
Supporting Materials

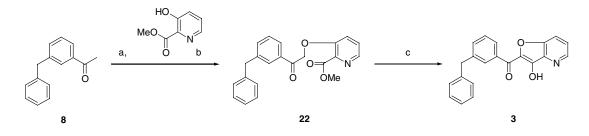
Experimentals for Preparation of Compounds 2-7.

All commercially available chemicals and solvents were used without further purification. EM Science silica gel 60 was used for flash chromatography. ¹H NMR spectra were recorded on a Varian 400 MHz spectrometer. Chemical shifts are expressed in parts per million (ppm) relative to tetramethylsilane as the internal standard. Elemental analysis for carbon, hydrogen and nitrogen was determined on a Leeman Labs CEC 240XA and CE440 elemental analyzer. High resolution mass spectral data was obtained with a Bruker Daltonics BioApex 3T mass spectrometer.

Preparation of Catechol 2.

Reagents: (a) (COCl)₂, DMF (cat.), HNEt₂, CH₂Cl₂, -45 C, 95%; (b) *sec*-BuLi, TMEDA, THF, then I₂, -78 C, 79%; (c) (i) 4-benzyl phenol, NaH, (ii) CuCl, Py, tris[2-(2-methoxyethoxy)ethyl]amine, 150 C, 53%; (d) LDA, THF, 0 C, 80%; (e) BBr₃, CH₂Cl₂, -78 C, 77%.

N,*N*-Diethyl-6-iodo-2,3-dimethoxy-benzamide (20). To a solution of 19 (4.6 g, 25.2 mmol) and DMF (0.2 mL, 2.5 mmol) in CH₂Cl₂ (50 mL) was added oxalyl chloride (3.2 mL, 37.8 mmol) dropwise under argon. After stirring for 1 h, the solvent was removed and the residue was co-evaporated with benzene twice. The residue was redissolved in CH₂Cl₂ (50 mL) and cooled to 45 C before addition of Et₂NH (10.4 mL, 100.8 mmol). The reaction mixture was stirred overnight. The reaction mixture was diluted with CH₂Cl₂, washed with water, 1N HCl, brine, dried over MgSO₄, filtered and concentrated. Flash chromatography purification (hexanes/ethyl acetate) gave an amide (5.7g, 95%)

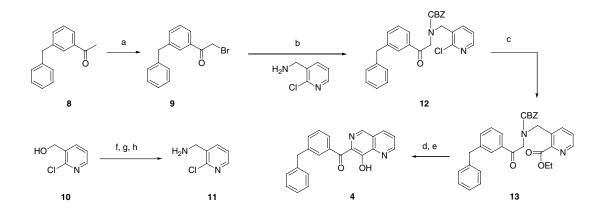

yield). ¹H NMR (CDCl₃) 7.07 (dd, J = 8.2, 7.7 Hz, 1H), 6.92 (dd, J = 8.3, 1.5 Hz, 1H), 6.80 (dd, J = 7.5, 1.5 Hz, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 3.66-3.76 (m, 1H), 3.36-3.48 (m, 1H), 3.12-3.22 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H), 1.04 (t, J = 7.1 Hz, 3H). To a solution of TMEDA (1.67 mL, 11.1 mmol) in THF (100 mL) at -78 C was added *sec*-BuLi (1.3 M in cyclohexane, 8.5 mL, 11.1 mmol) under argon. After 5 min, the amide (2.5 g, 10.5 mmol) in THF (20 mL) was added dropwise. After 1 h at -78 C, I₂ (5.86 g, 23.1 mmol) in THF (20 mL) was added and the reaction mixture was allowed to warm to room temperature overnight. The reaction was quenched with Na₂S₂O₃ (5 g) in water (20 mL), diluted with AcOEt. The organic layer was washed with water, brine, dried over MgSO₄, filtered and concentrated. Flash chromatography purification (hexanes/ethyl acetate) gave **20** (3.0g, 79% yield). ¹H NMR (CDCl₃) 7.47 (d, J = 8.8 Hz, 1H), 6.66 (d, J = 8.8 Hz, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 3.68-3.80 (m, 1H), 3.38-3.50 (m, 1H), 3.08-3.18 (m, 2H), 1.28 (t, J = 7.3 Hz, 3H), 1.10 (t, J = 7.3 Hz, 3H).

