# Medicinal Chemistry

J. Med. Chem., 1998, 41(21), 4062-4079, DOI:10.1021/jm980300f

#### **Terms & Conditions**

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at <a href="http://pubs.acs.org/page/copyright/permissions.html">http://pubs.acs.org/page/copyright/permissions.html</a>



X-ray crystallographic data of 34a.

(1) Unit cell parameters and standard errors

$$a = 8.14$$
 (1) Å,  $b = 19.952$  (9) Å,  $c = 11.836$  (7) Å,  $\beta = 106.57$  (7)°,  $V = 1842$  (2) Å

(2) The formula, formula weight, and number of formula units in the unit cell  $2C_9H_8N_2O\cdot C_6H_6O_2$ , Mw = 402.45, Z = 4

(3) Measured and calculated densities

Dcalc = 1.45 g/cm<sup>3</sup>, Dmeas: not measured

(4) Space group

P21/a

(5) Data

 $\lambda = 1.54178$  Å, No. of observed = 1662, No. of measured = 3201

(6) Methods

Collection of intensity data: Diffractometer; Rigaku AFC5R, Scan type; w-2q, Scan rate; 8.0°/min

Structure solution: Direct method (SHELX 86)

Refinement: Full-matrix least-square

(7) Final R value

R = 0.057, Rw = 0.059

(8) Final difference Fourier map

maximum peak: 0.25 e/ų, minimum peak: -0.28 e/ų

(9) Structure

(10) Tables

(a) Final atomic positional parameters and B (eq) or B (iso)

| atom   | X         | y         | Z         | B(eq) or B(iso) |
|--------|-----------|-----------|-----------|-----------------|
| O(4s)  | 0.7062(5) | 0.4441(2) | 0.3522(4) | 4.5(2)          |
| O(12b) | 0.2497(5) | 0.2045(2) | 0.3985(3) | 4.3(2)          |
| O(12a) | 0.4813(6) | 0.3506(2) | 0.9182(4) | 4.7(2)          |
| N(1a)  | 0.5489(6) | 0.2364(2) | 0.7997(4) | 3.5(2)          |
| N(1b)  | 0.3161(6) | 0.1579(2) | 0.2052(4) | 3.5(2)          |
| N(4a)  | 0.6474(6) | 0.2552(2) | 0.5921(4) | 3.8(2)          |
| N(4b)  | 0.4095(6) | 0.2470(2) | 0.0489(4) | 3.8(2)          |
| C(1s)  | 0.8394(9) | 0.5221(3) | 0.5001(5) | 3.4(3)          |
| C(2b)  | 0.3583(8) | 0.1362(3) | 0.1112(5) | 3.9(3)          |
| C(2a)  | 0.5824(7) | 0.1856(3) | 0.7392(5) | 3.6(3)          |
| C(2s)  | 0.8541(9) | 0.4708(3) | 0.4247(5) | 3.4(3)          |
| C(3a)  | 0.6329(8) | 0.1964(3) | 0.6343(5) | 4.1(3)          |
| C(3b)  | 0.4045(8) | 0.1818(3) | 0.0337(5) | 4.3(3)          |
| C(3s)  | 1.0149(9) | 0.4490(3) | 0.4252(5) | 3.7(3)          |
| C(5b)  | 0.3661(7) | 0.2710(3) | 0.1450(5) | 3.1(2)          |
| C(5a)  | 0.6109(7) | 0.3098(3) | 0.6524(4) | 3.3(3)          |
| C(6b)  | 0.3686(9) | 0.3399(3) | 0.1662(6) | 4.2(3)          |
| C(6a)  | 0.6206(8) | 0.3746(3) | 0.6103(5) | 4.0(3)          |
| C(7b)  | 0.3285(8) | 0.3628(3) | 0.2635(6) | 4.4(3)          |
| C(7a)  | 0.5841(8) | 0.4277(3) | 0.6695(5) | 4.1(3)          |
| C(8b)  | 0.2872(8) | 0.3181(3) | 0.3437(5) | 3.8(3)          |
| C(8a)  | 0.5366(8) | 0.4189(3) | 0.7740(5) | 3.9(3)          |
| C(9b)  | 0.2840(7) | 0.2507(3) | 0.3255(5) | 3.4(3)          |
| C(9a)  | 0.5275(8) | 0.3562(3) | 0.8173(5) | 3.6(3)          |
| C(10b) | 0.3223(7) | 0.2250(3) | 0.2236(4) | 2.9(2)          |
| C(10a) | 0.5631(7) | 0.2994(3) | 0.7570(4) | 3.2(3)          |

| C(11b) | 0.355(2) | 0.0626(4) | 0.088(1)  | 7.1(5) |
|--------|----------|-----------|-----------|--------|
| C(11a) | 0.570(1) | 0.1151(4) | 0.7806(8) | 4.8(4) |
| H(1a)  | 0.662(6) | 0.154(2)  | 0.589(4)  | 4(1)   |
| H(1b)  | 0.447(7) | 0.160(3)  | -0.037(5) | 7(2)   |
| H(1s)  | 0.714(7) | 0.532(3)  | 0.503(4)  | 6(2)   |
| H(2b)  | 0.400(6) | 0.369(2)  | 0.115(4)  | 4(1)   |
| H(2a)  | 0.652(7) | 0.384(3)  | 0.540(4)  | 5(2)   |
| H(2s)  | 1.029(6) | 0.412(2)  | 0.373(4)  | 4(1)   |
| H(3a)  | 0.588(6) | 0.480(2)  | 0.639(4)  | 5(1)   |
| H(3b)  | 0.334(6) | 0.415(3)  | 0.278(4)  | 5(1)   |
| H(3s)  | 0.718(7) | 0.404(3)  | 0.319(5)  | 5(2)   |
| H(4b)  | 0.264(6) | 0.337(2)  | 0.415(4)  | 3(1)   |
| H(4a)  | 0.501(6) | 0.457(2)  | 0.817(4)  | 4(1)   |
| H(5b)  | 0.25(1)  | 0.040(4)  | 0.088(7)  | 13(4)  |
| H(5a)  | 0.464(8) | 0.106(3)  | 0.776(6)  | 7(2)   |
| H(6b)  | 0.36(1)  | 0.051(4)  | 0.027(6)  | 9(3)   |
| H(6a)  | 0.61(1)  | 0.079(4)  | 0.735(6)  | 12(3)  |
| H(7b)  | 0.43(1)  | 0.039(4)  | 0.142(7)  | 12(3)  |
| H(7a)  | 0.647(8) | 0.107(3)  | 0.851(6)  | 8(2)   |
| H(8b)  | 0.173(7) | 0.220(3)  | 0.447(5)  | 8(2)   |
| H(8a)  | 0.47(1)  | 0.311(3)  | 0.944(6)  | 10(2)  |

### (b) Atomic thermal parameters

| atom  | <b>U</b> 11 | U22      | U33      | U12       | U13      | U23       |
|-------|-------------|----------|----------|-----------|----------|-----------|
| O(4s) | 0.054(3)    | 0.041(3) | 0.069(3) | 0.001(2)  | 0.005(2) | 0.014(2)  |
| C(1s) | 0.044(5)    | 0.039(3) | 0.050(4) | 0.005(3)  | 0.018(3) | -0.003(3) |
| C(2s) | 0.055(5)    | 0.029(3) | 0.043(3) | -0.003(3) | 0.010(3) | 0.000(3)  |
| C(3s) | 0.061(5)    | 0.035(3) | 0.045(4) | 0.003(3)  | 0.019(3) | -0.008(3) |
| O(12b | 0.083(3)    | 0.046(2) | 0.047(2) | -0.004(2) | 0.039(2) | 0.002(2)  |

| N(1b)  | 0.054(4) | 0.038(3) | 0.041(3) | 0.006(2)  | 0.013(3) | 0.000(2)  |
|--------|----------|----------|----------|-----------|----------|-----------|
| N(4b)  | 0.059(4) | 0.047(3) | 0.043(3) | 0.003(3)  | 0.020(3) | 0.004(3)  |
| C(2b)  | 0.062(5) | 0.043(4) | 0.043(4) | 0.005(3)  | 0.012(3) | -0.003(3) |
| C(3b)  | 0.068(5) | 0.055(4) | 0.043(4) | 0.009(4)  | 0.020(4) | -0.001(3) |
| C(5b)  | 0.038(4) | 0.041(3) | 0.040(3) | 0.003(3)  | 0.012(3) | 0.001(3)  |
| C(6b)  | 0.069(5) | 0.037(4) | 0.061(4) | 0.000(3)  | 0.034(4) | 0.005(3)  |
| C(7b)  | 0.068(5) | 0.035(4) | 0.071(5) | -0.006(3) | 0.031(4) | -0.007(3) |
| C(8b)  | 0.056(5) | 0.046(4) | 0.049(4) | 0.000(3)  | 0.024(3) | -0.010(3) |
| C(9b)  | 0.044(4) | 0.043(4) | 0.043(4) | 0.002(3)  | 0.017(3) | 0.000(3)  |
| C(10b) | 0.036(4) | 0.033(3) | 0.041(3) | 0.001(3)  | 0.012(3) | 0.001(3)  |
| C(11b) | 0.16(1)  | 0.041(5) | 0.069(6) | 0.009(6)  | 0.038(7) | -0.009(5) |
| O(12a) | 0.089(4) | 0.047(3) | 0.056(3) | 0.001(3)  | 0.042(3) | -0.002(2) |
| N(1a)  | 0.052(4) | 0.041(3) | 0.041(3) | 0.001(2)  | 0.016(3) | 0.001(2)  |
| N(4a)  | 0.064(4) | 0.045(3) | 0.038(3) | -0.001(3) | 0.020(3) | -0.005(2) |
| C(2a)  | 0.054(4) | 0.038(3) | 0.048(4) | 0.001(3)  | 0.016(3) | 0.000(3)  |
| C(3a)  | 0.071(5) | 0.042(4) | 0.047(4) | 0.001(4)  | 0.024(4) | -0.008(3) |
| C(5a)  | 0.048(4) | 0.044(4) | 0.037(3) | -0.001(3) | 0.014(3) | 0.002(3)  |
| C(6a)  | 0.066(5) | 0.048(4) | 0.040(4) | -0.001(3) | 0.020(4) | 0.009(3)  |
| C(7a)  | 0.067(5) | 0.039(4) | 0.052(4) | -0.001(4) | 0.018(4) | 0.003(3)  |
| C(8a)  | 0.064(5) | 0.039(4) | 0.050(4) | 0.001(3)  | 0.024(4) | -0.002(3) |
| C(9a)  | 0.057(5) | 0.045(4) | 0.040(3) | 0.002(3)  | 0.021(3) | -0.002(3) |
| C(10a) | 0.046(4) | 0.037(3) | 0.040(3) | 0.000(3)  | 0.010(3) | 0.002(3)  |
| C(11a) | 0.083(7) | 0.036(4) | 0.068(6) | -0.005(4) | 0.029(5) | 0.002(4)  |

## (c) Bond distances

| atom | atom | distance | ADC(*) | atom | atom | distance | ADC(*) |
|------|------|----------|--------|------|------|----------|--------|
| O4s  | C2s  | 1.371(7) | 1      | C2a  | C3a  | 1.431(7) | 1      |
| O12b | C9b  | 1.346(6) | 1      | C2a  | Clla | 1.501(9) | 1      |
| O12a | C9a  | 1.355(6) | 1      | C2s  | C3s  | 1.377(8) | 1      |

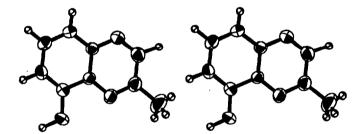
| N1a  | C2a  | 1.314(6) | 1     | C5b  | C6b  | 1.399(7) | 1 |
|------|------|----------|-------|------|------|----------|---|
| N1a  | C10a | 1.372(6) | 1     | C5b  | C10b | 1.422(7) | 1 |
| N1b  | C2b  | 1.328(6) | 1     | C5a  | C6a  | 1.395(7) | 1 |
| N1b  | C10b | 1.356(6) | 1     | C5a  | C10a | 1.415(7) | 1 |
| N4a  | C3a  | 1.293(7) | 1     | C6b  | C7b  | 1.362(8) | 1 |
| N4a  | C5a  | 1.382(6) | 1     | C6a  | C7a  | 1.350(8) | 1 |
| N4b  | C3b  | 1.312(7) | 1     | C7b  | C8b  | 1.411(8) | 1 |
| N4b  | C5b  | 1.369(6) | 1     | C7a  | C8a  | 1.408(8) | 1 |
| C1s  | C2s  | 1.385(7) | 1     | C8b  | C9b  | 1.362(7) | 1 |
| C1s  | C3s  | 1.387(8) | 76603 | C8a  | C9a  | 1.363(7) | 1 |
| C2b  | C3b  | 1.418(8) | 1     | C9b  | C10b | 1.425(7) | 1 |
| C2b  | C11b | 1.492(9) | 1     | C9a  | C10a | 1.413(7) | 1 |
|      |      |          |       |      |      |          |   |
| O4s  | H3s  | 0.90(5)  |       | C7a  | НЗа  | 1.10(5)  |   |
| O12b | H8b  | 1.01(6)  |       | C8b  | H4b  | 0.99(4)  |   |
| O12a | H8a  | 0.87(7)  |       | C8a  | H4a  | 1.00(5)  |   |
| C1s  | H1s  | 1.05(5)  |       | C11b | H5b  | 0.98(8)  |   |
| C3a  | Hla  | 1.06(5)  |       | C11b | H6b  | 0.77(7)  |   |
| C3b  | H1b  | 1.08(6)  |       | C11b | H7b  | 0.90(7)  |   |
| C3s  | H2s  | 0.99(5)  |       | C11a | H5a  | 0.86(6)  |   |
| C6b  | H2b  | 0.92(5)  |       | Clla | Нба  | 0.99(7)  |   |
| C6a  | H2a  | 0.95(5)  |       | Clla | H7a  | 0.90(6)  |   |
| C7b  | H3b  | 1.05(5)  |       |      |      |          |   |
|      |      |          |       |      |      |          |   |

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.

