J. Med. Chem., 1996, 39(23), 4537-4539, DOI:10.1021/jm960535w

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

Method A

trans 6-Acetyl-4S-amino-3,4-dihydro-2,2-dimethyl-2H-benzo[b]pyran-3R-ol $4 \mathrm{~b}(0.61 \mathrm{~g} ; 2.6 \mathrm{mmol})$ and dry triethylamine $(2 \mathrm{ml})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{ml})$ were cooled to $0^{\circ} \mathrm{C}$ and treated with benzoyl chloride $(0.4 \mathrm{ml}$; 3.4 mmol) according to the published procedure. ${ }^{4 \mathrm{a}}$ Recrystallization from ethyl acetate $/ n$-pentane gave compound 5m ($0.61 \mathrm{~g} ; 70 \%$)
m.p. $188-91^{\circ} \mathrm{C} ;\left[\alpha_{D}\right]^{20}+20.5^{\circ}($ c. 0.89% in MeOH$) ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.34\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CMe}_{2}\right], 1.54[\mathrm{~s}, 3 \mathrm{H}$, CMe_{2}), $2.50[\mathrm{~s}, 3 \mathrm{H}, \mathrm{COMe}], 3.78[\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3], 4.62[\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}], 5.27[\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $4], 6.68[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCO}], 6.90[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8], 7.36-7.62[\mathrm{~m}, 3 \mathrm{H}$, aromatic], 7.73 $7.90[\mathrm{~m}, 3 \mathrm{H}$, aromatic $], 7.97(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$

Method B

8-Acetyl-3,4-epoxy-3,4-dihydro-2,2-dimethyl-2H-benzo[b]pyran $\quad(0.60 \mathrm{~g} ; 2.8 \mathrm{mmol})$ and 4fluorobenzamide $2 \mathrm{e}(0.77 \mathrm{~g} ; 5.5 \mathrm{mmol})$ in t-butanol $(18 \mathrm{ml})$ was stirred at 25° and treated with potassium t butoxide $(0.62 \mathrm{~g} ; 5.5 \mathrm{mmol})$ under argon. After 3 h , the mixture was heated to $45^{\circ} \mathrm{C}$ for 5 h and then allowed to cool. The mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtAc $(\times 2)$. The organic extracts were washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation gave the crude product as a beige solid (1.15g). Chromatography on Kieselgel 60 using an ethyl acetate-n-pentane gradient elution, followed by recrystallization from ethyl acetate gave compound $\mathbf{5 e}$ as off white crystals $(0.26 \mathrm{~g} ; 26 \%)$. m.p. $263-4^{\circ} \mathrm{C}$; NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 1.27\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.51\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 2.56[\mathrm{~s}, 3 \mathrm{H}, \mathrm{COMe}$, $3.82[\mathrm{dd}, J=10,5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3], 5.11[\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4], 5.73[\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}], 6.96[\mathrm{t}, J=7$
$\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6], 7.31$ [m, $3 \mathrm{H}, \mathrm{H}-7+$ aromatic, overlapping], 7.46 [dd, $J=7,1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5], 8.02[\mathrm{~m}, 2 \mathrm{H}$, aromatic], 8.84 [d, $8,1 \mathrm{H}, \mathrm{CONH}]$.

Anticonvulsant Properties in the Mouse MEST Test ${ }^{7}$

In this model, groups of $10-20$ naive mice (male CD1-Charles River, $25-30 \mathrm{~g}$) were lightly restrained. The threshold current (ca.12mA, applied via corneal electrodes) for the induction of tonic hindlimb extension seizures in $50 \%\left(\mathrm{CC}_{50}\right)$ of the animals was determined using a Hugo Sachs Elektronic stimulator which delivered a constant current (0.1 s duration, 50 Hz , sinewave form, fully adjustable between $1-300 \mathrm{~mA}$). Mice were assessed for production of a tonic hindlimb extension seizure following a single corneal electroshock using an "up and down" method of shock titration. ${ }^{7}$ The effects of drug treatment were expressed as a percentage change from vehicle control values and statistical comparisons between groups were made according to the method of Litchfield and Wilcoxon. ${ }^{12}$ The compounds were administered orally as a fine suspension in 1% methylcellulose one hour before electroshock application.

Radioligand Binding Studies

$\left[{ }^{3} \mathrm{H}\right]$ SB 204269 selectively labels a novel class of CNS receptor sites. Displacement of this specific binding in vitro by novel compounds in well-washed, frozen rat whole forebrain membranes was as described by Herdon et al. ${ }^{6}$ Ki values were determined by using the Cheng-Prusoff equation and all determinations were performed in triplicate.