7-Benzyl-1,2-dimethoxy-xanthen-9-one (21). To a suspension of NaH (60% in mineral oil, 1.08 g, 27.1 mmol) in THF (270 mL) was added 4-benzylphenol (5.0 g, 27.1 mmol) in portion at 0 C. After 30 min, the reaction mixture became a clear solution. The reaction was warmed to room temperature and solvent was removed to give a slightly pink solid (7.0 g). To a seal tube was calred with the slightly pink solid (2.9 g), **20** (1.5 g, 4.1 mmol), CuCl (203 mg, 2.0 mmol), tris[2-(2-methoxyethoxy)ethyl]amine (0.64 mL, 2.0 mmol) and pyridine (1 mL). The mixture was heated at 150 C for 2 h. After cooling to room temperature, the reaction mixture was partitioned between AcOEt and water. The organic layer was washed with 1N NaOH, brine, dried over MgSO₄, filtered and concentrated. Flash chromatography purification (hexanes/ethyl acetate) gave a diaryl ether (900 mg, 53% yield). ¹H NMR (CDCl₃) 7.14-7.30 (m, 5H), 7.10 (d, J = 8.5 Hz, 2H), 6.92 (d, J = 8.2 Hz, 2H), 6.78 (d, J = 8.9 Hz, 1H), 6.59 (d, J = 8.8 Hz, 1H), 3.91 (s, 2H), 3.89 (s, 3H), 3.81 (s, 3H), 3.48-3.56 (m, 2H), 3.14-3.26 (m, 2H), 1.14 (t, J = 7.0 Hz, 3H), 1.07 (t, J = 7.0 Hz, 3H). To a solution of LDA (2.0 M, 0.6 mL, 1.2 mmol) in THF (1 mL) was added the diaryl ether (50 mg, 0.12 mmol) in THF (0.5 mL) at room temperature. After 30 min, the reaction was quenched with 1N HCl at 0 C. The reaction mixture was partitioned between AcOEt and water. The organic layer was washed with water, brine, dried over MgSO₄, filtered and concentrated. Flash chromatography purification (hexanes/ethyl acetate) gave **21** (33 mg, 80% yield). ¹H NMR (CDCl₃) 8.14 (s, 1H), 7.18-7.50 (m, 9H), 4.07 (s, 2H), 4.00 (s, 3H), 3.92 (s, 3H).

7-Benzyl-1,2-dimethoxy-xanthen-9-one (2). To a solution of **21** (130 mg, 0.37 mmol) in CH_2Cl_2 (5 mL) was added BBr₃ (1.0 M in CH_2Cl_2 , 1.87 mL, 1.87 mmol) dropwise at 78 C. The reaction mixture was stirred at 78 C for 30 min, then room temperature

10 min. The reaction was quenched with NaHCO₃ at 0 C. The reaction mixture was partitioned between CH₂Cl₂ and water. The organic layer was washed with water, brine, dried over Na₂SO₄, filtered and concentrated. Flash chromatography purification (hexanes/ethyl acetate) gave **2** (90 mg, 77% yield). ¹H NMR (CDCl₃) 12.60 (s, 1H), 8.10 (s, 1H), 7.56 (d, J = 8.6 Hz, 1H), 7.18-7.50 (m, 7H), 6.88 (d, J = 9.0 Hz, 1H), 5.44 (s, 1H), 4.10 (s, 2H). HRMS (ES) m/z 319.0976 (MH⁺). Anal. (C₂₀H₁₄O₄ 0.3AcOEt 0.1Hexane) C, H.

Preparation of Furanopyridine 3.


Reagents: (a) Br₂, AlCl₃ (cat.), AcOEt; (b) Cs₂CO₃, DMF, 87% for step a & b; (c) LDA, THF, -78 C, 41%.

3-[2-(Benzyl-phenyl)-2-oxo-ethoxy]-pyridine-2-carboxylic methyl ester (22). To a mixture of **8** (670 mg, 3.19 mmol) and AlCl₃ (21.3 mg, 0.16 mmol) in AcOEt (5 mL) was added Br₂ (560 mg, 3.50 mmol). After 20 min, the solvent was removed and the residue was redissolved in DMF (17 mL). To this DMF solution was added 3-hydroxy piconilic acid methyl ester (800 mg, 5.2 mmol) and Cs₂CO₃ (1.69 g, 5.2 mmol). After stirring for 3 h, the reaction was quenched with saturated aqueous NH₄Cl. The reaction mixture was partitioned between AcOEt and water. The organic layer was washed with water, brine, dried over MgSO₄, filtered and concentrated. Flash chromatography purification (hexanes/ethyl acetate) gave **22** (330 mg, 87% yield). ¹H NMR (CDCl₃) 8.32 (d, *J* = 4.4 Hz, 1H), 7.81-7.84 (m, 2H), 7.16-7.48 (m, 9 H), 5.38 (s, 2H), 4.05 (s, 2H), 3.96 (s, 3H).