#### Bond angles

| atom | atom | atom | angle    | atom | atom | atom | angle    |
|------|------|------|----------|------|------|------|----------|
| C2a  | Nla  | C10a | 117.0(5) | N4a  | C5a  | C10a | 119.3(5) |

| C2b | N1b  | C10b | 116.8(5) | C6a  | C5a  | C10a | 120.5(5) |
|-----|------|------|----------|------|------|------|----------|
| C3a | N4a  | C5a  | 117.4(5) | C5b  | C6b  | C7b  | 119.2(6) |
| C3b | N4b  | C5b  | 117.0(5) | C5a  | Сба  | C7a  | 119.9(6) |
| C2s | C1s  | C3s  | 120.2(6) | C6b  | C7b  | C8b  | 121.2(6) |
| N1b | C2b  | C3b  | 120.8(5) | C6a  | C7a  | C8a  | 120.9(6) |
| N1b | C2b  | C11b | 118.5(7) | C7b  | C8b  | C9b  | 121.0(6) |
| C3b | C2b  | C11b | 120.7(7) | C7a  | C8a  | C9a  | 120.2(6) |
| N1a | C2a  | C3a  | 120.8(5) | O12b | C9b  | C8b  | 124.9(5) |
| N1a | C2a  | C11a | 120.1(6) | O12b | C9b  | C10b | 115.7(5) |
| C3a | C2a  | Clla | 119.1(6) | C8b  | C9b  | C10b | 119.4(5) |
| O4s | C2s  | C1s  | 117.9(6) | O12a | C9a  | C8a  | 117.8(5) |
| O4s | C2s  | C3s  | 123.0(5) | O12a | C9a  | C10a | 121.9(5) |
| C1s | C2s  | C3s  | 119.1(6) | C8a  | C9a  | C10a | 120.3(5) |
| N4a | C3a  | C2a  | 123.5(6) | N1b  | C10b | C5b  | 122.5(5) |
| N4b | C3b  | C2b  | 123.5(6) | Nlb  | C10b | C9b  | 118.9(5) |
| C1s | C3s  | C2s  | 120.7(6) | C5b  | C10b | C9b  | 118.6(5) |
| N4b | C5b  | C6b  | 119.9(5) | Nla  | C10a | C5a  | 119.8(5) |
| C6b | C5b  | C10b | 120.7(5) | C5a  | C10a | C9a  | 118.1(5) |
| N4a | C5a  | C6a  | 120.3(5) | -    |      |      |          |
| C2s | O4s  | H3s  | 115(4)   | C8a  | C7a  | Н3а  | 117(3)   |
| C9b | O12b | H8b  | 116(3)   | C7b  | C8b  | H4b  | 118(3)   |
| C9a | O12a | H8a  | 119(5)   | C9b  | C8b  | H4b  | 121(3)   |
| C2s | C1s  | H1s  | 115(3)   | C7a  | C8a  | H4a  | 122(3)   |
| C3s | C1s  | H1s  | 124(3)   | C9a  | C8a  | H4a  | 117(3)   |
| N4a | C3a  | Hla  | 118(3)   | C2b  | C11b | H5b  | 116(6)   |
| C2a | C3a  | Hla  | 119(3)   | C2b  | C11b | H6b  | 118(6)   |
| N4b | C3b  | H1b  | 120(3)   | C2b  | C11b | H7b  | 115(6)   |
| C2b | C3b  | H1b  | 116(3)   | H5b  | C11b | H6b  | 96(7)    |
| C1s | C3s  | H2s  | 118(3)   | H5b  | C11b | H7b  | 102(7)   |
|     |      |      |          |      |      |      |          |


| C2s | C3s | H2s | 121(3) | H6b | C11b | H7b | 108(8) |
|-----|-----|-----|--------|-----|------|-----|--------|
| C5b | C6b | H2b | 119(3) | C2a | Clla | H5a | 109(5) |
| C7b | C6b | H2b | 122(3) | C2a | Clla | Нба | 117(4) |
| C5a | C6a | H2a | 123(3) | C2a | Clla | H7a | 112(4) |
| C7a | Сба | H2a | 117(3) | H5a | Clla | Нба | 105(6) |
| C6b | C7b | H3b | 118(3) | H5a | Clla | H7a | 116(6) |
| C8b | C7b | H3b | 121(3) | Нба | C11a | H7a | 98(6)  |
| Сба | C7a | НЗа | 122(3) |     |      |     |        |

Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.

© 1998 American Chemical Society, J. Med. Chem., Abe jm980300f Supporting Info Page 8

The stereo pair of 34a (1)

The stereo pair of 34a (2)



Physical Data of 12–14a,b, 15b, 16b–e, 17b–e, 18b–e, 20b,d,e, 21a–d,f, 22, 23, 32, 37, 38, 42b, 43b, 44a,b, 45b, 46a,b, 47b, 48a–c, 49b,c, 50c, 51, 52a–j,l,m, 53, 54b–d, 55–61, 62b,d–67a,b, 68b–79, 80b–83b,c,d, 84–87a,c, 88a,c–93b,c, 94–99, 103, and 106.

3-Benzyloxy-2-nitrobenzoic Acid (12). Using a similar procedure to that used

for 83a, the title compound was obtained in 91.2% yield from 11 as colorless crystals after crystallization from isopropyl ether: mp 201–202 °C; ¹H NMR (DMSO-d<sub>6</sub>) δ 5.30 (2H, s), 7.29–7.47 (5H, m), 7.51–7.70 (3H, m). Anal. (C<sub>14</sub>H<sub>11</sub>NO<sub>5</sub>) C, H, N. *tert*-Butyl 3-Benzyloxy-2-nitrophenylcarbamate (13). Using a similar procedure to that used for 6, the title compound was obtained in 53.8% yield from 12, DPPA, and *tert*-BuOH as pale yellow crystals after recrystallization from AcOEt: mp

7.29–7.45 (6H, m), 7.59 (1H, br s), 7.79 (1H, d, J = 7.5 Hz); MS (FAB) m/z 345 (M + 1). Anal.  $(C_{18}H_{20}N_2O_5)$  C, H, N.

143–144 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.51 (9H, s), 5.18 (2H, s), 6.76 (1H, d, J = 7.5 Hz),

tert-Butyl 3-Benzyloxy-N-methyl-2-nitrophenylcarbamate (14a). Following a procedure similar to method A, the title compound was obtained in 92.9% yield from 13 and methyl iodide as pale yellow crystals after recrystallization from hexane: mp 113–115 °C; ¹H NMR (CDCl<sub>3</sub>)  $\delta$  1.38 (9H, br s), 3.19 (3H, s), 5.19 (2H, s), 6.87 (1H, br d, J = 7.5 Hz), 7.00 (1H, d, J = 7.5 Hz), 7.31–7.43 (6H, m). Anal. (C<sub>19</sub>H<sub>22</sub>N<sub>2</sub>O<sub>5</sub>) C, H, N.

tert-Butyl 3-Benzyloxy-N-ethyl-2-nitrophenylcarbamate (14b). Following a procedure similar to method A, the title compound was obtained in 92.8% yield from 27 and ethyl iodide as pale yellow crystals after recrystallization from hexane: mp 88–90 °C;  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  1.17 (3H, t, J = 7.5 Hz), 1.39 (9H, br s), 3.41–3.80 (2H, m), 5.19 (2H, s), 6.86 (1H, br d, J = 7.5 Hz), 7.01 (1H, d, J = 7.5 Hz), 7.29–7.32 (6H, m); MS (ESI) m/z 373 (M + 1). Anal. ( $C_{20}H_{24}N_{2}O_{5}$ ) C, H, N.

3-Benzyloxy-1-ethyl-2-nitroaniline (15b). Using a similar procedure to that used for 15a, the title compound was obtained in 94.9% yield from 14b as a yellow oil:

<sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.30 (3H, t, J = 7.5 Hz), 3.13 (2H, q, J = 7.5 Hz), 5.16 (2H, s), 6.31 (1H, d, J = 7.5 Hz), 6.38 (1H, d, J = 7.5 Hz), 7.21 (1H, t, J = 7.5 Hz), 7.28–7.49 (5H, m). Anal. ( $C_{15}H_{16}N_2O_3$ ) C, H, N.

1-(*N*-Acetyl-*N*-ethyl)-3-benzyloxy-2-nitroaniline (16b). Using a similar procedure to that used for 16a, the title compound was obtained in 67.3% yield from 15b and acetyl chloride as a yellow oil:  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  1.15 (3H, t, J = 7.5 Hz), 2.18 (3H, S), 3.16–4.10 (2H, m), 5.13 (2H, s), 6.90 (1H, d, J = 7.5 Hz), 7.18 (1H, d, J = 7.5 Hz), 7.33–7.50 (6H, m). Anal. ( $C_{17}H_{18}N_{2}O_{4}$ ) C, H, N.

**4-Benzyloxy-1-ethyl-2-methyl-1***H***-benzimidazole** (17b). Using a similar procedure to that used for **17a**, the title compound was obtained in 34.2% yield from **16b** as a pale yellow oil: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.40 (3H, t, J = 7.5 Hz), 2.61 (3H, s), 4.13 (2H, q, J = 7.5 Hz), 5.37 (2H, s), 6.67 (1H, d, J = 7.5 Hz), 6.91 (1H, d, J = 7.5 Hz), 7.09 (1H, t, J = 7.5 Hz), 7.26-7.40 (3H, m), 7.51 (2H, br d, J = 7.5 Hz); MS (FAB) m/z 374 (M + 1). Anal. (C<sub>17</sub>H<sub>18</sub>N<sub>2</sub>O) C, H, N.

**1-Ethyl-4-hydroxy-2-methyl-1***H***-benzimidazole** (**18b**). Using a similar procedure to that used for **18a**, the title compound was obtained in 89.9% yield from **17b** as pale brown crystals after crystallization from isopropyl ether. mp 187–190 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.40 (3H, t, J = 7.5 Hz), 2.68 (3H, s), 4.13 (2H, q, J = 7.5 Hz), 6.81 (1H, d, J = 7.5 Hz), 6.84 (1H, d, J = 7.5Hz), 7.17 (1H, t, J = 7.5 Hz); MS (FAB) m/z 177 (M + 1). Anal. (C<sub>10</sub>H<sub>12</sub>N<sub>2</sub>O) C, H, N.

**3-Benzyloxy-1-**(*N*-**methoxyacetyl-***N*-**methyl**)-**2-nitroaniline** (16c). Using a similar procedure to that used for **16a**, the title compound was obtained in 92.7% yield from **15a** and methoxyacetyl chloride as colorless crystals after crystallization from isopropyl ether: mp 111–113 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  3.20 (3H, S), 3.34 (3H, S), 3.79 (1H, d, J = 15 Hz), 3.87 (1H, d, J = 15 Hz), 5.22 (2H, s), 6.89 (1H, d, J = 7.5 Hz), 7.13 (1H, d, J = 7.5Hz), 7.29–7.42 (5H, m), 7.45 (1H, t, J = 7.5 Hz); MS (ESI) m/z 331 (M + 1). Anal. (C<sub>17</sub>H<sub>18</sub>N<sub>2</sub>O<sub>5</sub>) C, H, N.

- 4-Benzyloxy-2-methoxymethyl-1-methyl-1*H*-benzimidazole (17c). Using a similar procedure to that used for 17a, the title compound was obtained in 76.7% yield from 16c as pale gray crystals after crystallization from isopropyl ether: mp 120–122 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  3.38 (3H, s), 3.82 (3H, s), 4.78 (2H, s), 5.38 (2H, s), 6.67 (1H, d, J = 7.5 Hz), 6.93 (1H, d, J = 7.5 Hz), 7.14 (1H, t, J = 7.5 Hz), 7.23-7.39 (3H, m), 7.51 (2H, br d, J = 7.5 Hz); MS (ESI) m/z 283 (M + 1). Anal. (C<sub>17</sub>H<sub>18</sub>N<sub>2</sub>O<sub>2</sub>) C, H, N. 4-Hydroxy-2-methoxymethyl-1-methyl-1*H*-benzimidazole (18c). Using a similar procedure to that used for 18a, the title compound was obtained in 89.9% yield
- similar procedure to that used for **18a**, the title compound was obtained in 89.9% yield from **17c** as pale gray crystals after crystallization from isopropyl ether: mp 162–163 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  3.33 (3H, s), 3.81 (3H, s), 4.81 (2H, s), 6.85 (1H, d, J = 7.5 Hz), 6.87 (1H, d, J = 7.5 Hz), 7.22 (1H, t, J = 7.5 Hz); MS (ESI) m/z 193 (M + 1). Anal. (C<sub>10</sub>H<sub>12</sub>N<sub>2</sub>O<sub>2</sub>) C, H, N.
- 3-Benzyloxy-1-(*N*-ethoxycarbonylacetyl-*N*-methyl)-2-nitroaniline (16d). Using a similar procedure to that used for 16a, the title compound was obtained in 93.3% yield from 15a and ethyl malonyl chloride as a yellow oil: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.24 (3H, t, J = 7.5 Hz), 3.21 (3H, S), 3.23 (2H, S), 4.15 (2H, S), 5.21 (2H, s), 6.99 (1H, d, J = 7.5 Hz), 7.14 (1H, d, J = 7.5 Hz), 7.32–7.52 (6H, m); MS (ESI) m/z 373 (M + 1). Anal. (C<sub>19</sub>H<sub>20</sub>N<sub>2</sub>O<sub>6</sub>) C, H, N.
- **4-Benzyloxy-2-ethoxycarbonylmethyl-1-methyl-1***H***-benzimidazole** (17d). Using a similar procedure to that used for 17a, the title compound was obtained in 31.3% yield from 16d as colorless crystals after crystallization from diethyl ether: mp 105-106 °C; ¹H NMR (CDCl<sub>3</sub>)  $\delta$  1.28 (3H, t, J=7 Hz), 3.76 (3H, s), 4.06 (2H, s), 4.20 (2H, q, J=7 Hz), 5.37 (2H, s), 6.69 (1H, d, J=7.5 Hz), 6.93 (1H, d, J=7.5 Hz), 7.13 (1H, t, J=7.5 Hz), 7.25-7.39 (3H, m), 7.50 (2H, br d, J=7.5 Hz); MS (ESI) m/z 325 (M + 1). Anal. (C<sub>19</sub>H<sub>20</sub>N<sub>2</sub>O<sub>3</sub>) C, H, N.
- 2-Ethoxycarbonylmethyl-4-hydroxy-1-methyl-1*H*-benzimidazole (18d). Using a similar procedure to that used for 18a, the title compound was obtained in 75.6% yield from 17d as pale gray crystals after crystallization from diethyl ether: mp 167–170

- °C; ¹H NMR (CDCl<sub>3</sub>)  $\delta$  1.23 (3H, t, J = 7 Hz), 3.72 (3H, s), 4.13 (2H, s), 4.17 (2H, q, J = 7 Hz), 6.81 (1H, d, J = 7.5 Hz), 6.84 (1H, d, J = 7.5 Hz), 7.19 (1H, t, J = 7.5 Hz); MS (ESI) m/z 235 (M + 1). Anal. ( $C_{12}H_{14}N_2O_3$ ) C, H, N.
- 1-(*N*-Benzoyl-*N*-methyl)-3-benzyloxy-2-nitroaniline (16e). Using a similar procedure to that used for 16a, the title compound was obtained in 93.3% yield from 15a and benzoyl chloride as a pale yellow oil: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  3.37 (3H, S), 5.17 (2H, S), 6.60 (1H, br d, J = 7.5 Hz), 6.93 (1H, d, J = 7.5 Hz), 7.12–7.50 (11H, m). Anal. (C<sub>23</sub>H<sub>20</sub>N<sub>2</sub>O<sub>4</sub>) C, H, N.
- **4-Benzyloxy-1-methyl-2-phenyl-1***H***-benzimidazole** (17e). Using a similar procedure to that used for 17a, the title compound was obtained in 86.0% yield from 16e as colorless crystals after crystallization from diethyl ether: mp 118–120 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  3.85 (3H, s), 5.47 (2H, s), 6.73 (1H, d, J = 7.5 Hz), 6.99 (1H, d, J = 7.5 Hz), 7.17 (1H, t, J = 7.5 Hz), 7.25–7.39 (3H, m), 7.48–7.57 (5H, m), 7.77–7.84 (2H, m). Anal. (C<sub>21</sub>H<sub>18</sub>N<sub>2</sub>O) C, H, N.
- **4-Hydroxy-1-methyl-2-phenyl-1***H***-benzimidazole** (**18e**). Using a similar procedure to that used for **18a**, the title compound was obtained in 68.5% yield from **17e** as pale gray crystals after crystallization from EtOH: mp 210–211 °C; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  3.82 (3H, s), 6.59 (1H, d, J = 7.5 Hz), 7.00 (1H, d, J = 7.5 Hz), 7.07 (1H, t, J = 7.5 Hz), 7.50-7.62 (3H, m), 7.79–7.87 (2H, m). Anal. (C<sub>14</sub>H<sub>12</sub>N<sub>2</sub>O) C, H, N.
- 4-Hydroxy-2-Methoxy-1-methyl-1*H*-benzimidazole (21a). Using a similar procedure to that used for 18a, the title compound was obtained in 87.4% yield from 20a as colorless crystals after crystallization from diethyl ether: mp 226–229 °C; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  3.48 (3H, s), 4.08 (3H, s), 6.49 (1H, d, J = 7.5 Hz), 6.76 (1H, d, J = 7.5 Hz), 6.88 (1H, t, J = 7.5 Hz), 9.39 (1H, br s). Anal. ( $C_9H_{10}N_2O_2$ ) C, H, N.
- **4-Benzyloxy-2-ethoxy-1-methyl-1***H***-benzimidazole** (20b). Using a similar procedure to that used for **20a**, the title compound was obtained in 85.1% yield from **19** as colorless crystals after crystallization from hexane–isopropyl ether: mp 99–100 °C; <sup>1</sup>H

NMR (CDCl<sub>3</sub>)  $\delta$  1.47 (3H, t, J = 7.5 Hz), 3.51 (3H, s), 4.66 (2H, q, J = 7.5 Hz), 5.40 (2H, s), 6.61 (1H, d, J = 7.5 Hz), 6.75 (1H, d, J = 7.5 Hz), 6.97 (1H, t, J = 7.5 Hz), 7.22–7.38 (3H, m), 7.49 (2H, d, J = 7.5 Hz). Anal. (C<sub>1.7</sub>H<sub>1.0</sub>N<sub>2</sub>O<sub>3</sub>) C, H, N.