Analytical Data for 4-Amido-2H-benzo[b]pyran-3-ols in Table 1

Cpd No.	Found			Theoretical			Formula	$\begin{gathered} {\left[\alpha_{D}\right]^{20}(c .1 \% \text { in }} \\ M e O H) \end{gathered}$
	C	H	N	C	H	N		
5 a	- Nd	-	-	-	-	-	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{FNO}_{4}{ }^{\text {a }}$	(\pm)
5b	65.32	5.55	3.90	65.57	5.74	3.83	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{FNO}_{4} 0.5 \mathrm{H}_{2} \mathrm{O}$	$+25.7^{\circ}$
5c	65.53	5.79	3.91	65.57	5.74	3.83	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{FNO}_{4} 0.5 \mathrm{H}_{2} \mathrm{O}$	-25.9 ${ }^{\circ}$
5d	- Nd	.	-	-	-	-	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{FNO}_{4}{ }^{\text {b }}$	(\pm)
5 e	66.99	5.67	3.99	67.22	5.64	3.92	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{FNO}_{4}$	(\pm)
51	67.05	5.07	8.35	67.05	5.03	8.23	$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{3}$	+39.2 ${ }^{\circ}$
5 g	60.05	4.78	7.89	60.00	4.76	7.77	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{5}$	(\pm)
5h	62.23	4.97	3.23	63.28	4.87	3.07	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{FNO}_{5} \mathrm{~S}$	(\pm
51	55.64	4.04	3.29	55.43	3.95	3.23	$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{NO}_{4}$	+71.20
51	64.47	5.12	4.22	64.86	5.14	4.20	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NO}_{3}$	(\pm
5k	69.83	6.50	4.07	69.29	6.12	4.25	$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FNO}_{3}{ }^{\text {c }}$	(\pm)
51	67.82	6.00	3.53	67.91	5.97	3.77	$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{FNO}_{4}$	(\pm)
5 m	71.53	5.38	3.66	71.59	5.29	3.34	$\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{FNO}_{4}$	(\pm)
5n	63.95	5.66	4.03	64.34	5.40	3.75	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{FNO}_{5}$	(\pm)
50	63.62	5.32	7.84	63.68	5.34	7.82	$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}_{4}$	(\pm
5p	70.39	6.29	4.12	70.78	6.19	4.13	$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{4}$	$+20.5^{\circ}$
$5 q$	64.01	5.43	3.93	64.26	5.39	3.75	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClNO}_{4}$	(\pm)
5 r	64.08	5.24	4.08	64.26	5.39	3.75	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClNO}_{4}$	+6.8 ${ }^{\circ}$
5s	64.13	5.44	3.87	64.26	5.39	3.75	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClNO}_{4}$	$+21.9^{\circ}$
5t	51.71	4.40	3.05	51.63	4.33	3.01	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{4}$	+15.5 ${ }^{\circ}$
5u	69.32	7.65	4.17	69.54	7.88	4.05	$\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{4}$	(\pm

a CIMS m/z $358.1346\left(\mathrm{MH}^{+}\right)$
b EIMS m/z $357.1379\left(\mathrm{M}^{+}\right)$
c EIMS m/z 329(M $\left.{ }^{+} ; 2 \%\right), 311$ (10), 296 (60), 123 (100)
Nd : Not determined.

5a $\operatorname{NMR}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 1.22\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.41\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 2.29[\mathrm{~s}, 3 \mathrm{H}, \mathrm{COMe}], 3.68[\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-3], 5.16[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4], 5.45[\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}], 6.88[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8], 7.27$ [m, 3 H , aromatic], 7.89 [m, 2 H , aromatic], $8.68[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCO}]$

5b $\operatorname{NMR}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 1.24\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.44\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 2.44[\mathrm{~s}, 3 \mathrm{H}, \mathrm{COMe}], 3.78[\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-3], 5.08[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4], 5.72[\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}], 6.90[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8], 7.35[\mathrm{~m}$, 2 H , aromatic], $7.70[\mathrm{~s}, 1 \mathrm{H}$, aromatic $\mathrm{H}-5], 7.80[\mathrm{~m}, 1 \mathrm{H}$, aromatic], $8.03[\mathrm{~m}, 2 \mathrm{H}$, aromatic], 8.82 [d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCO}]$

5c NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 1.30\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.52\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 2.50[\mathrm{~s}, 3 \mathrm{H}, \mathrm{COMe}], 3.85[\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-3], 5.26[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4], 5.80[\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}], 6.90[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8], 7.43$ [m, 2 H , aromatic], 7.77 [s, 1 H , aromatic $\mathrm{H}-5], 7.85[\mathrm{~m}, 1 \mathrm{H}$, aromatic], $8.10[\mathrm{~m}, 2 \mathrm{H}$, aromatic], 8.90 [d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCO}]$