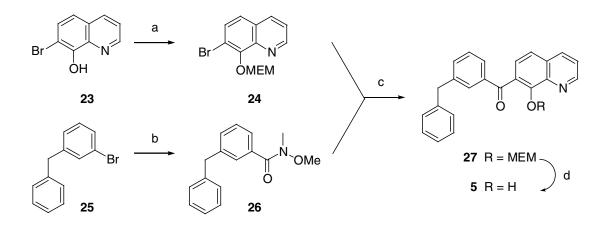
(3-Benzyl-phenyl)-(3-hydroxy-furo[3,2-*b*]pyridin-2-yl)-methanone (3). To a solution of 22 (120 mg, 0.33 mmol) in THF (3 mL) was added LDA (2.0 M in haptane/THF/ethylbenzene, 0.25 mL, 0.5 mmol) at -78 C. The reaction was allowed to warm to room temperature slowly. The reaction mixture was partitioned between AcOEt and water. The organic layer was washed with water, brine, dried over Na₂SO₄, filtered

and concentrated to give a yellow powder. The yellow power was recrystalized with MeOH/Et₂O to give **3** (45 mg, 41% yield). ¹H NMR (CD₃OD) 8.64 (d, J = 4.6 Hz, 1H), 8.08 (d, J = 7.2 Hz, 1H), 8.05 (s, 1H), 7.99 (d, J = 8.6 Hz, 1H), 7.61 (dd, J = 8.6, 4.6 Hz, 1H), 7.48-7.54 (m, 2H), 7.18-7.34 (m, 5H), 4.10 (s, 2H). HRMS (ES) *m/z* 330.1125 (MH⁺). Anal. (C₂₁H₁₅NO₃ 0.1MeOH 0.05Et₂O) C, H, N.

Preparation of Naphthyridine 4.

Reagents: (a) Br_2 , AlCl₃ (cat.), 1,4-dioxane; (b) *i*-Pr₂NEt, CH₃CN; then CBZCl, 76% for steps a & b; (c) Pd(II)(PPh₃)₂Cl₂, Et₃N, CO (250 psi), EtOH, 50%; (d) NaHMDS, THF; (e) 48% HBr, CH₃CN; then air oxidation, 42% for steps d & e; (f) SOCl₂, toluene, 98%; (g) LiN₃, DMSO; (h) 5% Pt/C, H₂, EtOH, 51% for steps g & h.

C-(2-Chloro-pyridin-3-yl)-methylamine (11). To a solution of 10 (7.4 g, 51.5 mmol) in a mixed solvent of toluene (250 mL) and CH₂Cl₂ (50 mL) was added SOCl₂ (5.64 mL, 77.3 mmol) at 0 C. The reaction was allowed to warm to room temperature overnight. The excess reagent and solvents were removed *in vacuo*. The residue was partitioned between AcOEt and aqueous NaHCO₃ solution. The organic layer was washed with water, brine, dried over MgSO₄, filtered and concentrated. Flash chromatography purification (hexanes/ethyl acetate) gave a chloromethylpyridine (8.1 g, 98% yield). ¹H NMR (CDCl₃) 8.37 (d, *J* = 4.8 Hz, 1H), 7.85 (d, *J* = 7.6 Hz, 1H), 7.30 (dd, *J* = 7.5, 4.8 Hz, 1H), 4.70 (s, 2H). A mixture of the chloromethylpyridine (500 mg, 3.09 mmol) and LiN₃ (160 mg, 3.24 mmol) in DMSO (6 mL) was stirred overnight. The reaction mixture was partitioned between AcOEt and water. The organic layer was washed with water, brine, dried over MgSO₄, filtered and concentrated to give an azidomethylpyridine (483 mg, 95% yield). ¹H NMR (CDCl₃) 8.37 (dd, *J* = 4.8, 1.9 Hz, 1H), 7.77 (dd, *J* = 7.6, 1.9 Hz, 1H), 7.30 (dd, J = 7.5, 4.8 Hz, 1H), 4.54 (s, 2H). A mixture of the azidomethylpyridine (240 mg, 1.43 mmol) and Pt/C (5% on carbon, 279 mg, 0.07 mmol) in EtOH (15 mL) was stirred under H₂. After 3 h, the reaction mixture was filtered through Celite then concentrated to give **11** (163 mg, 80% yield). ¹H NMR (CDCl₃) 8.30 (dd, J = 4.8, 1.7 Hz, 1H), 7.79 (dd, J = 7.5, 2.0 Hz, 1H), 7.26 (dd, J = 7.5, 4.8 Hz, 1H), 3.96 (s, 2H), 1.50 (s, 2H).