- **2-Ethoxy-4-hydroxy-1-methyl-1***H***-benzimidazole (21b).** Using a similar procedure to that used for **19a**, the title compound was obtained in 72.6% yield from **20b** as colorless crystals after crystallization from hexane–isopropyl ether: mp 164–165 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.43 (3H, t, J = 6.5 Hz), 3.51 (3H, s), 4.54 (2H, q, J = 6.5 Hz), 6.71 (2H, d, J = 7.5 Hz), 7.03 (1H, t, J = 7.5 Hz), 8.05 (1H, br s). Anal. (C<sub>10</sub>H<sub>13</sub>N<sub>2</sub>O<sub>2</sub>) C, H, N.
- **4-Hydroxy-1-methyl-2-methylamino-1***H***-benzimidazole (21c).** Using a similar procedure to that used for **18a**, the title compound was obtained in 73.9% yield from **20c** as a colorless amorphous solid: <sup>1</sup>H NMR (CDCl<sub>3</sub>-CD<sub>3</sub>OD)  $\delta$  3.09 (3H, s), 3.48 (3H, s), 6.60 (1H, d, J = 7.5 Hz), 6.69 (1H, d, J = 7.5 Hz), 6.98 (1H, t, J = 7.5 Hz); MS (ESI) m/z 178 (M + 1). Anal. (C<sub>9</sub>H<sub>11</sub>N<sub>3</sub>O) C, H, N.
- **4-Benzyloxy-2-dimethylamino-1-methyl-1***H***-benzimidazole** (20d). Following a procedure similar to method A, the title compound was obtained in 47.5% yield from **20c** and methyl iodide as a colorless oil: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.99 (6H, s), 3.61 (3H, s), 5.40 (2H, s), 6.60 (1H, d, J = 8 Hz), 6.79 (1H, d, J = 8 Hz), 6.98 (1H, t, J = 8 Hz), 7.29–7.43 (3H, m), 7.50 (2H, d, J = 8 Hz); MS (ESI) m/z 282 (M + 1). Anal. (C<sub>17</sub>H<sub>19</sub>N<sub>3</sub>O) C, H, N.
- **2-Dimethylamino-4-hydroxy-1-methyl-1***H***-benzimidazole** (**21d**). Using a similar procedure to that used for **18a**, the title compound was obtained in 78.0% yield from **20d** as pale brown crystals after crystallization from isopropyl ether: mp 177–179 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.93 (6H, s), 3.60 (3H, s), 6.71 (2H, br d, J = 8 Hz), 7.03 (1H, t, J = 8 Hz); MS (ESI) m/z 192 (M + 1). Anal. (C<sub>10</sub>H<sub>13</sub>N<sub>3</sub>O) C, H, N.
- (±)-4-Benzyloxy-2-(1-hydroxyethyl)-1-methyl-1*H*-benzimidazole (20e). Using a similar procedure to that used for 8, the title compound was obtained in 19.4%

yield from 19 and lactic acid as colorless crystals after crystallization from diethyl ether. mp 149–151 °C; ¹H NMR (DMSO- $d_6$ )  $\delta$  1.57 (3H, t, J = 7.5 Hz), 3.81 (3H, s), 5.03 (1H, quint, J = 7.5 Hz), 5.33 (2H, s), 5.55 (1H, d, J = 7.5 Hz), 6.77 (1H, dd, J = 7.5, 2.5 Hz), 7.07–7.14 (2H, m), 7.29–7.43 (3H, m), 7.50 (2H, d, J = 7.5 Hz); MS (ESI) m/z 283 (M + 1). Anal. ( $C_{17}H_{18}N_2O_2$ ) C, H, N.

2-Acetyl-4-hydroxy-1-methyl-1*H*-benzimidazole (21f). Using a similar procedure to that used for 18a, the title compound was obtained in 92.5% yield from 20f as pale brown crystals after crystallization from isopropyl ether: mp 154–155 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.80 (3H, s), 4.11 (3H, s), 6.83 (1H, d, J = 8.5 Hz), 6.96 (1H, d, J = 8.5 Hz), 7.33 (1H, t, J = 8.5 Hz); MS (ESI) m/z 191 (M + 1). Anal. (C<sub>10</sub>H<sub>10</sub>N<sub>2</sub>O<sub>2</sub>) C, H, N.

3-Hydroxy-1-methyl-1,2-phenylenediamine (22). Using a similar procedure to that used for 18a, the title compound was obtained in 91.8% yield from 15a as brown solid after crystallization from hexane–isopropyl ether: mp 94–97 °C; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  2.68 (3H, d, J = 4.5 Hz), 3.80 (2H, br s), 4.52 (1H, q, J = 4.5 Hz), 5.98 (1H, d, J = 8.5 Hz), 6.13 (1H, d, J = 8.5 Hz), 6.38 (1H, t, J = 8.5 Hz), 8.73 (1H, br s); MS (ESI) m/z 139 (M + 1). Anal. (C<sub>7</sub>H<sub>10</sub>N<sub>2</sub>O) C, H, N.

3-[[2,6-Dimethyl-3-[N-methyl-N-[(E)-4-(N-methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-1-methyl-1,2-phenylenediamine (23). Following a procedure similar to method A, the title compound was obtained in 69.8% yield from 22 and 50b as a brown amorphous solid: <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.24 (3H, s), 2.40 (3H, s), 2.71 (3H, d, J = 5 Hz), 2.79 (3H, d, J = 5 Hz), 3.10 (3H, s), 3.50 (1H, dd, J = 17, 5 Hz), 3.67 (1H, dd, J = 17, 5 Hz), 3.96 (2H, br s), 4.68 (1H, q, J = 5 Hz), 5.03 (2H, s), 6.20 (1H, d, J = 8 Hz), 6.49–6.59 (2H, m), 6.88 (1H, d, J = 15 Hz), 7.22 (1H, d, J = 8 Hz), 7.42 (1H, d, J = 15 Hz), 7.63 (2H, d, J = 8 Hz), 7.85 (2H, d, J = 8 Hz), 8.25

(1H, t, J = 5 Hz), 8.48 (1H, q, J = 5 Hz); MS (ESI) m/z 530 (M + 1). Anal. ( $C_{20}H_{35}N_5O_4$ ) C, H, N.

**8-Hydroxy-2-methylquinazoline** (32). Using a similar procedure to that used for **9**, the title compound was obtained in 71.7% yield from **31** as colorless crystals after crystallization from isopropyl ether: mp 135–137 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.89 (3H, s), 7.32 (1H, d, J = 7.5 Hz), 7.41 (1H, d, J = 7.5 Hz), 7.49 (1H, t, J = 7.5 Hz), 9.30 (1H, s); MS (FAB) m/z 161 (M + 1). Anal. (C<sub>9</sub>H<sub>8</sub>N<sub>2</sub>O) C, H, N.

7-Methoxy-2-methylquinoline (37). Using a similar procedure to that used for 31, the title compound was obtained in 95.0% yield from 36b as a colorless oil:  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  2.61 (3H, s), 4.00 (3H, s), 6.80 (1H, dd, J = 8, 2 Hz), 7.27 (1H, d, J = 2 Hz), 7.52–7.62 (2H, m), 8.47 (1H, d, J = 8 Hz). Anal. (C<sub>11</sub>H<sub>11</sub>NO) C, H, N. 7-Hydroxy-2-methylquinoline (38). Using a similar procedure to that used for 9, the title compound was obtained in 81.8% yield from 37 as colorless crystals after crystallization from isopropyl ether: mp 245–246 °C;  $^{1}$ H NMR (DMSO- $d_6$ )  $\delta$  2.61 (3H, s), 6.85 (1H, d, J = 8 Hz), 7.30 (1H, d, J = 8 Hz), 7.36 (1H, d, J = 8 Hz), 8.39 (1H, d, J = 8 Hz). Anal. (C<sub>10</sub>H<sub>9</sub>NO) C, H, N.

3-Amino-1-(*tert*-butyldiphenylsiloxymethyl)-2,6-dichlorobenzene (44a). Using a similar procedure to that used for 19, the title compound was obtained in 87.1% yield from 43a as colorless crystals after crystallization from MeOH: mp 117–118 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.05 (9H, s), 4.07 (2H, br s), 4.87 (2H, s), 6.66 (1H, d, J = 9 Hz), 7.08 (1H, d, J = 9 Hz), 7.30–7.50 (6H, m), 7.70–7.84 (4H, m). Anal. (C<sub>34</sub>H<sub>25</sub>Cl<sub>2</sub>NOSi) C, H, N.

1-(tert-Butyldiphenylsiloxymethyl)-2,6-dichloro-3-[N-methyl-N-(phthalimidoacetyl)amino]benzene (46a). Following a procedure similar to method A, the title compound was obtained in 88.5% yield from 45a and methyl iodide as colorless crystals after crystallization from isopropyl ether: mp 167–172 °C; ¹H NMR

(CDCl<sub>3</sub>)  $\delta$  1.06 (9H, s), 3.20 (3H, s), 4.04 (2H, s), 4.98 (2H, s), 7.31–7.51 (9H, m), 7.65–7.79 (6H, m), 7.80–7.92 (2H, m). Anal. (C<sub>34</sub>H<sub>32</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>4</sub>Si) C, H, N.

1-[tert-Butyldiphenylsiloxymethyl]-2,6-dichloro-3-[N-methyl-N-[(E)-4-(N-methylcarbamoyl)cinnamamidoacetyl]amino]benzene (48a). Following a procedure similar to method E, the title compound was obtained in 88.6% yield from 47a and (E)-4-(N-methylcarbamoyl)cinnamic acid<sup>23</sup> as pale yellow crystals after crystallization from AcOEt: mp 219–222 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.05 (9H, s), 3.02 (3H, d, J = 5 Hz), 3.21 (3H, s), 3.56 (1H, dd, J = 17, 4 Hz), 3.93 (1H, dd, J = 17, 5 Hz), 4.91 (1H, d, J = 10 Hz), 4.98 (1H, d, J = 10 Hz), 6.15 (1H, br d, J = 5 Hz), 6.51 (1H, d, J = 15 Hz), 6.63 (1H, br s), 7.19–7.28 (2H, m), 7.32–7.48 (6H, m), 7.50–7.60 (3H, m), 7.68–7.78 (6H, m); MS (FAB) m/z 688 (M + 1). Anal. (C<sub>37</sub>H<sub>39</sub>Cl<sub>2</sub>N<sub>3</sub>O<sub>4</sub>Si) C, H, N.

2,6-Dimethyl-3-nitrobenzyl alcohol (42b). Using a similar procedure to that used for 82a, the title compound was obtained in 80.9% yield from 41 as pale yellow crystals after recrystallization from isopropyl ether: mp 100–102 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.44 (1H, t, J = 5 Hz), 2.50 (3H, s), 2.56 (3H, s), 4.82 (2H, d, J = 5 Hz), 7.17 (1H, d, J = 8 Hz), 7.66 (1H, d, J = 8 Hz). Anal. (C<sub>9</sub>H<sub>11</sub>NO<sub>3</sub>) C, H, N.

1-(*tert*-Butyldiphenylsiloxymethyl)-2,6-dimethyl-3-nitrobenzene (43b). Using a similar procedure to that used for 42a, the title compound was obtained in 96.2% yield from 42b as a pale yellow oil:  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  1.03 (9H, s), 2.20 (3H, s), 2.38 (3H, s), 5.73 (2H, s), 7.06 (1H, d, J = 8 Hz), 7.33–7.49 (6H, m), 7.58–7.73 (5H, m). Anal. ( $C_{25}H_{29}NO_{3}Si$ ) C, H, N.

3-Amino-1-(*tert*-butyldiphenylsiloxymethyl)-2,6-dichlorobenzene (44b). Using a similar procedure to that used for 19, the title compound was obtained in 97.8% yield from 43b as a pale yellow oil:  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  1.04 (9H, s), 2.09 (3H, s), 2.11 (3H, s), 3.48 (2H, br s), 4.70 (2H, s), 6.58 (1H, d, J = 8 Hz), 6.71 (1H, d, J = 8 Hz), 7.33–7.48 (6H, m), 7.66–7.73 (4H, m); MS (ESI) m/z 390 (M + 1). Anal. (C<sub>25</sub>H<sub>31</sub>NOSi) C, H, N.

1-(tert-Butyldiphenylsiloxymethyl)-2,6-dimethyl-3-(N-

**phthalimidoacetyl)aminobenzene** (45b). Using a similar procedure to that used for 45a, the title compound was obtained in 93.6% yield from 44b and *N*-phthalimidoacetyl chloride as colorless crystal after crystallization from MeCN: mp 207–210 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.02 (9H, s), 2.12 (3H, s), 2.19 (3H, s), 4.52 (2H, s), 4.70 (2H, s), 6.95 (1H, d, J = 8 Hz), 7.25–7.50 (7H, m), 7.63–7.80 (6H, m), 7.86–7.96 (2H, m); MS (ESI) m/z 577 (M + 1). Anal. (C<sub>3.5</sub>H<sub>3.6</sub>N<sub>2</sub>O<sub>4</sub>Si) C, H, N.

1-(*tert*-Butyldiphenylsiloxymethyl)-2,6-dimethyl-3-[*N*-methyl-*N*-(*N*-phthalimidoacetyl)amino]benzene (46b). Following a procedure similar to method A, the title compound was obtained in 69.2% yield from 45b and methyl iodide as colorless crystals after crystallization from AcOEt: mp 180–182 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.04 (9H, s), 2.21 (3H, s), 2.27 (3H, s), 3.17 (3H, s), 3.82 (1H, d, J = 17 Hz), 4.12 (1H, d, J = 17 Hz), 4.78 (2H, s), 7.09 (1H, d, J = 8 Hz), 7.15 (1H, d, J = 8 Hz), 7.34–7.49 (6H, m), 7.65–7.73 (6H, m), 7.80–7.88 (2H, m); MS (ESI) m/z 591 (M + 1). Anal. (C<sub>32</sub>H<sub>38</sub>N<sub>2</sub>O<sub>4</sub>Si) C, H, N.