5d $\operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.31\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.52\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 2.54[\mathrm{~s}, 3 \mathrm{H}, \mathrm{COMe}], 3.79[\mathrm{dd}, J=$ $10,5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3], 4.31[\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}], 5.29[\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4], 6.55[\mathrm{~d}, J=9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CONH}], 7.17[\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic $], 7.38[\mathrm{~m}, 2 \mathrm{H}$, aromatic], $7.50[\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic], $7.86[\mathrm{~m}, 2 \mathrm{H}$, aromatic]

5e $\quad \mathrm{NMR}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 1.27\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.51\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 2.56[\mathrm{~s}, 3 \mathrm{H}, \mathrm{COMe}], 3.82$ [dd, J $=10,5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3], 5.11[\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4], 5.73[\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}], 6.96[\mathrm{t}, J=7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6], 7.31[\mathrm{~m}, 3 \mathrm{H}$, aromatic], $7.46[\mathrm{dd}, J=6,1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5] .8 .02$ [m, 2 H , aromatic], 8.84 [d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCO}]$

5f $\quad \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.34\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.55\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 3.77[\mathrm{dd}, J=10,5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3]$, $4.13[\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}], 5.28[\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4], 6.33[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCO}], 6.94$ [d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic $\mathrm{H}-8], 7.18[\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic], 7.51 [dd, $J=8,1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7]$, $7.62[\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5], 7.86[\mathrm{~m}, 2 \mathrm{H}$, aromatic]
$5 \mathrm{~g} \quad \mathrm{NMR}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 1.34\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.56\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right] 3.91[\mathrm{dd}, J=10,5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3]$, $5.18[\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4], 5.96[\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}], 7.10[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8], 7.44[\mathrm{~m}, 2 \mathrm{H}$, aromatic], $8.04[\mathrm{~m}, 1 \mathrm{H}$, aromatic], $8.14[\mathrm{~m}, 3 \mathrm{H}$, aromatic], $9.02[\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{CONH}]$

5h $\operatorname{NMR}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 1.29\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.50\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 3.82[\mathrm{dd}, J=9,6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3]$, $5.12[\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4], 5.90[\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}], 7.08[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8], 7.48[\mathrm{~m}, 2 \mathrm{H}$, aromatic], $7.60-7.95[\mathrm{~m}, 7 \mathrm{H}$, aromatic], $8.08[\mathrm{dd}, J=8,5 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic $], 8.92[\mathrm{~d}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CONH}]$
$5 i \quad \operatorname{NMR}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 1.22\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.45\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 3.79[\mathrm{dd}, J=10,5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3]$, $5.07[\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4], 5.78[\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}], 7.01[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8], 7.35[\mathrm{~m}, 3 \mathrm{H}$, aromatic], $7.45[\mathrm{~m}, 1 \mathrm{H}$, aromatic], $7.99[\mathrm{~m}, 2 \mathrm{H}$, aromatic], $8.86[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CONH}]$

5j $\quad \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.30\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.49\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 3.75[\mathrm{~d}, J=10,5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3]$, $4.33[\mathrm{br}, \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}], 5.21[\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4], 6.40[\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCO}], 6.83[\mathrm{dd}, J=8$,
$1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8], 6.96[\mathrm{~m}, 2 \mathrm{H}$, aromatic], 7.17 [$\mathrm{m}, 2 \mathrm{H}$, aromatic], 7.85 [$\mathrm{m}, 2 \mathrm{H}$, aromatic]

5k
$\operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.28\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.50\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 2.30[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}], 3.74[\mathrm{~d}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3], 4.45[\mathrm{br}, \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}], 5.18[\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4], 6.44[\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCO}], 6.78$ [d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8], 7.05[\mathrm{~d}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic], 7.17 [m, 2H, aromatic], $7.86[\mathrm{~m}, 2 \mathrm{H}$, aromatic]
$\operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.15\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}, 1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.53[\mathrm{~s}, 3 \mathrm{H}, \mathrm{COMe}], 2.88[\mathrm{q}, J=8\right.$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}\right], 3.25-4.00[\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}], 3.82[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3], 5.30[\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-4], 6.86[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8], 7.13[\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCO}$ and aromatic], 7.79 [dd, $J=8,1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic], 7.91 [narrrow $\mathrm{m}, 1 \mathrm{H}$, aromatic], $8.03[\mathrm{~m}, 2 \mathrm{H}$, aromatic], $8.18[\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$].
$5 \mathrm{~m} \quad \mathrm{NMR}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 1.25\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.45\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 3.81$ [dd, $\left.J=10,5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right]$, $5.08[\mathrm{t}, J=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4], 5.75[\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}], 6.94[\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8], 7.29-7.50[\mathrm{~m}$, 4 H , aromatic], $7.50-7.70[\mathrm{~m}, 5 \mathrm{H}$, aromatic $], 7.96[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5+$ aromatic $], 8.86[\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}$, CONH]

5n $\left.\quad \mathrm{NMR}\left[\mathrm{CD}_{3}\right)_{3} \mathrm{SO}\right] \delta 1.21\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.42\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 3.72[\mathrm{~s}, 3 \mathrm{H}, \mathrm{COMe}], 3.76[\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-3], 5.06[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4], 5.69[\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}], 6.87[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8], 7.32[\mathrm{~m}$, 2 H , aromatic], $7.71[\mathrm{~m}, 2 \mathrm{H}$, aromatic $], 8.00[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5+$ aromatic $], 8.79[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, NHCO].