[2-(3-Benzyl-phenyl)-2-oxo-ethyl]-(2-chloro-pyridin-3-ylmethyl)-carbamic acid benzyl ester (12). To a mixture of 8 (1.25 g, 5.95 mmol) and AlCl₃ (78.6 mg, 0.59 mmol) in 1,4-dioxane (10 mL) was added Br₂ solution (0.62 M in 1,4-dioxane, 10 mL, 6.2 mmol) dropwise. After 1h, the solvent was removed *in vacuo*. The residue was dissolved in AcOEt (50 mL), washed with brine twice, dried over MgSO₄, filtered and concentrated to give 9 as an oil. To a solution of amine 11 (1.0 g, 5.95 mmol) and i-Pr₂NEt (4.2 mL, 45.6 mmol) in CH₃CN (50 mL) was added a solution of **9** (< 5.95 mmol) in CH₃CN (10 mL). After 1 h, CBZCl (1.71 mL, 12.0 mmol) was added. The reaction mixture was stirred overnight. The solvent was removed under reduced pressure. The residue was partitioned between AcOEt and brine. The organic layer was dried over Na₂SO₄, filtered and concentrated. The residue was purified by column chromatograph (hexanes/ethyl acetate) to give 12 (2.2 g, 76%). ¹H NMR (CDCl₃) 8.34-8.41 (m, 1H), 8.00 (d, J = 7.6 Hz, 0.5H), 7.66-7.79 (m, 2.5H), 7.16-7.44 (m, 13H), 5.18 (s, 1H), 5.14 (s, 1H), 4.79 (s, 1H), 4.73 (s, 1H), 4.71 (s, 1H), 4.67 (s, 1H), 4.03 (s, 1H), 4.02 (s, 1H).

3-({**Benzyloxycarbonyl-[2-(3-benzyl-phenyl)-2-oxo-ethyl]-amino**}-methyl)-pyridine-**2-carboxylic acid methyl ester (13).** A mixture of **12** (1.0 g, 2.06 mmol), Pd(PPh₃)₂Cl₂ (140 mg, 0.2 mmol) and Et₃N (2 mL) in EtOH (30 mL) was charged into the glass liner of an autoclave. The mixture was purged with argon for 10 min. The autoclave was sealed, pressurized with CO to 250 psi and heated at 100 C for 48 h. After cooling to room temperature, the reaction mixture was filtered through Celite and concentrated. The resultant residue was purified by flash chromatograph (hexans/ethyl acetate) to give **13** (520 mg, 50% yield). ¹H NMR (CDCl₃) 8.58-8.63 (m, 1H), 8.04 (d, *J* = 8.0 Hz, 0.5H), 7.64-7.82 (m, 2.5H), 7.14-7.46 (m, 13H), 5.17 (s, 1H), 5.13 (s, 1H), 4.96 (s, 1H), 4.95 (s, 1H), 4.74 (s, 1H), 4.71 (s, 1H), 4.31-4.40 (m, 2H), 4.01 (s, 1H), 4.00 (s, 1H), 1.35 (q, *J* = 7.3 Hz, 3H).

(3-Benzyl-phenyl)-(8-hydroxy-[1,6]naphthyridin-7-yl)-methone (4). To a solution of 13 (260 mg, 0.5 mmol) in THF (10 mL) was added NaHMDS (0.6 M in toluene, 1.2 mL, 0.72 mmol) at -78 C under agon. The reaction was allowed to warm to room temperature slowly. After 3 h, the reaction was quenched with aqueous NH₄Cl, extracted with AcOEt (2 50 mL). The combined organic phases were dried over Na₂SO₄, filtered

