Supporting Information

Experimental Section

All the reagents and solvents were purchased commercially and used without purification unless otherwise noted. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (NMR) spectra were recorded in CDCl_{3} on a JEOL Alpha 500 or JEOL Lambda 500 spectrometers. Chemical shifts are reported in part per million (ppm) with tetramethylsilane (TMS) as an internal standard. Coupling constants (J) are given in hertz (Hz) and the abbreviations s, d, t, q, br and m refer to singlet, doublet, triplet, quartet, broad and multiplet respectively. All the assignments were made based on ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC and HMBC methods. Mass spectra (MS) were obtained with a Micromass Platform LC ${ }^{\text {TM }}$ or a Micromass Q-Tof ${ }^{\text {TM }}$ 2. Infrared spectra (IR) were recorded on a PerkinElmer Paragon 1000 spectrometer as KBr pellets and are reported as reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$. Elemental analyses were performed by a PerkinElmer 2400 CHN analyzer. Melting Points were measured using a Mettler FP61 melting point instrument and are uncorrected.

5- \boldsymbol{O}-Desosaminyl-6- \boldsymbol{O}-methylerythronolide A (1). A mixture of clarithromycin (20 g , $26.74 \mathrm{mmol})$ and 2 M aqueous hydrochloric acid (200 mL) was stirred at room temperature for 3 h . The reaction mixture was washed with CHCl_{3}, and then was adjusted to pH 10 with 2 M NaOH solution, and was extracted with ethyl acetate. The organic layer was washed with brine, dried over MgSO_{4} and concentrated in vacuo. The residue was crystallized from ethyl acetate to afford $8.31 \mathrm{~g}(53 \%)$ of $\mathbf{1}$ as a colorless powder: mp $237-239{ }^{\circ} \mathrm{C}$; IR (KBr) 1728, $1693 \mathrm{~cm}^{-1}$; HRMS (ES) $m / z 590.3894$ [(M+H) ${ }^{+}$; calcd for $\left.\mathrm{C}_{30} \mathrm{H}_{56} \mathrm{NO}_{10}: 590.3904\right]$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{55} \mathrm{NO}_{10}$: C, 61.10; H, 9.40; N, 2.37. Found: C, 60.83; H, 9.30; N, 2.36.

2, 3-Di- \boldsymbol{O}-Acetyl-5- \boldsymbol{O}-desosaminyl-6- \boldsymbol{O}-methylerythronolide $\mathbf{A (2) .}$. To a solution of $\mathbf{1}$ $(10.0 \mathrm{~g}, 17.0 \mathrm{mmol})$ in THF (150 mL) was added 4^{\prime}-dimethylaminopyridine ($1.04 \mathrm{~g}, 8.51$ mmol), pyridine ($11.0 \mathrm{~mL}, 0.14 \mathrm{~mol}$) and acetyl chloride ($4.82 \mathrm{~mL}, 67.8 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 4days. After evaporation of the solvent, the residue was diluted with ethyl acetate and washed with brine. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography eluting with $\mathrm{MeOH} / \mathrm{CHCl}_{3}(2 / 98)$ to afford $7.82 \mathrm{~g}(68 \%)$ of $\mathbf{2}$ as slight yellow amorphous. Crystals for X-ray analysis was obtained by recrystallization from
$\mathrm{Et}_{2} \mathrm{O} / n$-hexane: $\mathrm{mp} 211-213^{\circ} \mathrm{C}$. IR (KBr) $1749,1742,1694 \mathrm{~cm}^{-1}$
; HRMS (ES) $m / z 674.4118\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\mathrm{C}_{34} \mathrm{H}_{60} \mathrm{NO}_{12}$:674.4116]. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{59} \mathrm{NO}_{12}$: C, 60.60; H, 8.83; N, 2.08. Found: C, 60.55 ; H, 8.95; N, 2.08.

Chart 1. ORTEP drawing of the X-ray crystal structure of compound 2

3- \boldsymbol{O}-Acetyl-5- \boldsymbol{O}-desosaminyl-6-O-methylerythronolide A (3a). A solution of 2 (3.47 g , $5.15 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ was stirred at room temperature for 2days. After evaporation of the solvent, the residue was purified by column chromatography eluting with $\mathrm{MeOH} /$ CHCl_{3} (4/ 96) to afford 3.20 g (98%) of $\mathbf{3 a}$ as colorless amorphous: $\mathrm{IR}(\mathrm{KBr}) 1739,1688$ cm^{-1}; HRMS (ES) $m / z 632.4019\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\left.\mathrm{C}_{32} \mathrm{H}_{58} \mathrm{NO}_{11}: 632.4010\right]$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{57} \mathrm{NO}_{11}: \mathrm{C}, 60.83 ; \mathrm{H}, 9.09$; N, 2.22. Found: C, $60.52 ; \mathrm{H}, 9.08 ; \mathrm{N}, 2.25$.
$\mathbf{2}^{\prime} \boldsymbol{-} \boldsymbol{O}$-Acetyl-5- \boldsymbol{O}-desosaminyl-6- \boldsymbol{O}-methylerythronolide $\mathbf{A (4)}{ }^{10}$. To a solution of $\mathbf{1}$ (11.78 $\mathrm{g}, 0.02 \mathrm{~mol})$ in acetone (100 mL) was added acetic anhydride ($2.27 \mathrm{~mL}, 24 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After stirring at room temperature for 6 h , the reaction mixture was evaporated in vacuo. The residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer was saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$
solution, washed with brine, and dried over MgSO_{4}. After evaporation of the solvent, the residue was purified by crystallization from $\mathrm{Et}_{2} \mathrm{O} / n$-hexane to give $12.17 \mathrm{~g}(96 \%)$ of $\mathbf{4}$ as a colorless powder: LRMS (FAB) $m / z 632(\mathrm{M}+\mathrm{H})^{+}$.

