35.09
$-\quad 29.57$
26.30
\sim
25.73
21.42

PROCND
若
Current Data Parameters