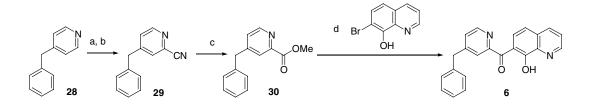
and concentrated. Preparative reverse phase HPLC purification provided a diketone (180 mg, 75% yield). ¹H NMR (CDCl₃) 8.86 (dd, J = 4.8, 1.5 Hz, 1H), 8.76 (d, J = 7.4 Hz, 1H), 7.46-7.56 (m, 3H), 7.10-7.36 (m, 12H), 6.84 (d, J = 6.0 Hz, 1H), 4.95 (broad s, 2H), 4.60 (s, 2H), 4.00 (s, 2H). A solution of the ketone (50 mg, 0.1 mmol) in 48% HBr (3 mL) and CH₃CN (1 mL) was stirred under air at 35 C for 16 h. The excess reagents and solvents was removed under vacuum. The resultant residue was purified by preparative reverse phase HPLC to give **4** (25 mg, 56% yield). ¹H NMR (CD₃OD) 9.17 (dd, J = 4.3, 1.5 Hz, 1H), 8.90 (s, 1H), 8.61 (dd, J = 8.2, 1.5 Hz, 1H), 7.98-8.02 (m, 2H), 7.89 (dd, J = 8.2, 4.3 Hz, 1H), 7.42-7.52 (m, 2H), 7.16-7.30 (m, 5H), 4.08 (s, 2H). HRMS (ES) *m/z* 341.1291 (MH⁺). Anal. (C₂₂H₁₆N₂O₂ 0.4TFA 0.5H₂0) C, H, N.

Preparation of quinloine 5.

Reagents: (a) MEMCl, , *i*-Pr₂NEt, CH₂Cl₂, 42%; (b) Pd(II)Cl₂, PPh₃, MeNH(OMe) HCl, Et₃N, CO (200 psi), 73%; (c) *tert*-BuLi, THF, -78 C, 19%; (d) TFA, MeOH, 38%.

7-Bromo-8-(2-methoxy-ethoxymethoxy)-quinoline (24). To a solution of **23** (3.1 g, 13.8 mmol) and *i*-Pr₂NEt (7.2 mL, 41.5 mmol) in CH₂Cl₂ (100 mL) was added MEMCl (2.8 mL, 24.9 mmol) and the reaction mixture was stirred overnight. Water was added and two layers were separated. The aqueous layer was extracted with AcOEt twice. The combined organic phases were dried over MgSO₄, filtered and concentrated. Flash chromatography purification (hexanes/ethyl acetate) provided **24** (1.8 g, 42% yield). ¹H NMR (CDCl₃) 8.90 (dd, J = 4.2, 1.6 Hz, 1H), 8.14 (dd, J = 8.3, 1.5 Hz, 1H), 7.68 (d, J

= 8.8 Hz, 1H), 7.46 (d, *J* = 9.0 Hz, 1H), 7.43 (dd, *J* = 8.3, 4.0 Hz, 1H), 5.75 (s, 2H), 4.18 (t, *J* = 4.7 Hz, 2H), 3.61 (t, *J* = 4.7 Hz, 2H), 3.37 (s, 3H).


3-Benzyl-N-methoxy-N-methyl-benzamide (26). A mixture of **25** (2.47 g, 10 mmol), PPh₃ (1.58 g, 6.0 mmol), MeNH(OMe) HCl (1.95 g, 20 mmol), PdCl₂ (180 mg, 1.0 mmol) and Et₃N (5.6 mL, 40 mmol) in 1-methyl-2-pyrrolidinone (35 mL) was charged into the glass liner of an autoclave. The mixture was purged with argon for 10 min. The autoclave was sealed, pressurized with CO to 200 psi and heated at 120 C for 40 h. After cooling to room temperature, the reaction mixture was filtered through Celite. The filtrate was partitioned between benzene (400 mL) and water (50 mL), washed with water three times, washed with brine, dried over MgSO₄, filtered and concentrated. The resultant residue was purified by flash chromatograph (hexans/ethyl acetate) to give **25** (1.86 g, 73% yield). ¹H NMR (CDCl₃) 7.50 (s, 1H), 7.20-7.40 (m, 8H), 4.01 (s, 2H), 3.50 (s, 3H), 3.32 (s, 3H).

(3-Benzyl-phenyl)-(8-methoxy-quinolin-7-yl)-methanone (27). To a solution of 24 (0.76 g, 2.4 mmol) in THF (10 mL) was added *tert*-BuLi (1.5 M in pentane, 3.6 mL, 5.4 mmol) at -78 C under argon. After 15 min, a solution of 26 (0.62 g, 2.4 mmol) in THF (5 mL) was added. The reaction was allowed to warm to room temperature slowly and quenched with aqueous NH₄Cl. The reaction mixture was extracted with AcOEt. The organic phase was dried over MgSO₄, filtered and concentrated. Flash chromatography purification (hexanes/ethyl acetate) provided 27 (0.2 g, 19% yield). ¹H NMR (CDCl₃) 8.97 (dd, J = 4.2, 1.6 Hz, 1H), 8.19 (dd, J = 8.2, 1.5 Hz, 1H), 7.85 (s, 1H), 7.15-7.75 (m,

11H), 5.55 (s, 2H), 4.13 (s, 2H), 3.51-3.59 (m, 2H), 3.17-3.25 (m, 2H), 3.22 (s, 3H).