3-[*N*-Aminoacetyl-*N*-methylamino]-1-[*tert*-butyldiphenylsiloxymethyl]-2,6-dimethylbenzene (47b). Using a similar procedure to that used for 47a, the title compound was obtained in 93.5% yield from 46b as a pale yellow amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  1.03 (9H, s), 2.02 (3H, s), 2.22 (3H, s), 2.82 (1H, d, J = 17 Hz), 3.09 (1H, d, J = 17 Hz), 3.15 (3H, s), 4.72 (2H, s), 6.92 (1H, d, J = 8 Hz), 7.01 (1H, d, J = 8 Hz), 7.32–7.49 (6H, m), 7.62–7.70 (4H, m); MS (ESI) m/z 461 (M + 1). Anal. ( $C_{28}H_{36}N_{2}O_{2}Si$ ) C, H, N.

1-[tert-Butyldiphenylsiloxymethyl]-2,6-dimethyl-3-[N-methyl-N-[(E)-4-(N-methylcarbamoyl)cinnamamidoacetyl]amino]benzene (48b). Following a procedure similar to method E, the title compound was obtained in 69.2% yield from 47b and (E)-4-(N-methylcarbamoyl)cinnamic acid<sup>23</sup> as pale yellow crystals after crystallization from AcOEt: mp 204–208 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.05 (9H, s), 2.05 (3H, s), 2.26 (3H, s), 3.02 (3H, d, J = 5 Hz), 3.20 (3H, s), 3.52 (1H, dd, J = 17, 5 Hz), 3.87 (1H, dd, J =

17, 5 Hz), 4.73 (2H, s), 6.16 (1H, br d, J = 5 Hz), 6.51 (1H, d, J = 15 Hz), 6.69 (1H, br t, J = 5 Hz), 6.98 (1H, d, J = 8 Hz), 7.06 (1H, d, J = 8 Hz), 7.35–7.48 (6H, m), 7.51–7.60 (3H, m), 7.65–7.80 (6H, m); MS (ESI) m/z 648 (M + 1). Anal. ( $C_{39}H_{45}N_3O_3Si$ ) C, H, N.

3-[N-[(E)-3-(6-Acetylaminopyridin-3-yl)acryloylglycyl]-N-methylamino]-1-(tert-butyldiphenylsiloxymethyl)-2,6-dimethylbenzene (48c). Following a procedure similar to method E, the title compound was obtained in 76.2% yield from 47b and (E)-3-(6-acetamidopyridine-3-yl)acrylic acid<sup>23</sup> as colorless crystals after crystallization from AcOEt: mp 200–202 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.05 (9H, s), 2.04 (3H, s), 2.21 (3H, s), 2.26 (3H, s), 3.20 (3H, s), 3.52 (1H, dd, J = 17, 5 Hz), 3.87 (1H, dd, J = 17, 5 Hz), 4.73 (2H, s), 6.45 (1H, d, J = 15 Hz), 6.69 (1H, br t, J = 5 Hz), 6.98 (1H, d, J = 8 Hz), 7.07 (1H, d, J = 8 Hz), 7.35–7.47 (6H, m), 7.64–7.71 (4H, m), 7.84 (1H, dd, J = 8, 3 Hz), 8.06 (1H, br s), 8.21 (1H, br d, J = 8 Hz), 8.35 (1H, br s); MS (ESI) m/z 649 (M + 1). Anal. (C<sub>38</sub>H<sub>44</sub>N<sub>4</sub>O<sub>4</sub>Si) C, H, N.

**2,6-Dimethyl-1-hydroxymethyl-3-**[*N*-methyl-*N*-[(*E*)-4-(*N*-methylcarbamoyl)cinnamamidoacetyl]amino]benzene (49b). Using a similar procedure to that used for 49a, the title compound was obtained in 95.8% yield from 48b as colorless crystals after crystallization from AcOEt: mp 261–263 °C; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  2.27 (3H, s), 2.40 (3H, s), 2.79 (3H, d, J = 5 Hz), 3.08 (3H, s), 3.43 (1H, dd, J = 17, 5 Hz), 3.65 (1H, dd, J = 17, 5 Hz), 4.53 (2H, d, J = 5 Hz), 4.88 (1H, t, J = 5 Hz), 6.89 (1H, d, J = 15 Hz), 7.15 (2H, s), 7.41 (1H, d, J = 15 Hz), 7.64 (2H, d, J = 8 Hz), 7.85 (2H, d, J = 8 Hz), 8.21 (1H, br t, J = 5 Hz), 8.48 (1H, br d, J = 8 Hz); MS (ESI) m/z 410 (M + 1). Anal. ( $C_{23}H_{27}N_3O_4$ ) C, H, N.

3-[N-[(E)-3-[6-Acetylaminopyridin-3-yl]acryloylglycyl]-N-methylamino]-1-hydroxymethyl-2,6-dimethylbenzene (49c). Using a similar procedure to that used for 49a, the title compound was obtained in 97.7% yield from 48c as colorless crystals after crystallization from AcOEt: mp 215–216 °C; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  2.27 (3H, s), 2.40 (3H, s), 2.79 (3H, d, J= 5 Hz), 3.08 (3H, s), 3.43 (1H, dd, J=

17, 5 Hz), 3.65 (1H, dd, J = 17, 5 Hz), 4.53 (2H, d, J = 5 Hz), 4.88 (1H, t, J = 5 Hz), 6.89 (1H, d, J = 15 Hz), 7.15 (2H, s), 7.41 (1H, d, J = 15 Hz), 7.64 (2H, d, J = 8 Hz), 7.85 (2H, d, J = 8 Hz), 8.21 (1H, br t, J = 5 Hz), 8.48 (1H, br d, J = 8 Hz); MS (ESI) m/z 411 (M + 1). Anal.  $(C_{22}H_{26}N_4O_4)$  C, H, N.

**3-**[N-[(E)-3-[6-Acetylaminopyridin-3-yl]acryloylglycyl]-N-methylamino]-1-chloromethyl-2,6-dimethylbenzene (50c). Using a similar procedure to that used for 50b, the title compound was obtained in 91.4% yield from 48c as pale yellow crystals after crystallization from AcOEt–hexane: mp 218–221 °C; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  2.11 (3H, s), 2.28 (3H, s), 2.43 (3H, s), 3.09 (3H, s), 3.41 (1H, dd, J = 17, 5 Hz), 3.60 (1H, dd, J = 17, 5 Hz), 4.84 (2H, s), 6.76 (1H, d, J = 15 Hz), 7.21 (1H, d, J = 8 Hz), 7.27 (1H, d, J = 8 Hz), 7.37 (1H, d, J = 15 Hz), 7.98 (1H, dd, J = 8, 2 Hz), 8.11 (1H, d, J = 8 Hz), 8.17 (1H, t, J = 5 Hz), 8.17 (1H, br t, J = 5 Hz), 8.47 (1H, d, J = 2 Hz); MS (ESI) m/z 429 (M + 1). Anal. ( $C_{22}H_{25}ClN_4O_3$ ) C, H, N. 4-[[2,6-Dichloro-3-[N-methyl-N-[(E)-4-(N-

methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2-

methylbenzoxazole (51). Following a procedure similar to method A, the title compound was obtained in 85.7% yield from 50a and 4-hydroxy-2-methylbenzoxazole as a colorless amorphous solid;  $^{1}$ H NMR (CDCl<sub>3</sub>) δ 2.61 (3H, s), 3.02 (3H, d, J = 5 Hz), 3.28 (3H, s), 3.67 (1H, dd, J = 17, 4 Hz), 3.94 (1H, dd, J = 17, 5 Hz), 5.58 (1H, d, J = 10 Hz), 5.61 (1H, d, J = 10 Hz), 6.15 (1H, br d, J = 5 Hz), 6.52 (1H, d, J = 15 Hz), 6.68 (1H, br s), 6.93 (1H, d, J = 7.5 Hz), 7.16 (1H, d, J = 7.5 Hz), 7.21–7.35 (3H, m), 7.46–7.62 (3H, m), 7.76 (2H, d, J = 7.5 Hz); MS (FAB) m/z 581 (M + 1). Anal. (C<sub>20</sub>H<sub>20</sub>Cl<sub>2</sub>N<sub>4</sub>O<sub>5</sub>) C, H, N.

4-[[2,6-Dichloro-3-[N-methyl-N-[(E)-4-(N-

methylcar bamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-1,2-dimethyl-1H-benzimidazole (52a). Following a procedure similar to method A, the title compound was obtained in 85.7% yield from 9 and 50a as a colorless amorphous solid; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.58 (3H, s), 3.02 (3H, d, J = 5 Hz), 3.28 (3H, s), 3.61–3.72 (4H, m), 3.93

(1H, dd, J = 17, 5 Hz), 5.52 (1H, d, J = 10 Hz), 5.58 (1H, d, J = 10 Hz), 6.20 (1H, br d, J = 5 Hz), 6.52 (1H, d, J = 15 Hz), 6.70 (1H, br s), 6.88 (1H, d, J = 7.5 Hz), 6.98 (1H, d, J = 7.5 Hz), 7.22 (1H, t, J = 7.5 Hz), 7.30 (1H, d, J = 8 Hz), 7.48 (1H, d, J = 8 Hz), 7.51–7.62 (3H, m), 7.77 (2H, d, J = 7.5 Hz); MS (FAB) m/z 594 (M + 1). Anal. ( $C_{30}H_{29}Cl_2N_5O_4$ ) C, H, N.

4-[[2,6-Dichloro-3-[N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methy

methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-1-ethyl-2-methyl-1*H*-benzimidazole (52b). Following a procedure similar to method A, the title compound was obtained in 81.2% yield from 18a and 50a as a colorless amorphous solid; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.40 (3H, t, J = 7 Hz), 2.58 (3H, s), 3.02 (3H, d, J = 5 Hz), 3.28 (3H, s), 3.68 (1H, dd, J = 17, 4 Hz), 3.94 (1H, dd, J = 17, 5 Hz), 4.15 (2H, q, J = 7 Hz), 5.52 (1H, d, J = 10 Hz), 5.58 (1H, d, J = 10 Hz), 6.20 (1H, br d, J = 5 Hz), 6.52 (1H, d, J = 15 Hz), 6.70 (1H, br t, J = 5 Hz), 6.86 (1H, d, J = 7.5 Hz), 6.99 (1H, d, J = 7.5 Hz), 7.22 (1H, t, J = 7.5 Hz), 7.31 (1H, d, J = 8 Hz), 7.48 (1H, d, J = 8 Hz), 7.51–7.62 (3H, m), 7.76 (2H, d, J = 7.5 Hz); MS (FAB) m/z 608 (M + 1). Anal. (C<sub>31</sub>H<sub>31</sub>Cl<sub>2</sub>N<sub>5</sub>O<sub>4</sub>) C, H, N.

4-[[2,6-Dichloro-3-[N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methy

methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2-ethyl-1-methyl-1*H*-benzimidazole (52c). Following a procedure similar to method A, the title compound was obtained in 74.8% yield from 18b and 50a as a colorless amorphous solid; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.36 (3H, t, J = 7 Hz), 2.93 (2H, q, J = 7 Hz), 3.02 (3H, d, J = 4 Hz), 3.27 (3H, s), 3.66 (1H, dd, J = 17, 4 Hz), 3.73 (3H, s), 3.93 (1H, dd, J = 17, 5 Hz), 5.53–5.64 (2H, m), 6.17 (1H, br s), 6.52 (1H, d, J = 15 Hz), 6.68 (1H, br t, J = 5 Hz), 6.86 (1H, d, J = 8 Hz), 6.98 (1H, d, J = 8 Hz), 7.21 (1H, t, J = 8 Hz), 7.30 (1H, d, J = 8 Hz), 7.46 (1H, d, J = 8 Hz), 7.54 (2H, d, J = 8 Hz), 7.59 (1H, d, J = 15 Hz), 7.75 (2H, d, J = 8 Hz); MS (FAB) m/z 608 (M + 1). Anal. (C<sub>31</sub>H<sub>31</sub>Cl<sub>2</sub>N<sub>5</sub>O<sub>4</sub>) C, H, N. 4-[[2.6-Dichloro-3-[N-methyl-N-[(E)-4-(N-

methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2-ethyl-1-methyl-

1*H*-benzimidazole Hydrochloride (64c). Following a procedure similar to method B, the title compound was obtained in 92.8% yield from 64c as a colorless amorphous solid; <sup>1</sup>H NMR (DMSO- $d_6$ ) 8 1.27–1.37 (3H, m), 2.78 (3H, d, J = 5 Hz), 3.12 (2H, q, J = 7.5 Hz), 3.15 (3H, s), 3.84 (1H, dd, J = 17, 4 Hz), 3.95 (3H, s), 4.15 (1H, dd, J = 17, 5 Hz), 5.53 (1H, d, J = 10 Hz), 5.60 (1H, d, J = 8 Hz), 6.86–6.92 (1H, m), 7.37–7.49 (2H, m), 7.49–7.78 (4H, m), 7.78–7.91 (4H, m), 8.38 (1H, br t, J = 5 Hz), 8.52 (1H, br s). Anal. ( $C_{31}H_{31}Cl_2N_5O_4$ •HCl) C, H, N.

4-[[2,6-Dichloro-3-[N-methyl-N-[(E)-4-(N-

methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-1-methyl-2-phenyl-1*H*-benzimidazole (52d). Following a procedure similar to method A, the title compound was obtained in 78.2% yield from 18e and 50a as a colorless amorphous solid; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.98 (3H, d, J = 5 Hz), 3.25 (3H, s), 3.66 (1H, dd, J = 17, 5 Hz), 3.82 (3H, s), 3.93 (1H, dd, J = 17, 5 Hz), 5.66 (2H, s), 6.24 (1H, br q, J = 5 Hz), 6.51 (1H, d, J = 15 Hz), 6.71 (1H, br t, J = 5 Hz), 6.93 (1H, d, J = 8 Hz), 7.08 (1H, d, J = 8 Hz), 7.25–7.34 (2H, m), 7.43–7.61 (7H, m), 7.68–7.79 (4H, m). Anal. ( $C_{34}H_{31}Cl_2N_5O_4$ ) C, H, N.

4-[[2,6-Dichloro-3-[N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methy

methyl-1*H*-benzimidazole (52e). Following a procedure similar to method A, the title compound was obtained in 78.2% yield from 21a and 50a as colorless crystals after crystallization from ether: mp 244–249 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  3.02 (3H, d, J = 5 Hz), 3.27 (3H, s), 3.53 (3H, s), 3.67 (1H, dd, J = 17, 5 Hz), 3.93 (1H, dd, J = 17, 5 Hz), 5.64 (2H, s), 6.29 (1H, br q, J = 5 Hz), 6.53 (1H, d, J = 15 Hz), 6.70 (1H, br t, J = 5 Hz), 6.82–6.90 (2H, m), 7.11 (1H, t, J = 8 Hz), 7.30 (1H, d, J = 8 Hz), 7.46 (1H, d, J = 8 Hz), 7.53 (2H, d, J = 8 Hz), 7.58 (1H, d, J = 15 Hz), 7.76 (2H, d, J = 8 Hz); MS (ESI) m/z 610 (M + 1). Anal. ( $C_{30}H_{29}Cl_2N_5O_5$ ) C, H, N.