5o $\operatorname{NMR}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 1.23\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.46\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 3.73[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3], 5.12[\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-4], 5.66[\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}], 6.82[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8], 7.15[\mathrm{br}, 1 \mathrm{H}, \mathrm{CONH}], 7.36[\mathrm{~m}$, 2 H , aromatic], $7.71[\mathrm{~m}, 2 \mathrm{H}$, aromatic], $7.84[\mathrm{br}, 1 \mathrm{H}, \mathrm{CONH}], 8.06[\mathrm{~m}, 2 \mathrm{H}$, aromatic], 8.78 [d, J $=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCO}]$.

5p $\operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.34\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CMe}_{2}\right], 1.54\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CMe}_{2}\right), 2.50[\mathrm{~s}, 3 \mathrm{H}, \mathrm{COMe}], 3.78[\mathrm{~d}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3], 4.62[\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}], 5.27[\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4], 6.68[\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCO}], 6.90$ [d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8], 7.36-7.62[\mathrm{~m}, 3 \mathrm{H}$, aromatic], $7.73-7.90[\mathrm{~m}, 3 \mathrm{H}$, aromatic], $7.97[\mathrm{~d}, J=1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5]$
$5 q$
$\operatorname{NMR}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 1.22\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.45\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 2.43$ [s, 3H, COMe], 3.77 [m, $1 \mathrm{H}, \mathrm{H}-3], 5.08[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4], 5.73[\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}], 6.98[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8], 7.59[\mathrm{~m}$, 2 H , aromatic], $7.68[\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5], 7.89[\mathrm{~m}, 1 \mathrm{H}$, aromatic], $7.96[\mathrm{~m}, 2 \mathrm{H}$, aromatic], $8.88[\mathrm{~d}, J=8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CONH}]$

5r $\operatorname{NMR}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 1.31\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.53\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 2.57[\mathrm{~s}, 3 \mathrm{H}, \mathrm{COMe}], 3.76[\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-3], 5.14$ [s, 1H, H-4], 5.88 [d, $J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}], 6.96[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8], 7.30[\mathrm{~m}$, 2 H , aromatic] $7.72[\mathrm{~m}, 2 \mathrm{H}$, aromatic], $7.88[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7], 8.09[\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5], 8.95[\mathrm{~d}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CONH}]$
$5 \mathrm{~s} \quad \mathrm{NMR}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 1.22\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.47\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 2.45[\mathrm{~s}, 3 \mathrm{H}, \mathrm{COMe}], 3.78[\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-3], 5.08[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4], 5.73[\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}], 6.89[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8], 7.56[\mathrm{~m}$, 1 H , aromatic], $7.65[\mathrm{~m}, 1 \mathrm{H}$, aromatic], $7.68[\mathrm{~m}, 1 \mathrm{H}$, aromatic], $7.80[\mathrm{~m}, 1 \mathrm{H}$, aromatic], $7.92[\mathrm{~m}$, 1 H , aromatic], 7.99 [m, 1H, H-5], $8.81[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CONH}]$

5t $\quad \mathrm{NMR}\left(\mathrm{CD}_{3}\right) \delta 1.30\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.52\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 2.41[\mathrm{~s}, 3 \mathrm{H}, \mathrm{COMe}], 3.79[\mathrm{~d}, J=8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3], 5.28[\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4], 6.85[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic], 7.01 [d, $J=8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NHCO}], 7.15[\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic], $7.72[\mathrm{~m}, 1 \mathrm{H}$, aromatic], $7.84[\mathrm{~m}, 2 \mathrm{H}$, aromatic], 7.94 [narrow $\mathrm{m}, 1 \mathrm{H}$, aromatic], 8.24 [narrow $\mathrm{m}, 1 \mathrm{H}$, aromatic].

5u $\quad \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.28\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.51\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{Me})_{2}\right], 1.60-2.10[\mathrm{~m}, 10 \mathrm{H}$, cyclohexyl], $2.30[\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCH}$ cyclohexyl], 2.53 [s, $3 \mathrm{H}, \mathrm{COMe}], 3.65[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3], 4.55[\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}], 5.06[\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4], 5.90[\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CONH}], 6.89[\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8]$, 7.80 [dd, $J=8,1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7], 7.88[\mathrm{br}, 1 \mathrm{H}, \mathrm{H}-6]$