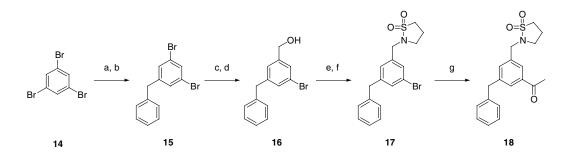
(3-Benzyl-phenyl)-(8-hydroxy-quinolin-7-yl)-methanone (5). To a solution of 27 (0.2 g, 0.46 mmol) in MeOH (3 mL) was added TFA (1.0 mL, 14 mmol). After 72 h, the reaction mixture was treated with aqueous NaHCO₃ and extracted with AcOEt. The organic phase was dried over Na₂SO₄, filtered and concentrated. Preparative reverse phase HPLC purification provided 5 (60 mg, 38% yield). ¹H NMR (CDCl₃) 8.98 (dd, J = 4.7, 1.3 Hz, 1H), 8.19 (dd, J = 8.3, 1.3 Hz, 1H), 7.54-7.70 (m, 4H), 7.18-7.43 (m, 8H), 4.07 (s, 2H). MS (ES) *m/z* 340 (MH⁺). Anal. (C₂₃H₁₇NO₂ 0.80TFA 0.32H₂O) C, H, N.

Preparation of quinloine 6.

Reagents: (a) AcOH, 30% H₂O₂, 80 C, 96%; (b) TMSCN, Et₃N, CH₃CN, reflux, 70%; (c) HCl(g), MeOH, 0 C, 80%; (d) NaH, *n*-BuLi, THF, -78 C, 31%.

4-Benzyl-pyridine-2-carbonitrile (29). A mixture of 4-benzyl pyridine 28 (15 mL, 94.0 mmol), AcOH (90 mL) and H_2O_2 (35% aqueous solution, 30 mL) was heated at 85 C overnight. After cooling to room temperature, the reaction mixture was treated with saturated aqueous NaHCO₃ (300 mL) and extracted with CH₂Cl₂ three times. The combined organic phases were washed with brine, dried over MgSO4 and concentrated to give a pyridine *N*-oxide (16.6 g, 96% yield). ¹H NMR (CDCl₃) 8.11 (d, J = 6.9 Hz, 2H), 7.26-7.36 (m, 3H), 7.16 (d, J = 6.7 Hz, 2H), 7.06 (d, J = 6.9 Hz, 2H), 4.01(s, 2H). To a solution of the pyridine N-oxide (14.0 g, 75.6 mmol) and Et₃N (16.0 mL) in CH₃CN (80 mL) was added TMSCN (25.0 mL, 187.5 mmol) dropwise. The reaction mixture was then refluxed overnight. After cooling to room temperature, the reaction mixture was diluted with CH₂Cl₂, washed with saturated aqueous NaHCO₃, brine and dried over Na₂SO₄, filtered and evaporated *in vacuo*. The residue was purified by flash ¹H NMR chromatography (hexanes/ethyl acetate) to give 29 (10.2 g, 70% yield). $(CDCl_3)$ 8.11 (d, J = 5.1 Hz, 1H), 7.49 (s, 1H), 7.27-7.38 (m, 4H), 7.16 (d, J = 7.2 Hz, 2H), 4.01 (s, 2H).

4-Benzyl-pyridine-2-carboxylic acid methyl ester (30). A solution of 29 (2.36 g, 12.1 mole) in MeOH (50 mL) at 0 °C under argon was bubbled with HCl gas till saturation. The reaction stirred at room temperature overnight. The solvent was removed under reduced pressure. The residue was treated with saturated aqueous NaHCO₃ and extracted with CHCl₃ four times. The combined organic layers were washed with brine, dried over and evaporated. Chromatographic purification Na₂SO₄, filtered using ethyl acetate/hexanes as eluents afforded **30** (2.2 g, 80% yield). ¹H NMR (CDCl₃) 8.62 (d, J = 5.3 Hz, 1H), 8.00 (s, 1H), 7.26-7.36 (m, 4H), 7.18 (d, J = 6.7 Hz, 2H), 4.06 (s, 2H), 4.00 (s, 3H).