 $\label{lem:conditional} 4-[[2,6-Dimethyl-3-[N-methyl-N-[(E)-4-(N-methylcarbamoyl)cinnamamidoacetyl]amino] benzyl] oxyl-2-methoxy-1-methylcarbamoyl) cinnamamidoacetyl] amino] benzyl-2-methoxy-1-methylcarbamoyl) cinnamamidoacetyl-3-methylcarbamoyl) cinnamamidoacetyl-3-methylcarbamoyl) cinnamamidoacetyl-3-methylcarbamoyl) cinnamamidoacetyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-methylcarbamoyl-3-me$ 

methyl-1*H*-benzimidazole (52f). Following a procedure similar to method A, the title compound was obtained in 72.9% yield from 21a and 50b as a colorless amorphous solid:  ${}^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  2.35 (3H, s), 2.51 (3H, s), 3.03 (3H, d, J = 5 Hz), 3.25 (3H, s), 3.55 (3H, s), 3.64 (1H, dd, J = 17, 5 Hz), 3.88 (1H, dd, J = 17, 5 Hz), 4.19 (3H, s), 5.41 (2H, s), 6.15 (1H, br s), 6.53 (1H, d, J = 15 Hz), 6.72 (1H, br s), 6.81–6.89 (2H, m), 7.02–7.18 (3H, m), 7.50–7.62 (3H, m), 7.75 (2H, d, J = 8 Hz); MS (ESI) m/z 570 (M + 1). Anal. (C<sub>32</sub>H<sub>35</sub>N<sub>5</sub>O<sub>5</sub>) C, H, N.

4-[[2,6-Dimethyl-3-[N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methy

methyl-1*H*-benzimidazole (52g). Following a procedure similar to method A, the title compound was obtained in 70.1% yield from 21 b and 50 b as colorless crystals after crystallization from MeCN: mp 226–231 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.43 (3H, t, J = 7 Hz), 2.32 (3H, s), 2.50 (3H, s), 3.00 (3H, d, J = 5 Hz), 3.24 (3H, s), 3.53 (3H, s), 3.61 (1H, dd, J = 17, 5 Hz), 3.87 (1H, dd, J = 17, 5 Hz), 4.59 (2H, q, J = 7 Hz), 5.41 (2H, s), 6.23 (1H, q J = 5 Hz), 6.52 (1H, d, J = 15 Hz), 6.72 (1H, br t, J = 5 Hz), 6.80–6.89 (2H, m), 7.02–7.17(3H, m), 7.52 (2H, d, J = 8 Hz), 7.56 (1H, d, J = 15 Hz), 7.74 (2H, d, J = 8 Hz); MS (ESI) m/z 584 (M + 1). Anal. ( $C_{33}H_{37}N_5O_5$ ) C, H, N.

4-[[2,6-Dimethyl-3-[N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methy

methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2methoxymethyl-1-methyl-1*H*-benzimidazole (52h). Following a procedure

similar to method A, the title compound was obtained in 77.8% yield from **18c** and **50b** as colorless crystals after crystallization from MeCN: mp 232–235 °C; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  2.28 (3H, s), 2.40 (3H, s), 2.79 (3H, d, J = 5 Hz), 3.10 (3H, s), 3.28 (3H, s), 3.49 (1H, dd, J = 17, 5 Hz), 3.67 (1H, dd, J = 17, 5 Hz), 3.78 (3H, s), 4.63 (2H, s), 5.34 (2H, s), 6.87 (1H, d, J = 15 Hz), 6.92 (1H, d, J = 8 Hz), 7.13–7.33 (4H, m), 7.42 (1H, d, J = 15 Hz), 7.62 (2H, d, J = 8 Hz), 7.84 (2H, d, J = 8 Hz), 8.26 (1H, br t, J = 5 Hz), 8.48 (1H, br q, J = 5 Hz); MS (ESI) m/z 584 (M + 1). Anal. ( $C_{32}H_{35}N_5O_5$ ) C, H, N.

4-[[2,6-Dimethyl-3-[N-methyl-N-[(E)-4-(N-methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2-ethoxycarbonylmethyl-1-methyl-1H-benzimidazole (52i). Following a procedure similar to method A, the title compound was obtained in 73.5% yield from 18d and 50b as colorless crystals after crystallization from diethyl ether–MeCN: mp 132–140 °C; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  1.19 (3H, t, J = 8 Hz), 2.29 (3H, s), 2.40 (3H, s), 2.79 (3H, d, J = 5 Hz), 3.12 (3H, s), 3.49 (1H, dd, J = 17, 5 Hz), 3.67 (1H, dd, J = 17, 5 Hz), 3.72 (3H, s), 4.09 (2H, s), 4.11 (2H, q, J = 8 Hz), 5.33 (2H, s), 6.89 (1H, d, J = 16 Hz), 6.92 (1H, d, J = 8 Hz), 7.13–7.33 (4H, m), 7.42 (1H, d, J = 16 Hz), 7.63 (2H, d, J = 8 Hz), 7.84 (2H, d, J = 8 Hz), 8.25 (1H, br t, J = 5 Hz), 8.48 (1H, br q, J = 5 Hz);

MS (ESI) m/z 626 (M + 1). Anal.  $(C_{35}H_{39}N_5O_6)$  C, H, N.

2-Acethyl-4-[[2,6-dimethyl-3-[N-methyl-N-[(E)-4-(N-methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-1-methyl-1H-benzimidazole (52j). Following a procedure similar to method A, the title compound was obtained in 74.3% yield from 21 f and 50 b as colorless crystals after crystallization from MeCN: mp 234–236 °C; ¹H NMR (DMSO- $d_6$ )  $\delta$  2.32 (3H, s), 2.45 (3H, s), 2.67 (3H, s), 2.79 (3H, d, J = 5 Hz), 3.12 (3H, s), 3.50 (1H, dd, J = 17, 5 Hz), 3.67 (1H, dd, J = 17, 5 Hz), 4.04 (3H, s), 5.38 (2H, s), 6.88 (1H, d, J = 16 Hz), 7.08 (1H, d, J = 8 Hz), 7.25–7.47 (5H, m), 7.63 (2H, d, J = 8 Hz), 7.85 (2H, d, J = 8 Hz), 8.25 (1H, br t, J = 5 Hz), 8.47 (1H, br q, J = 5 Hz); MS (ESI) m/z 582 (M + 1). Anal. ( $C_{33}H_{35}N_5O_5$ ) C, H, N.

4-[[2,6-Dimethyl-3-[N-methyl-N-[(E)-4-(N-methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-1-methyl-2-methylamino-1*H*-benzimidazole (52l). Following a procedure similar to method A, the title compound was obtained in 41.3% yield from 21c and 50b as a colorless amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>-CD<sub>3</sub>OD)  $\delta$  2.29 (3H, s), 2.40 (3H, s), 2.98 (3H, s), 3.03 (3H, s), 3.22 (3H, s), 3.53 (3H, br s), 3.66 (1H, d, J = 17 Hz), 3.87 (1H, d, J = 17 Hz), 5.27 (2H, s), 6.57 (1H, d, J = 15 Hz), 6.80–6.89 (2H, m), 7.06–7.16 (3H, m),

7.50–7.61 (3H, m), 7.75 (2H, d, J = 8 Hz); MS (ESI) m/z 569 (M + 1). Anal.  $(C_{32}H_{36}N_6O_4)$  C, H, N.

4-[[2,6-Dimethyl-3-[N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methy

methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2-dimethylamino-1-methyl-1H-benzimidazole (52m). Following a procedure similar to method A, the title compound was obtained in 93.6% yield from 21d and 50b as a colorless amorphous solid: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.34 (3H, s), 2.50 (3H, s), 2.95 (6H, s), 3.01 (3H, d, J = 5 Hz), 3.23 (3H, s), 3.58–3.68 (4H, m), 3.88 (1H, dd, J = 17, 5 Hz), 5.42 (2H, s), 6.20 (1H, br d, J = 5 Hz), 6.52 (1H, t, J = 15 Hz), 6.72 (1H, br t, J = 5 Hz), 6.80–6.90 (2H, m), 7.01–7.17 (3H, m), 7.50–7.60 (2H, m), 7.75 (2H, d, J = 8 Hz); MS (ESI) m/z 583 (M + 1). Anal. (C<sub>33</sub>H<sub>38</sub>N<sub>6</sub>O<sub>4</sub>) C, H, N.

4-[[2,6-Dichloro-3-[N-methyl-N-[(E)-4-(N-

methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2,3-

**dimethylbenzo**[*b*]**furan** (53). Following a procedure similar to method A, the title compound was obtained in 86.5% yield from 2,3-dimethylbenzo[*b*]furan-7-ol and 50a as colorless crystals after crystallization from MeCN: mp 237–238 °C; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  2.10 (3H, s), 2.32 (3H, s), 2.77 (3H, d, J = 5 Hz), 3.13 (3H, s), 3.50 (1H, dd, J = 17, 5 Hz), 3.76 (1H, dd, J = 17, 4 Hz), 5.43 (2H, s), 6.85 (1H, t, J = 15 Hz), 7.01 (1H, d, J = 8 Hz), 7.05–7.18 (2H, m), 7.40 (1H, d, J = 15 Hz), 7.63 (2H, d, J = 8 Hz), 7.73 (2H, d, J = 8 Hz), 7.77 (1H, d, J = 8 Hz), 7.85 (2H, d, J = 8 Hz), 8.32 (1H, br t, J = 5 Hz), 8.49 (1H, br q, J = 5 Hz). Anal. (C<sub>3</sub>,H<sub>2</sub>,Cl<sub>2</sub>N<sub>3</sub>O<sub>5</sub>) C, H, N.

8-[[2,6-Dimethyl-3-[N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methy

methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2-

methylquinoline Hydrochloride (54b). Following a procedure similar to method B, the title compound was obtained in 94.8% yield from 62b as a colorless amorphous solid: <sup>1</sup>H NMR (CDCl<sub>3</sub>–CD<sub>3</sub>OD)  $\delta$  2.30 (3H, s), 2.48 (3H, s), 2.99 (3H, s), 3.12 (3H, br s), 3.28 (3H, s), 3.80 (1H, d, J = 17 Hz), 3.88 (1H, d, J = 17 Hz), 5.39 (1H, d, J = 10 Hz), 5.49 (1H, d, J = 10 Hz), 6.61 (1H, d, J = 15 Hz), 7.19–7.28 (2H, m), 7.40–

7.53 (3H, m), 7.66 (1H, d, J = 8 Hz), 7.75–7.97 (5H, m), 8.90 (1H, d, J = 8 Hz). Anal. ( $C_{33}H_{34}N_4O_4$ •HCl) C, H, N.

8-[2,6-Dichloro-3-[N-methyl-N-[(E)-3-[6-(N-methylcarbamoyl)pyridin-

3-yl]acryloylglycyl]amino]benzyl]oxy]-2-methylquinoline Dihydrochloride (54c). Following a procedure similar to method B, the title compound was obtained in 90.3% yield from 62c as a colorless amorphous solid: <sup>1</sup>H NMR (CDCl<sub>3</sub>-CD<sub>3</sub>OD) δ 3.00 (3H, s), 3.13 (3H, s), 3.25 (3H, s), 3.85 (3H, d, J = 16 Hz), 4.21 (1H, d, J = 16 Hz),5.53 (1H, d, J = 10 Hz), 5.64 (1H, d, J = 10 Hz), 6.85 (1H, d, J = 16 Hz), 7.41–7.62 (4H, m), 7.73 (1H, d, J = 8 Hz), 7.78–7.88 (2H, m), 8.33 (2H, br s), 8.80 (1H, d, J = 8 Hz)8 Hz), 9.00 (1H, br s). Anal.  $(C_{30}H_{27}Cl_2N_5O_4 \cdot 2HCl)$  C, H, N. 8-[2,6-Dimethyl -3-[N-methyl-N-[(E)-3-[6-(N-methylcarbamoyl)pyridin-3-yl]acryloylglycyl]amino]benzyl]oxy]-2-methylquinoline Dihydrochloride (54d). Following a procedure similar to method B, the title compound was obtained in 81.3% yield 62d as a colorless amorphous solid: <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  2.29 (3H, s), 2.48 (3H, s), 2.82 (3H, d, J = 5 Hz), 2.92 (3H, s), 3.13 (3H, s), 3.55 (1H, dd, J = 17, 4 Hz), 3.75 (1H, dd, J = 17, 5 Hz), 5.41–5.54 (2H, m), 7.05 (1H, d, J = 15 Hz), 7.31 (1H, d, J = 8 Hz), 7.39 (1H, d, J = 8 Hz), 7.49 (1H, d, J = 15 Hz), 7.81-8.00 (4H, m),8.05 (1H, d, J = 8 Hz), 8.15 (1H, dd, J = 8, 2 Hz), 8.35 (1H, br t, J = 5 Hz), 8.74–8.84 (2H, m), 8.98 (1H, br s). Anal.  $(C_3 H_{33}N_5O_4 \cdot 2HCl) C$ , H, N.

5-[[2,6-Dichloro-3-[N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methy

methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2-

methylisoquinoline (55). Following a procedure similar to method A, the title compound was obtained in 41.3% yield from 27 and 50a as a colorless amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  2.69 (3H, s), 3.02 (3H, d, J = 5 Hz), 3.31 (3H, s), 3.70 (1H, dd, J = 17, 4 Hz), 3.99 (1H, dd, J = 17, 5 Hz), 5.47 (1H, d, J = 10 Hz), 5.51 (1H, d, J = 10 Hz), 6.16 (1H, br d, J = 5 Hz), 6.53 (1H, d, J = 15 Hz), 6.69 (1H, br t, J = 4 Hz), 7.19 (1H, d, J = 7.5 Hz), 7.40 (1H, d, J = 8 Hz), 7.45–7.64 (6H), 7.72–7.80 (3H), 9.15 (1H, s); MS (FAB) m/z 591 (M + 1). Anal. (C<sub>31</sub>H<sub>28</sub>Cl<sub>3</sub>N<sub>4</sub>O<sub>4</sub>) C, H, N.

8-[[2,6-Dichloro-3-[N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methy

methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2-

methylquinazoline (56). Following a procedure similar to method A, the title compound was obtained in 82.0% yield from 3 2 and 50a as a colorless amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  2.90 (3H, s), 3.02 (3H, d, J = 5 Hz), 3.28 (3H, s), 3.67 (1H, dd, J = 18, 4 Hz), 3.93 (1H, dd, J = 18, 4 Hz), 5.63 (2H, s), 6.20 (1H, br d, J = 5 Hz), 6.52 (1H, d, J = 16 Hz), 6.68 (1H, br t, J = 4 Hz), 7.33 (1H, d, J = 7.5 Hz), 7.41–7.62 (7H), 7.77 (2H, d, J = 8 Hz), 9.31 (1H, s); MS (FAB) m/z 592 (M + 1). Anal.