(4-Benzyl-pyridin-2-yl)-(8-hydroxy-quinolin-7-yl)-mathanone (6). To a suspension of NaH (60% in mineral oil, 106 mg, 2.65 mmol) in THF (15 mL) under argon was added 22 (350 mg, 1.56 mmol) in portion. After 1 h, the reaction mixture was cooled to -78 C

and *n*-BuLi (1.6 M in hexanes, 1.07 mL, 1.71 mmol) was added. After 1 h, a solution of **29** (800 mg, 3.52 mmol) in THF (5 mL) was added. The reaction mixture was warmed slowly to room temperature overnight. The reaction was quenched with saturated aqueous NH₄Cl and extracted with CHCl₃ three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and evaporated *in vacuo*. The residue was purified by preparative reverse phase HPLC to give **6** (220 mg, 13% yield). ¹H NMR (DMSO-*d*₆)

8.95 (d, J = 4.2 Hz, 1H), 8.56 (d, J = 5.0 Hz, 1H), 8.49 (d, J = 8.3 Hz, 1H), 7.92 (s, 1H), 7.72-7.76 (m, 2H), 7.57 (d, J = 5.0 Hz, 1H), 7.49 (d, J = 8.6 Hz, 1H), 7.23-7.38 (m, 5H), 4.15 (s, 2H). MS (ES) m/z 341 (MH⁺). Anal. (C₂₂H₁₆N₂O₂ 1.90TFA 1.75H₂O) C, H, N.

Preparation of Naphthyridine 7.

(1) Preparation of ketone 18.

Reagents:(a) *n*-BuLi, PhCHO, Et₂O, -78 C; (b) Et₃SiH, BF₃ OEt₂, CH₂Cl₂, 0 C, 82% for steps a & b; (c) *n*-BuLi, DMF, Et₂O, -78 C; (d) NaBH₄, MeOH, 77% for steps c & d; (e) PPh₃, CBr₄, CH₂Cl₂, 75%; (f) –sultam, K₂CO₃, CH₃CN, reflux, 99%; (g) Butyl vinyl ether, Pd(II)(OAc)₂, Tl(I)OAc, DPPP, Et₃N, DMF, 100 C; 1N HCl, THF, 90%.

3-Benzyl-1,5-dibromobenzene (15). To a suspension of **14** (31.5 g, 100 mmol) in Et₂O (450 mL) at -78 C was added *n*-BuLi (2.5 M in hexanes, 40 mL, 100 mmol) slowly under argon. The internal temperature was kept below -65 C. After 40 min, benzaldehyde (10.1 mL, 100 mmol) was added and the reaction mixture was allowed to warm to room temperature slowly overnight. The reaction was quenched with brine. The aqueous layer was extracted with Et₂O (100 mL). The combined organic phases were dried over MgSO₄, filtered and concentrated. The resultant residue was dissolved in CH₂Cl₂ (400 mL). Triethylsilane (108.9 mL, 400 mmol) was added and the solution was

cooled to 0 C. BF₃ OEt₂ (19 mL, 150 mmol) was added slowly (ca. 10 min) and the reaction mixture was allowed to warm to room temperature slowly overnight. The reaction was cooled to 0 C and quenched with aqueous NaHCO₃. The aqueous layer was extracted with hexanes. The combined organic phases were dried over MgSO₄, filtered and concentrated. The residue was eluted through a silica gel pad (400 mL) with hexanes to give **15** (26.4 g, 82% yield). ¹H NMR (CDCl₃) 7.50 (s, 1H), 7.22-7.34 (m, 5H), 7.16 (d, J = 7.3 Hz, 2H), 3.91 (s, 2H).

(3-Benzyl-5-bromo-phenyl)-methanol (16). To a solution of 15 (26.4 g, 81.5 mmol) in Et₂O (400 mL) at -78 C was added *n*-BuLi (2.5 M in hexanes, 32.6 mL, 81.5 mmol) slowly under argon. The internal temperature was kept below -65 C. After 40 min, DMF (7.6 mL, 97.8 mmol) was added and the reaction mixture was allowed to warm to room temperature slowly overnight. The reaction was quenched with brine. The aqueous layer was extracted with AcOEt (100 mL). The combined organic phases were dried over MgSO₄, filtered and concentrated. The resultant residue was dissolved in MeOH (400 mL) and cooled to 0 C. NaBH₄ (3.7 g, 100 mmol) was added in portion and the reaction was allowed to warm to room temperature slowly overnight. The reaction was cooled to 0 C and quenched with 1N HCl. MeOH was removed *in vacuo*. The residue was extracted with AcOEt twice. The combined organic phases were dried over MgSO₄, filtered and concentrated. Flash chromatography purification (hexanes/ethyl acetate) provided **16** (17.0 g, 77% yield). ¹H NMR (CDCl₃) 7.36 (s, 1H), 7.22-7.34 (m, 4H), 7.17 (d, *J* = 7.3 Hz, 2H), 7.11 (s, 1H), 4.60 (s, 2H), 3.91 (s, 2H).

2-(3-Benzyl-5-bromo-benzyl)-isothiazolidine 1,1-dioxide (17). To a solution of 16 (17.0 g, 61.4 mmol) and CBr₄ (22.4 g, 67.5 mmol) in CH₂Cl₂ (200 mL) was added a solution of PPh₃ (17.6 g, 67.5 mmol) in CH₂Cl₂ (20 mL) slowly at 0 C. The reaction was allowed to warm to room temperature overnight. CH₂Cl₂ was removed in vacuo. The residue was purified by flash chromatography with hexanes/ethyl acetate as eluents to give a bromide (17.6 g, 85% yield). ¹H NMR (CDCl₃) 7.38 (s, 1H), 7.22-7.34 (m, 4H), 7.16 (d, J = 7.3 Hz, 2H), 7.12 (s, 1H), 4.40 (s, 2H), 3.91 (s, 2H). A mixture of the bromide (5.0 g, 14.7 mmol), -sultam (3.65 g, 30.1 mmol) and K₂CO₃ (4.05 g, 29.3 mmol) in CH₃CN (60 mL) was refluxed for 36 h. After cooling to room temperature, the CH₃CN was removed *in vacuo*. The residue was partitioned between AcOEt and water. The AcOEt layer was dried over MgSO₄, filtered and concentrated. Flash chromatography purification (hexanes/ethyl acetate) provided **17** (5.5 g, 99% yield). ¹H NMR (CDCl₃) 7.34 (s, 1H), 7.22-7.33 (m, 4H), 7.16 (d, J = 7.3 Hz, 2H), 7.10 (s, 1H), 4.10 (s, 2H), 3.91 (s, 2H), 3.19 (t, J = 7.3 Hz, 2H), 3.09 (t, J = 6.8 Hz, 2H), 2.31 (quintet, J = 7.1 Hz, 2H).

1-[3-Benzyl-5-(1,1-dioxo-1 ⁶-isothiazolidin-2-ylmethyl)-phenyl]-ethanone (18). A seal tube was charged with **17** (5 g, 13.2 mmol), Tl(I)OAc (4.16 g, 15.8 mmol), DPPP (0.98 g, 2.38 mmol), Et₃N (7.35 mL, 52.8 mmol) and DMF (20 mL). This mixture was purged with argon for 10 min. Pd(OAc)₂ (0.44 g, 1.98 mmol) and butyl vinyl ether (8.5 mL) were then added and the reaction mixture was stirred at 100 C overnight. After cooling to room temperature, the reaction mixture was filtered through Celite. DMF was removed under vacuum. The residue was redissolved in THF (200 mL) and treated with 1N HCl (200 mL). After 1 h, the reaction mixture was extracted with AcOEt twice. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatograph (hexanes/ethyl acetate) to give **18** (4.1 g, 90% yield). ¹H NMR (CDCl₃) 7.76 (s, 1H), 7.72 (s, 1H), 7.40 (s, 1H), 7.16-7.32 (m, 5H), 4.19 (s, 2H), 4.04 (s, 2H), 3.19 (t, *J* = 7.3 Hz, 2H), 3.08 (t, *J* = 6.8 Hz, 2H), 2.57 (s, 3H), 2.32 (quintet, *J* = 7.1 Hz, 2H).

(2) Naphthyridine 7 was prepared from ketone 18 in a similar manner as naphthyridine 4 from ketone 8.

[3-Benzyl-5-(1,1-dioxo-1⁶-isothiazolidin-2-ylmethyl)-phenyl]-(8-hydroxy-

[1,6]naphthyridin-7-yl)-methanone (7). ¹H NMR (DMSO- d_6) 12.0 (broad s, 1H), 9.20 (dd, J = 4.3, 1.7 Hz, 1H), 8.93 (s, 1H), 8.65 (dd, J = 8.3, 1.7 Hz, 1H), 7.88 (dd, J = 8.3, 4.3 Hz, 1H), 7.74 (s, 1H), 7.72 (s, 1H), 7.52 (s, 1H), 7.16-7.32 (m, 5H), 4.13 (s, 2H), 4.03 (s, 2H), 3.21 (t, J = 7.6 Hz, 2H), 3.09 (t, J = 6.6 Hz, 2H), 2.20 (quintet, J = 7.2 Hz, 2H). HRMS (ES) m/z 474.1502 (MH⁺). Anal. (C₂₆H₂₃N₃O₄S 1.05TFA 0.7H₂O) C, H, N.