8-[[2,6-Dichloro-3-[N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methy

 $(C_{30}H_{27}Cl_2N_5O_4)$  C, H, N.

methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2-

**methylquinoxaline** (63a). Following a procedure similar to method A, the title compound was obtained in 85.8% yield from 34a and 50a as a colorless amorphous solid:  ${}^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  2.77 (3H, s), 3.02 (3H, d, J = 5 Hz), 3.28 (3H, s), 3.67 (1H, dd, J = 17, 4 Hz), 3.94 (1H, dd, J = 17, 4 Hz), 5.62 (2H, s), 6.20 (1H, br d, J = 5 Hz), 6.53 (1H, d, J = 16 Hz), 6.69 (1H, br t, J = 4 Hz), 7.29–7.38 (2H, m), 7.49–7.80 (8H, m), 8.74 (1H, s); MS (FAB) m/z 592 (M + 1). Anal. ( $C_{30}H_{27}Cl_2N_5O_4$ ) C, H, N.

8-[[2,6-Dichloro-3-[N-methyl-N-[(E)-4-(N-

methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2-

methylquinoxaline Hydrochloride (57a). Following a procedure similar to method B, the title compound was obtained in 85.3% yield from 63a as a colorless amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>–CD<sub>3</sub>OD)  $\delta$  2.89 (3H, s), 2.98 (3H, s), 3.29 (3H, s), 3.19 (1H, d, J = 17 Hz), 4.00 (1H, d, J = 17 Hz), 5.65 (2H, s), 6.62 (1H, d, J = 15 Hz), 7.44–7.63 (6H, m), 7.75–7.91 (4H, m), 8.92 (1H, s). Anal. ( $C_{30}H_{27}Cl_2N_5O_4$ •HCl) C, H, N.

8-[[2,6-Dichloro-3-[N-methyl-N-[(E)-4-(N-

methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-3-

methylquinoxaline (58). Following a procedure similar to method A, the title compound was obtained in 88.9% yield from 34b and 50a as a colorless amorphous

solid: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.78 (3H, s), 3.02 (3H, d, J = 5 Hz), 3.28 (3H, s), 3.69 (1H, dd, J = 17, 4 Hz), 3.93 (1H, dd, J = 17, 5 Hz), 5.57 (2H, s), 6.68 (1H, br d, J = 5 Hz), 6.52 (1H, d, J = 15 Hz), 6.68 (1H, br t, J = 4 Hz), 7.27 (1H, overlapped with CDCl<sub>3</sub>), 7.35 (1H, d, J = 9 Hz), 7.49–7.79 (8H, m), 8.73 (1H, s).; MS (FAB) m/z 592 (M + 1). Anal. (C<sub>30</sub>H<sub>27</sub>Cl<sub>2</sub>N<sub>5</sub>O<sub>4</sub>) C, H, N.

7-[[2,6-Dichloro-3-[N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methy

methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2-

methylquinoline (59). Following a procedure similar to method A, the title compound was obtained in 79.3% yield from 38 and 50a as a colorless amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>) δ 2.76 (3H, s), 3.03 (3H, d, J = 5 Hz), 3.29 (3H, s), 3.69 (1H, dd, J = 17, 4 Hz), 4.00 (1H, dd, J = 17, 5 Hz), 5.40 (1H, d, J = 10 Hz), 5.48 (1H, d, J = 10 Hz), 6.68 (1H, br d, J = 5 Hz), 6.53 (1H, d, J = 15 Hz), 6.70 (1H, br t, J = 4 Hz), 7.20 (2H, d, J = 8 Hz), 7.37 (1H, d, J = 8 Hz), 7.50–7.63 (5H, m), 7.69 (1H, d, J = 8 Hz), 7.77 (2H, d, J = 8 Hz), 8.00 (1H, d, J = 8 Hz); MS (FAB) m/z 591 (M + 1). Anal. ( $C_{30}H_{27}Cl_2N_5O_4$ ) C, H, N.

2-[[[2,6-Dichloro-3-[N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-

methylpyridine (60). Following a procedure similar to method A, the title compound was obtained in 47.8% yield from 2-hydroxymethyl-2-methylpyridine and **50a** as a colorless amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  2.02 (6H, s), 3.02 (3H, d, J = 5 Hz), 3.23 (3H, s), 3.59 (1H, d, J = 17, 4 Hz), 3.89 (1H, dd, J = 17, 5 Hz), 5.03 (2H, s), 5.82 (2H, s), 6.15 (1H, br d, J = 5 Hz), 6.51 (1H, d, J = 15 Hz), 6.62 (1H, br t, J = 5 Hz), 7.30 (1H, d, J = 8 Hz), 7.35–7.48 (2H, m), 7.51–7.62 (4H, m), 7.76 (2H, d, J = 8 Hz), 8.32 (1H, d, J = 5 Hz); MS (FAB) m/z 555 (M + 1). Anal. ( $C_{28}H_{28}Cl_2N_4O_4$ ) C, H, N.

3-[[2,6-Dichloro-3-[N-methyl-N-[(E)-4-(N-methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2-(2,5-dimethylpyrrolyl)pyridine (61). Following a procedure similar to method A, the

title compound was obtained in 53.9% yield from 3-hydroxy-2-(2,5-dimethylpyrrolyl)pyridine and 50a as a colorless amorphous solid: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.02 (6H, s), 3.02 (3H, d, J = 5 Hz), 3.23 (3H, s), 3.59 (1H, d, J = 17, 4 Hz), 3.89 (1H, dd, J = 17, 5 Hz), 5.03 (2H, s), 5.82 (2H, s), 6.15 (1H, br d, J = 5 Hz), 6.51 (1H, d, J = 15 Hz), 6.62 (1H, br t, J = 5 Hz), 7.30 (1H, d, J = 8 Hz), 7.35–7.48 (2H, m), 7.51–7.62 (4H, m), 7.76 (2H, d, J = 8 Hz), 8.32 (1H, d, J = 5 Hz); MS (FAB) m/z 620

8-[2,6-Dimethyl-3-[N-methyl-N-[(E)-4-(N-

(M + 1). Anal.  $(C_{32}H_{31}Cl_2N_5O_4)$  C, H, N.

methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2-

methylquinoline (62b). Following a procedure similar to method A, the title compound was obtained in 74.8% yield from 8-hydroxy-2-methylquinoline and 50b as a colorless amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  2.37 (3H, s), 2.52 (3H, s), 2.72 (3H, s), 3.00 (3H, d, J = 5 Hz), 3.26 (3H, s), 3.63 (1H, dd, J = 17, 4 Hz), 3.88 (1H, dd, J = 17, 5 Hz), 5.35 (2H, s), 6.22 (1H, br d, J = 5 Hz), 6.52 (1H, d, J = 15 Hz), 6.75 (1H, br s), 7.08 (1H, d, J = 8 Hz), 7.18 (1H, d, J = 8 Hz), 7.22–7.32 (2H, m), 7.41–7.61 (5H, m), 7.73 (2H, d, J = 8 Hz), 8.04 (1H, d, J = 8 Hz); MS (FAB) m/z 551 (M + 1). Anal. ( $C_{33}H_{34}N_4O_4$ ) C, H, N.

8-[[2,6-Dimethyl-3-[N-methyl-N-[(E)-3-[6-(N-methylcarbamoyl)pyridin-3-yl]acryloylglycyl]amino]benzyl]oxy]-2-methylquinoline (62d). Following a procedure similar to method C, the title compound was obtained in 80.2% yield 83c and methylamine hydrochloride as a colorless amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  2.37 (3H, s), 2.53 (3H, s), 2.74 (3H, s), 3.05 (3H, d, J = 5 Hz), 3.27 (3H, s), 3.64 (1H, dd, J = 17, 4 Hz), 3.90 (1H, dd, J = 17, 5 Hz), 5.36 (2H, s), 6.61 (1H, d, J = 15 Hz), 6.77 (1H, br t, J = 5 Hz), 7.07 (1H, d, J = 8 Hz), 7.18 (1H, d, J = 8 Hz), 7.22–7.33 (2H, m), 7.40–7.49 (5H, m), 7.60 (2H, d, J = 15 Hz), 7.91–7.80 (2H, m), 8.03 (1H, d, J = 8 Hz), 8.20 (1H, d, J = 8 Hz), 8.63 (1H, d, J = 2 Hz); MS (FAB) m/z 552 (M + 1). Anal. ( $C_{32}H_{33}N_5O_4$ ) C, H, N.

8-[2,6-Dimethyl-3-[N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-[(E)-4-(N-methyl-N-

methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2-

methylquinoxaline (63b). Following a procedure similar to method A, the title compound was obtained in 89.7% yield from 34a and 50b as a colorless amorphous solid:  ${}^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  2.34 (3H, s), 2.51 (3H, s), 2.77 (3H, s), 3.02 (3H, d, J = 5 Hz), 3.27 (3H, s), 3.65 (1H, dd, J = 17, 4 Hz), 3.88 (1H, dd, J = 17, 5 Hz), 5.35 (2H, s), 6.17 (1H, br d, J = 5 Hz), 6.53 (1H, d, J = 15 Hz), 6.71 (1H, br t, J = 5 Hz), 7.09 (1H, d, J = 8 Hz), 7.19 (1H, d, J = 8 Hz), 7.30 (1H, d, J = 8 Hz), 7.51–7.61 (3H, m), 7.67 (1H, t, J = 8 Hz), 7.72–7.79 (3H, m), 8.75 (1H, s); MS (ESI) m/z 552 (M + 1). Anal. ( $C_{32}$ H<sub>33</sub>N<sub>5</sub>O<sub>4</sub>) C, H, N.

8-[[2,6-Dimethyl-3-[N-methyl-N-[(E)-3-[6-(N-methyl-N-[(E)-3-[6-(N-methyl-N-[(E)-3-[6-(N-methyl-N-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-3-[(E)-2-[(E)-3-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[(E)-2-[

methylcarbamoyl)pyridin-3-yl)acryloylglycyl]amino]benzyl]oxy]-2-methylquinoxaline (63c). Following a procedure similar to method C, the title compound was obtained in 82.0% yield from 79 and methylamine hydrochloride as a colorless amorphous solid:  ${}^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  2.34 (3H, s), 2.52 (3H, s), 2.77 (3H, s), 3.04 (3H, d, J = 5 Hz), 3.28 (3H, s), 3.64 (1H, dd, J = 17, 5 Hz), 3.89 (1H, dd, J = 17, 5 Hz), 5.34 (2H, s), 6.61 (1H, d, J = 15 Hz), 6.76 (1H, br t, J = 5 Hz), 7.10 (1H, d, J = 8 Hz), 7.19 (1H, d, J = 8 Hz), 7.31 (1H, d, J = 8 Hz), 7.60 (1H, d, J = 15 Hz), 7.67 (1H, t, J = 8 Hz), 7.75 (1H, d, J = 8 Hz), 7.91–8.00 (2H, m), 8.20 (1H, d, J = 8 Hz), 8.61 (1H, d, J = 2 Hz), 8.73 (1H, s); MS (ESI) m/z 553 (M + 1). Anal. (C<sub>3</sub>, H<sub>3</sub>, N<sub>5</sub>O<sub>4</sub>) C, H, N.

2,6-Dichloro-1-hydroxymethyl-3-[N-methyl-N-(N-

**phthalimidoacetyl)amino]benzene** (65a). Using a similar procedure to that used for 49a, the title compound was obtained in 63.8% yield from 46a as colorless crystals after crystallization from MeOH: mp 237–240 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.24 (1H, t, J = 7 Hz), 3.21 (3H, s), 4.09 (2H, s), 5.04 (1H, d, J = 7 Hz), 7.43 (1H, d, J = 8 Hz), 7.48 (1H, d, J = 8 Hz), 7.67–7.75 (2H, m), 7.80–7.88 (2H, m). Anal. (C<sub>18</sub>H<sub>14</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>4</sub>) C, H, N.

2,6-Dimethyl-1-hydroxymethyl-3-[N-methyl-N-(N-

**phthalimidoacetyl)amino]benzene** (65b). Using a similar procedure to that used for 49a, the title compound was obtained in 65.4% yield from 46a as colorless crystals after crystallization from AcOEt: mp 241–243 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.47 (3H, s), 2.48 (3H, s), 3.20 (3H, s), 3.81 (1H, d, J = 17 Hz), 4.18 (1H, d, J = 17 Hz), 4.83 (2H, s), 7.14 (1H, d, J = 8 Hz), 7.19 (1H, d, J = 8 Hz), 7.68–7.75 (2H, m), 7.80–7.88 (2H, m); MS (ESI) m/z 353 (M + 1). Anal. (C<sub>20</sub>H<sub>20</sub>N<sub>2</sub>O<sub>4</sub>) C, H, N.

4-[[2,6-Dichloro-3-[N-methyl-N-(N-

phthalimidoacetyl)amino]benzyl]oxy]-2-methoxy-1-methyl-1*H*-benzimidazole (66). Using a similar procedure to that used for 68a, the title compound was obtained in 67.9% yield from 65a and 21a as colorless crystals after crystallization from MeCN: mp 199–201 °C; ¹H NMR (CDCl<sub>3</sub>)  $\delta$  3.24 (3H, s), 3.53 (3H, s), 4.10 (2H, s), 4.20 (3H, s), 5.63–5.74 (2H, m), 6.80–6.88 (2H, m), 7.10 (1H, t, J = 8 Hz), 7.43–7.55 (2H, m), 7.67–7.76 (2H, m), 7.80–7.90 (2H, m); MS (ESI) m/z 553 (M + 1). Anal. ( $C_{27}H_{22}Cl_2N_4O_5$ ) C, H, N.

4-[[2,6-Dichloro-3-[N-methyl-N-(N-

phthalimidoacetyl)amino]benzyl]oxy]-2-methylquinoxaline (67a). Using a similar procedure to that used for 68a, the title compound was obtained in 72.3% yield from 65a and 34a as colorless crystals after crystallization from MeOH: mp 218–219 °C;  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  2.78 (3H, s), 3.24 (3H, s), 4.10 (2H, s), 5.63 (1H, d, J = 10 Hz), 5.71 (1H, d, J = 10 Hz), 7.33 (1H, br d, J = 7.5 Hz), 7.50 (1H, d, J = 8 Hz), 7.54 (1H, d, J = 8 Hz), 7.63 (1H, t, J = 7.5 Hz), 7.69–7.78 (3H, m), 7.82–7.90 (2H, m), 8.73 (1H, s); MS (ESI) m/z 535 (M + 1). Anal. ( $C_{27}H_{20}Cl_2N_4O_4$ ) C, H, N.

4-[[2,6-Dimethyl-3-[N-methyl-N-(N-

phthalimidoacetyl)amino]benzyl]oxy]-2-methylquinoxaline (67b). Using a similar procedure to that used for 68a, the title compound was obtained in 72.3% yield from 65b and 34a as colorless crystals after crystallization from AcOEt: mp 124–127 °C; 

<sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 2.50 (3H, s), 2.54 (3H, s), 2.76 (3H, s), 3.22 (3H, s), 3.96 (1H, d,

J = 17 Hz), 4.20 (1H, d, J = 17 Hz), 5.37 (1H, d, J = 10 Hz), 7.20–7.35 (3H, m), 7.61–7.77 (4H, m), 7.81–7.89 (2H, m), 8.74 (1H, s); MS (ESI) m/z 495 (M + 1). Anal.  $(C_{29}H_{26}N_4O_4)$  C, H, N.

8-[[2,6-Dimethyl-3-[N-methyl-N-(N-

phthalimidoacetyl)amino]benzyl]oxy]-2-methylquinoline (68b). Using a similar procedure to that used for 68a, the title compound was obtained in 63.9% yield from 65b and 8-hydroxy-2-methylquinoline as colorless crystals after crystallization from MeOH: mp 117–119 °C; ¹H NMR (CDCl<sub>3</sub>)  $\delta$  2.51 (3H, s), 2.57 (3H, s), 2.73 (3H, s), 3.22 (3H, s), 3.96 (1H, d, J = 17 Hz), 4.19 (1H, d, J = 17 Hz), 5.38 (1H, d, J = 10 Hz), 5.43 (1H, d, J = 10 Hz), 7.17–7.32 (4H, m), 7.37–7.48 (2H, m), 7.67–7.74 (2H, m), 7.80–7.89 (2H, m), 8.02 (1H, d, J = 8 Hz). Anal. (C<sub>30</sub>H<sub>27</sub>N<sub>3</sub>O<sub>4</sub>) C, H, N.

8-[[3-(N-Aminoacetyl-N-methylamino)-2,6-dichlorobenzyl]oxy]-2-methoxy-1-methyl-1*H*-benzimidazole (69). Using a similar procedure to that used for 47a, the title compound was obtained in 78.1% yield from 66 as a pale yellow amorphous solid:  ${}^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  3.00 (1H, d, J = 15 Hz), 3.10 (1H, d, J = 15 Hz), 3.21 (3H, s), 4.16 (3H, s), 5.62 (2H, s), 6.78–6.88 (2H, m), 7.09 (1H, t, J = 8 Hz), 7.23 (1H, d, J = 8 Hz), 7.43 (1H, d, J = 8 Hz); MS (ESI) m/z 423 (M + 1). Anal. (C<sub>19</sub>H<sub>20</sub>Cl<sub>2</sub>N<sub>4</sub>O<sub>3</sub>) C, H, N.

**8-[[3-(N-Aminoacetyl-N-methylamino)-2,6-dichlorobenzyl]oxy]-2-methylquinoxaline** (**70a**). Using a similar procedure to that used for **47a**, the title compound was obtained in 91.2% yield from **67a** as a pale yellow amorphous solid: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.79 (3H, s), 3.00 (1H, d, J = 17 Hz), 3.11 (1H, d, J = 17 Hz), 3.22 (3H, s), 5.62 (2H, s), 7.23–7.33 (2H, m), 7.49 (1H, d, J = 8 Hz), 7.64 (1H, t, J = 7.5 Hz), 7.78 (1H, br d, J = 7.5 Hz), 8.75 (1H, s); MS (FAB) m/z 405 (M + 1). Anal. (C<sub>1.9</sub>H<sub>18</sub>Cl<sub>2</sub>N<sub>4</sub>O<sub>3</sub>) C, H, N.

8-[[3-(N-Aminoacetyl-N-methylamino)-2,6-dimethylbenzyl]oxy]-2-methylquinoxaline (70b). Using a similar procedure to that used for 47a, the title compound was obtained in 93.3% yield from 67b as a pale yellow amorphous solid: <sup>1</sup>H

NMR (CDCl<sub>3</sub>)  $\delta$  2.32 (3H, s), 2.51 (3H, s), 2.78 (3H, s), 2.68 (3H, s), 2.93 (1H, d, J = 17 Hz), 3.16 (1H, d, J = 17 Hz), 3.22 (3H, s), 5.34 (2H, s), 7.06 (1H, d, J = 8 Hz), 7.16 (1H, d, J = 8 Hz), 7.29 (1H, d, J = 8 Hz), 7.65 (1H, t, J = 8 Hz), 7.76 (1H, d, J = 8 0 Hz), 8.74 (1H, s); MS (FAB) m/z 405 (M + 1). Anal. (C<sub>19</sub>H<sub>18</sub>Cl<sub>2</sub>N<sub>4</sub>O<sub>2</sub>) C, H, N.

8-[[3-(N-Aminoacetyl-N-methylamino)-2,6-dichlorobenzyl]oxy]-2-methylquinoline (71a). Using a similar procedure to that used for 47a, the title compound was obtained in 91.2% yield from 68a as pale brown crystals after crystallization from diethyl ether: mp 145–149°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.76 (3H, s), 2.96 (1H, d, J = 16 Hz), 3.10 (1H, d, J = 16 Hz), 3.21 (3H, s), 5.66 (2H, s), 7.20–7.50 (6H, m), 8.02 (1H, d, J = 8 Hz). Anal. (C<sub>20</sub>H<sub>19</sub>Cl<sub>2</sub>N<sub>3</sub>O<sub>2</sub>) C, H, N.

8-[[3-(*N*-Aminoacetyl-*N*-methylamino)-2,6-dimethylbenzyl]oxy]-2-methylquinoxaline (71b). Using a similar procedure to that used for 47a, the title compound was obtained in 89.7% yield from 68b as a pale yellow amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  2.32 (3H, s), 2.51 (3H, s), 2.78 (3H, s), 2.68 (3H, s), 2.93 (1H, d, J = 17 Hz), 3.16 (1H, d, J = 17Hz), 3.22 (3H, s), 5.34 (2H, s), 7.06 (1H, d, J = 8 Hz), 7.16 (1H, d, J = 8 Hz), 7.29 (1H, d, J = 8 Hz), 7.65 (1H, t, J = 8 Hz), 7.76 (1H, d, J = 8 Hz), 8.74 (1H, s); MS (FAB) m/z 365 (M + 1). Anal. (C<sub>21</sub>H<sub>24</sub>N<sub>4</sub>O<sub>2</sub>) C, H, N.

4-[[2,6-Dichloro-3-[N-[(E)-4-(N,N-

dimethylcarbamoyl)cinnamamidoacetyl]-*N*-methylamino]benzyl]oxy]-2-methoxy-1-methyl-1*H*-benzimidazole (72). Following a procedure similar to method E, the title compound was obtained in 71.2% yield from 69a and (*E*)-4-(*N*,*N*-dimethylcarbamoyl)cinnamic acid<sup>23</sup> as a colorless amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  2.98 (3H, br s), 3.11 (3H, br s), 3.27 (3H, s), 3.53 (3H, s), 3.65 (1H, dd, J = 17, 5 Hz), 3.93 (1H, dd, J = 17, 5 Hz), 4.18 (3H, s), 5.63 (2H, s), 6.50 (1H, d, J = 15 Hz), 6.55 (1H, br t, J = 5 Hz), 6.80–6.87 (2H, m), 7.10 (1H, t, J = 8 Hz), 7.30 (1H, d, J = 8 Hz), 7.38–7.61 (6H, m); MS (ESI) m/z 624 (M + 1). Anal. ( $C_{31}H_{31}Cl_2N_5O_5$ ) C, H, N.

4-[[3-[N-[(E)-3-(6-Acetamidopyridin-3-yl)acryloylglycyl]-N-methylamino]-2,6-dichlorobenzyl]oxy]-2-methoxy-1-methyl-1<math>H-

**benzimidazole** (73a). Following a procedure similar to method E, the title compound was obtained in 75.7% yield from 69a and (*E*)-3-(6-acetamidopyridin-3-yl)acrylic acid<sup>23</sup> as a colorless amorphous solid: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.21 (3H, s), 3.28 (3H, s), 3.53 (3H, s), 3.66 (1H, dd, J = 17, 4 Hz), 3.95 (1H, dd, J = 17, 5 Hz), 4.19 (3H, s), 5.66 (2H, s), 6.46 (1H, d, J = 15 Hz), 6.68 (1H, br t, J = 5 Hz), 6.80–6.88 (2H, m), 7.10 (1H, t, J = 8 Hz), 7.29 (1H, d, J = 8 Hz), 7.44–7.56 (2H, m), 7.83 (1H, dd, J = 17, 4 Hz), 8.07 (1H, br s), 8.20 (1H, d, J = 8 Hz), 8.35 (1H, br s); MS (ESI) m/z 611 (M + 1). Anal. ( $C_{29}H_{28}Cl_2N_6O_5$ ) C, H, N.

4-[[3-[N-[(E)-3-(6-Acetamidopyridin-3-yl)acryloylglycyl]-N-methylamino]-2,6-dimethylbenzyl]oxy]-2-methoxy-1-methyl-1H-benzimidazole (73b). Following a procedure similar to method A the title compound was obtained in 63.7% yield from 21a and 50c as a colorless amorphous solid:  $^{1}H$  NMR (CDCl<sub>3</sub>)  $\delta$  2.21 (3H, s), 2.33 (3H, s), 2.50 (3H, s), 3.26 (3H, s), 3.54 (3H, s), 3.62 (1H, dd, J = 17, 5 Hz), 3.88 (1H, dd, J = 17, 5 Hz), 4.19 (3H, s), 5.40 (2H, s), 6.47 (1H, d, J = 15 Hz), 6.72 (1H, br t, J = 5 Hz), 6.81–6.89 (2H, m), 7.03–7.18 (3H, m), 7.51 (1H, d, J = 15 Hz), 7.84 (1H, dd, J = 8, 2 Hz), 8.11 (1H, br s), 7.21 (1H, br d, J = 8 Hz), 8.36 (1H, br s); MS (ESI) m/z 571 (M + 1). Anal. ( $C_{31}H_{34}N_6O_5$ ) C, H, N. 8-[[2,6-Dichloro-3-[N-[(E)-4-(N,N-

dimethylcarbamoyl)cinnamamidoacetyl]-*N*-methylamino]benzyl]oxy]-2-methylquinoxaline (74a). Following a procedure similar to method E, the title compound was obtained in 66.1% yield from 70a and (*E*)-4-(*N*,*N*-dimethylcarbamoyl)cinnamic acid<sup>23</sup> as colorless crystals after crystallization from isopropyl ether: mp 110–114 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.77 (3H, s), 2.98 (3H, br s), 3.11 (3H, br s), 3.27 (3H, s), 3.67 (1H, dd, J = 17, 4 Hz), 3.95 (1H, dd, J = 17, 5 Hz), 5.62 (2H, s), 6.51 (1H, d, J = 15 Hz), 6.68 (1H, br t, J = 5 Hz), 7.28–7.36 (2H, m), 7.42 (2H, d, J = 8 Hz), 7.48–7.70 (5H, m), 7.76 (1H, d, J = 8 Hz), 8.74 (1H, s). Anal. ( $C_{31}H_{20}Cl_3N_5O_4$ ) C, H, N.

8-[[2,6-Dimethyl-3-[N-](E)-4-(N,N-

dimethylcarbamoyl)cinnamamidoacetyl]-*N*-methylamino]benzyl]oxy]-2-methylquinoxaline (74b). Following a procedure similar to method E, the title compound was obtained in 66.1% yield from 70b and (*E*)-4-(*N*,*N*-dimethylcarbamoyl)cinnamic acid<sup>23</sup> as a colorless amorphous solid: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.31 (3H, s), 2.50 (3H, s), 2.73 (3H, s), 2.98 (3H, br s), 3.11 (3H, s), 3.26 (3H, s), 3.63 (1H, dd, J = 17, 4 Hz), 3.87 (1H, dd, J = 17, 5 Hz), 5.34 (2H, s), 6.50 (1H, d, J = 15 Hz), 6.68 (1H, br t, J = 5 Hz), 7.08 (1H, d, J = 8 Hz), 7.18 (1H, d, J = 8 Hz), 7.30 (1H, d, J = 8 Hz), 7.41 (2H, d, J = 8 Hz), 7.48–7.60 (5H, m), 7.65 (1H, t, J = 8 Hz), 7.75 (1H, d, J = 8 Hz), 8.73 (1H, s); MS (ESI) m/z 566 (M + 1). Anal. (C<sub>33</sub>H<sub>35</sub>N<sub>5</sub>O<sub>4</sub>) C, H, N.

8-[[2,6-Dichloro-3-[N-methyl-N-[(E)-4-(2-oxo-pyrrolidin-1-yl)cinnamamidoacetyl]amino]benzyl]oxy]-2-methylquinoxaline (75a). Following a procedure similar to method E, the title compound was obtained in 74.5% yield from 70a and (E)-4-(2-oxo-pyrrolidin-1-yl)cinnamic acid<sup>23</sup> as a colorless amorphous solid: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.12–2.25 (2H, m), 2.63 (2H, t, J = 7.5 Hz), 2.78 (3H, s), 3.28 (3H, s), 3.65 (1H, dd, J = 17, 4 Hz), 3.85–4.00 (3H, m), 5.62 (2H,

2.78 (3H, s), 3.28 (3H, s), 3.65 (1H, dd, J = 17, 4 Hz), 3.85–4.00 (3H, m), 5.62 (2H s), 6.43 (1H, d, J = 15 Hz), 6.59 (1H, br t, J = 4 Hz), 7.29–7.38 (2H, m), 7.48–7.70 (7H, m), 7.78 (1H, d, J = 8 Hz), 8.73 (1H, s); MS (FAB) m/z 618 (M + 1). Anal.  $(C_{32}H_{29}Cl_2N_5O_4)$  C, H, N.

8-[[2,6-Dimethyl-3-[N-methyl-N-[(E)-4-(2-oxo-pyrrolidin-1-yl)cinnamamidoacetyl]amino]benzyl]oxy]-2-methylquinoxaline (75b). Following a procedure similar to method E, the title compound was obtained in 92.7% yield from 70b and (E)-4-(2-oxo-pyrrolidin-1-yl)cinnamic acid<sup>23</sup> as a colorless amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  2.11–2.23 (2H, m), 2.34 (3H, s), 2.50 (3H, s), 2.62 (2H, t, J = 7.5 Hz), 2.77 (3H, s), 3.26 (3H, s), 3.64 (1H, dd, J = 17, 5 Hz), 3.81–3.91 (3H, m), 5.35 (2H, s), 6.42 (1H, d, J = 15 Hz), 6.64 (1H, br s), 7.10 (1H, d, J = 8 Hz), 7.19 (1H, d, J = 8 Hz), 7.30 (1H, d, J = 8 Hz), 7.48–7.57 (3H, m), 7.62–7.70

(3H, m), 7.75 (1H, d, J = 8 Hz), 8.74 (1H, s); MS (FAB) m/z 578 (M + 1). Anal. ( $C_{34}H_{35}N_5O_4$ ) C, H, N.

8-[[3-[N-[(E)-4-(Acetamido)cinnamidoacetyl]-N-methylamino]-2,6-dichlorobenzyl]oxy]-2-methylquinoxaline (77a). Following a procedure similar to method E, the title compound was obtained in 84.7% yield from 70a and (E)-4-(acetamido)cinnamic acid as a colorless amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  2.15 (3H, s), 2.76 (3H, s), 3.26 (3H, s), 3.64 (1H, dd, J = 17, 4 Hz), 3.92 (1H, dd, J = 17, 5 Hz), 5.61 (2H, s), 6.39 (1H, d, J = 15 Hz), 6.61 (1H, br t, J = 4 Hz), 7.28–7.35 (2H, m), 7.40–7.58 (6H, m), 7.62–7.71 (2H, m), 7.78 (1H, d, J = 8 Hz), 8.74 (1H, s); MS (FAB) m/z 592 (M + 1). Anal. ( $C_{10}$ H<sub>27</sub>Cl<sub>2</sub>N<sub>5</sub>O<sub>4</sub>) C, H, N.

8-[[3-[N-[(E)-4-(Acetamido)cinnamidoacetyl]-N-methylamino]-2,6-dichlorobenzyl]oxy]-2-methylquinoxaline Hydrochloride (76a). Following a procedure similar to method B, the title compound was obtained in 89.5% yield from 77a as a colorless amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>-CD<sub>3</sub>OD)  $\delta$  2.17 (3H, s), 2.91 (3H, s), 3.29 (3H, s), 3.69 (1H, d, J = 17 Hz), 3.98 (1H, d, J = 17 Hz), 5.62 (2H, s), 6.43 (1H, d, J = 15 Hz), 7.40–7.59 (8H, m), 7.87 (1H, br t, J = 8 Hz), 7.95 (1H, br d, J = 8 Hz), 8.90 (1H, s). Anal. (C<sub>30</sub>H<sub>27</sub>Cl<sub>2</sub>N<sub>5</sub>O<sub>4</sub>•HCl) C, H, N.

8-[[3-[N-[(E)-3-(6-Acetylaminopyridine-3-yl)acryloylglycyl]-N-methylamino]-2,6-dimethylbenzyl]oxy]-2-methylquinoxaline (77b). Following a procedure similar to method E, the title compound was obtained in 84.7% yield from 70b and (E)-3-(6-acetamidopyridin-3-yl)acrylic acid<sup>23</sup> as a colorless amorphous solid:  ${}^{1}H$  NMR (CDCl<sub>3</sub>)  $\delta$  2.22 (3H, s), 2.35 (3H, s), 2.51 (3H, s), 2.77 (3H, s), 3.27 (3H, s), 3.64 (1H, dd, J = 17, 5 Hz), 3.87 (1H, dd, J = 17, 5 Hz), 5.35 (2H, s), 6.47 (1H, d, J = 15 Hz), 6.71 (1H, br t, J = 5 Hz), 7.10 (1H, d, J = 8 Hz), 7.31 (1H, d, J = 8 Hz), 7.51 (1H, d, J = 15 Hz), 7.67 (1H, t, J = 8 Hz), 7.76 (1H, d, J = 8 Hz), 7.85 (1H, d, J = 8 Hz), 8.07 (1H, br s), 7.21 (1H, br d, J = 8 Hz), 8.36 (1H, br s), 8.74 (1H, s); MS (ESI) m/z 553 (M + 1). Anal. ( $C_{31}H_{32}N_6O_4$ ) C, H, N.

8-[[2,6-Dimethyl-3-[N-[(E)-3-(6-ethoxycarbonylpyridin-3-yl)acryloylglycyl]-N-methylamino]benzyl]oxy]-2-methylquinolxaine (78). Following a procedure similar to method E, the title compound was obtained in 81.5% yield from 70b and (E)-3-(6-ethoxycarbonylpyridin-3-yl)acrylic acid<sup>23</sup> as a colorless amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  1.45 (3H, t, J = 7.5 Hz), 2.33 (3H, s), 2.51 (3H, s), 2.77 (3H, s), 3.27 (3H, s), 3.64 (1H, dd, J = 17, 5 Hz), 3.89 (1H, dd, J = 17, 4 Hz), 4.49 (2H, q, J = 7.5 Hz), 5.35 (2H, s), 6.63 (1H, d, J = 15 Hz), 6.78 (1H, br t, J = 5 Hz), 7.10 (1H, d, J = 8 Hz), 7.20 (1H, d, J = 8 Hz), 7.31 (1H, d, J = 8 Hz), 7.60 (1H, d, J = 15 Hz), 7.67 (1H, t, J = 8 Hz), 7.76 (1H, d, J = 8 Hz), 7.92 (1H, dd, J = 8, 3 Hz), 8.14 (1H, d, J = 8 Hz), 8.74 (1H, br s), 8.85 (1H, d, J = 3 Hz); MS (ESI) m/z 568 (M + 1). Anal. (C<sub>12</sub>H<sub>33</sub>N<sub>5</sub>O<sub>5</sub>) C, H, N.

8-[[3-[N-[(E)-3-(6-Carboxypyridin-3-yl)acryloylglycyl]-Nmethylamino]-2,6-dimethylbenzyl]oxy]-2-methylquinoxaline (79). Using a similar procedure to that used for 83a, the title compound was obtained in 90.3% yield from 78 as a pale yellow amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>) & 2.36 (3H, s), 2.51 (3H, s), 2.78 (3H, s), 3.28 (3H, s), 3.66 (1H, dd, J = 17, 5 Hz), 3.90 (1H, dd, J = 17, 5 Hz), 5.35 (2H, s), 6.68 (1H, d, J = 15 Hz), 6.83 (1H, br t, J = 5 Hz), 7.10 (1H, d, J = 8 Hz), 7.20 (1H, d, J = 8 Hz), 7.31 (1H, d, J = 8 Hz), 7.58–7.70 (2H, m), 7.77 (1H, d, J = 8 Hz), 8.02 (1H, dd, J = 8, 2 Hz), 8.21 (1H, d, J = 8 Hz), 8.70 (1H, br d, J = 2 Hz), 8.75 (1H, s); MS (ESI) m/z 540 (M + 1). Anal. ( $C_{30}$ H<sub>20</sub>N<sub>5</sub>O<sub>5</sub>) C, H, N.

8-[[2,6-Dichloro-3-[N-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(3-methyl-N-[(E)-3-(E)-(E)-3-(3-methyl-N-[(E)-3-(E)-3-(3-methyl-N-[(E)-3-(E)-3-((E)-3-(

pyridinyl)acryloylglycyl]amino]benzyl]oxy]-2-methylquinoline (80b). Following a procedure similar to method E, the title compound was obtained in 87.8% yield from 71a and (*E*)-3-(3-pyridyl)acrylic acid as a colorless amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  2.72 (3H, s), 3.27 (3H, s), 3.67 (1H, dd, J = 17, 4 Hz), 3.95 (1H, dd, J = 17, 5 Hz), 5.65 (2H, s), 6.57 (1H, d, J = 15 Hz), 6.77 (1H, br t, J = 4 Hz), 7.21–7.64 (8H, m), 7.80 (1H, dt, J = 8, 1 Hz), 8.03 (1H, d, J = 8 Hz), 8.57 (1H, dd, J = 5, 1 Hz), 8.72 (1H, d, J = 1 Hz). Anal. ( $C_{28}$ H<sub>24</sub>Cl<sub>2</sub>N<sub>4</sub>O<sub>3</sub>) C, H, N.

8-[[3-[N-[(E)-Cinnamamidoacetyl]-N-methylamino]-2,6-dichlorobenzyl]oxy]-2-methylquinoline Hydrochloride (81a). Following a procedure similar to method B, the title compound was obtained in 92.1% yield from 80a as a pale yellow amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>-CD<sub>3</sub>OD)  $\delta$  3.09 (3H, s), 3.21 (3H, s), 3.91 (2H, s), 5.59 (1H, d, J = 10 Hz), 5.79 (1H, d, J = 10 Hz), 6.59 (1H, d, J = 16 Hz), 7.28–7.69 (8H, m), 7.72 (1H, br d, J = 8 Hz), 7.81–8.03 (3H, m), 8.98 (1H, d, J = 8 Hz). Anal. ( $C_{29}$ H<sub>25</sub>Cl<sub>2</sub>N<sub>3</sub>O<sub>3</sub>•HCl) C, H, N.

8-[[2,6-Dichloro-3-[N-methyl-N-[(E)-3-(3-

**Dihydrochloride** (81b). Following a procedure similar to method B, the title compound was obtained in 89.2% yield from 80b and (*E*)-3-(3-pyridyl)acrylic acid as a colorless amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>–CD<sub>3</sub>OD)  $\delta$  2.90 (3H, s), 3.15 (3H, s), 3.60 (1H, dd, J = 16, 5 Hz), 3.92 (1H, dd, J = 16, 5 Hz), 5.64 (2H, s), 7.08 (1H, d, J = 15 Hz), 7.53 (1H, d, J = 15 Hz), 7.77–8.00 (7H, m), 8.43–8.59 (2H, m), 8.77 (1H, d, J = 8 Hz), 8.90–9.08 (2H, m). Anal. ( $C_{28}H_{24}Cl_2N_4O_3$ •HCl) C, H, N.

8-[[2,6-Dichloro-3-[N-[(E)-4-(methoxycarbonyl)cinnamamidoacetyl]-N-methylamino]benzyl]oxy]-2-methylquinoline (82a). Following a procedure similar to method E, the title compound was obtained in 92.3% yield from 71a and (E)-4-(methoxycarbonyl)cinnamic acid as a colorless amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  2.74 (3H, s), 3.27 (3H, s), 3.64 (1H, dd, J = 17, 4 Hz), 3.87–4.00 (4H, m), 5.60–5.70 (2H, m), 6.57 (1H, d, J = 15 Hz), 6.75 (1H, br t, J = 5 Hz), 7.24–7.63 (11H, m), 8.03 (1H, m). Anal. ( $C_{31}H_{27}Cl_2N_3O_5$ ) C, H, N.

8-[[2,6-Dichloro-3-[N-[(E)-3-(6-ethoxycarbonylpyridin-3-yl)acryloylglycyl]-N-methylamino]benzyl]oxy]-2-methylquinoline (82b). Following a procedure similar to method E, the title compound was obtained in 83.5% yield from 71a and (E)-3-(6-ethoxycarbonylpyridin-3-yl)acrylic acid<sup>23</sup> as a colorless amorphous solid: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.45 (3H, t, J = 7.5 Hz), 2.72 (3H, s), 3.27 (3H, s), 3.70 (1H, dd, J = 17, 5 Hz), 3.94 (1H, dd, J = 17, 5 Hz), 4.49 (2H, q, J = 7.5 Hz),

5.59–5.70 (2H, m), 6.66 (1H, d, J = 15 Hz), 6.80 (1H, br t, J = 5 Hz), 7.22–7.35 (3H, m), 7.37–7.53 (3H, m), 7.60 (1H, d, J = 15 Hz), 7.91 (1H, m), 8.02 (1H, d, J = 8 Hz), 8.12 (1H, d, J = 8 Hz), 8.84 (1H, m). Anal.  $(C_{31}H_{28}Cl_2N_4O_5)$  C, H, N.

8-[[2,6-Dimethyl-3-[N-[(E)-3-(6-ethoxycarbonylpyridin-3-yl)acryloylglycyl]-N-methylamino]benzyl]oxy]-2-methylquinoline (82c). Following a procedure similar to method E, the title compound was obtained in 88.2% yield from 71b and (E)-3-(6-ethoxycarbonylpyridin-3-yl)acrylic acid<sup>23</sup> as a colorless amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  1.45 (3H, t, J = 7.5 Hz), 2.38 (3H, s), 2.53 (3H, s), 2.72 (3H, s), 3.26 (3H, s), 3.64 (1H, dd, J = 18, 4 Hz), 3.90 (1H, dd, J = 18, 4 Hz), 4.49 (2H, q, J = 7.5 Hz), 5.36 (2H, s), 6.64 (1H, d, J = 16 Hz), 6.78 (1H, br t, J = 5 Hz), 7.08 (1H, d, J = 8 Hz), 7.18 (1H, d, J = 8 Hz), 7.23–7.33 (2H, m), 7.39–7.49 (2H, m), 7.61 (1H, d, J = 16 Hz), 7.92 (1H, dd, J = 8, 2 Hz),8.03 (1H, d, J = 8 Hz), 8.13 (1H, d, J = 8 Hz), 8.84 (1H, d, J = 2 Hz); MS (ESI) m/z 567 (M + 1). Anal. ( $C_{33}H_{34}N_4O_5$ ) C, H, N.

8-[[3-[N-[(E)-3-(6-Carboxypyridin-3-yl)acryloylglycyl]-N-methylamino]-2,6-dichlorobenzyl]oxy]-2-methylquinoine (83b). Using a similar procedure to that used for 83a, the title compound was obtained in 86.6% yield from 82b as a colorless amorphous solid:  $^{1}$ H NMR (DMSO- $d_{6}$ )  $\delta$  2.58 (3H, s), 3.13 (3H, s), 3.50 (1H, dd, J = 17, 5 Hz), 3.80 (1H, dd, J = 17, 5 Hz), 5.46 (1H, d, J = 10

Hz), 5.53 (1H, d, J = 10 Hz), 6.95 (1H, d, J = 15 Hz), 7.30–7.57 (5H, m), 7.78 (2H, br s), 8.02 (1H, d, J = 8 Hz), 8.10 (1H, d, J = 8 Hz), 8.20 (1H, d, J = 8 Hz), 8.45 (1H, br t, J = 5 Hz), 8.85 (1H, s). Anal.  $(C_{29}H_{24}Cl_{2}N_{4}O_{5})$  C, H, N.

8-[[3-[N-[(E)-3-(6-Carboxypyridin-3-yl)acryloylglycyl]-N-methylamino]-2,6-dimethylbenzyl]oxy]-2-methylquinoine (83c). Using a similar procedure to that used for 83a, the title compound was obtained in 80.4% yield from 82c as a colorless amorphous solid:  $^{1}$ H NMR (DMSO- $d_{6}$ )  $\delta$  2.33 (3H, s), 2.46 (3H, s), 2.61 (3H, s), 3.13 (3H, s), 3.51 (1H, dd, J = 17, 5 Hz), 3.71 (1H, dd, J = 17, 5 Hz), 5.25–5.37 (2H, m), 7.00 (1H, d, J = 15 Hz), 7.25 (1H, d, J = 8 Hz), 7.37 (1H, d, J = 8 Hz), 7.37–7.57 (5H, m), 8.00 (1H, d, J = 8 Hz), 8.08 (1H, d, J = 8 Hz), 8.21 (1H, d, J = 8 Hz), 8.33 (1H, br t, J = 5 Hz), 8.78 (1H, br s); MS (ESI) m/z 539 (M + 1). Anal. ( $C_{31}H_{30}N_4O_5$ ) C, H, N.

8-[[3-[N-[(E)-3-Carboxycinnamamidoacetyl-N-methylamino]-2,6-dichlorobenzyl]oxy]-2-methylquinoline (83d). Using a similar procedure to that used for 83a, the title compound was obtained in 84.6% yield from 82d as colorless crystals after crystallization from MeCN: mp 162–164 °C; ¹H NMR (DMSO- $d_6$ )  $\delta$  2.70 (3H, s), 3.26 (3H, s), 3.65 (1H, d, J = 16 Hz), 4.00 (1H, d, J = 16 Hz), 5.58 (2H, s), 6.60 (1H, d, J = 16 Hz), 7.20–7.68 (9H, m), 8.00 (1H, d, J = 7.5 Hz), 8.06 (1H, d, J = 8 Hz), 8.20 (1H, br s); MS (FAB) m/z 578 (M + 1). Anal. ( $C_{30}H_{25}Cl_2N_3O_5$ ) C, H, N. 8-[[2,6-Dichloro-3-[N-methyl-N-[(E)-3-(N-

methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2-

**methylquinoline** (84). Following a procedure similar to method C, the title compound was obtained in 74.8% yield from 83d and methylamine hydrochloride as a colorless amorphous solid:  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$  2.70 (3H, s), 2.99 (3H, br s), 3.25 (3H, s), 3.66 (3H, br dd, J = 16, 4 Hz), 3.95 (3H, br dd, J = 16, 4 Hz), 5.65 (2H, s), 6.45–6.60 (2H, m), 6.50 (1H, m), 7.21–7.69 (9H, m), 7.75 (1H, d, J = 8 Hz), 7.87 (1H, br s), 8.04 (1H, d, J = 8 Hz). Anal. (C<sub>31</sub>H<sub>28</sub>Cl<sub>2</sub>N<sub>4</sub>O<sub>4</sub>) C, H, N.