3- \boldsymbol{O}-Cyanoacetyl-5- \boldsymbol{O}-desosaminyl-6- \boldsymbol{O}-methylerythronolide \mathbf{A} (3b). To a solution of $\mathbf{4}$ ($816 \mathrm{mg}, 1.29 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}$) was added cyanoacetic acid ($0.68 \mathrm{~g}, 7.84 \mathrm{mmol}$), 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDC-HCl) (1.48 g, 7.78 $\mathrm{mmol})$, and 4^{\prime}-dimethylaminopyridine (DMAP) $(0.16 \mathrm{~g}, 1.31 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring at room temperature for 2days, the reaction mixture was partitioned between ethyl acetate and water, and the pH of the aqueous layer was adjusted to 10 with 2 M NaOH solution. The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and then dried over MgSO_{4}. After evaporation of the solvent under reduced pressure, the residue was dissolved in MeOH (20 mL) and the solution was stirred at room temperature for 2days. The reaction mixture was evaporated in vacuo, and the residue was purified by column chromatography eluting with $\mathrm{MeOH} / \mathrm{CHCl}_{3} / 25 \% \mathrm{NH}_{4} \mathrm{OH}(15.5 / 1 / 0.1)$ to afford $0.62 \mathrm{~g}(73 \%)$ of $\mathbf{3 b}$ as colorless amorphous, along with $91 \mathrm{mg}(12 \%)$ of recovered starting material 1. 3b: IR (KBr) 1753, $1693 \mathrm{~cm}^{-1}$; HRMS (ES) $\mathrm{m} / \mathrm{z} 657.3958\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\mathrm{C}_{33} \mathrm{H}_{57} \mathrm{~N}_{2} \mathrm{O}_{11}$: 657.3962]. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{11} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 58.73$; H, 8.66; N, 4.15. Found: C, 58.97; H, 8.56; N, 4.12.

3-O-(N-tert-Butoxycarbonyl)glycyl-5-O-desosaminyl-6-O-methylerythronolide A (3d).

 2^{\prime}-Acetate of the title compound was prepared from compound $4(1.0 \mathrm{~g}, 1.58 \mathrm{mmol})$ and N-(tert-butoxycarbonyl)glycine ($553 \mathrm{mg}, 3.16 \mathrm{mmol}$) by the same procedures as described for 3b. Purification by column chromatography eluting with acetone/ n-hexane/ $\mathrm{Et}_{3} \mathrm{~N}$ (6/ $10 / 0.2$) to afford $1.2 \mathrm{~g}(96 \%)$ of $2^{\prime}-\mathrm{Ac} 3 \mathrm{~d}$. This product ($0.8 \mathrm{~g}, 1.0 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(8 \mathrm{~mL})$ and refluxed for 2 h . After evaporation of the solvent, the residue was purified by column chromatography eluting with $\mathrm{CHCl}_{3} / \mathrm{MeOH} / 25 \% \mathrm{NH}_{4} \mathrm{OH}(30 / 1 / 0.1)$ to afford $0.74 \mathrm{~g}(98 \%)$ of $\mathbf{3 d}$ as colorless amorphous: $\mathrm{IR}(\mathrm{KBr}) 1757,1741,1715 \mathrm{~cm}^{-1}$; HRMS (ES) $m / z 747.4635\left[(M+H)^{+}\right.$; calcd for $\mathrm{C}_{37} \mathrm{H}_{67} \mathrm{~N}_{2} \mathrm{O}_{13}$: 747.4643]. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{13} \cdot{ }^{1} /{ }_{2} \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 58.79 ; \mathrm{H}, 8.93$; N, 3.71. Found: C, 58.77; H, 8.92; N, 3.65.3-O-(N-Benzyloxycarbonyl)glycyl-5-O-desosaminyl-6-O-methylerythronolide A (3e). The title compound was prepared from compound $4(2.0 \mathrm{~g}, 3.17 \mathrm{mmol})$ and N-(tert-benzyloxycarbonyl)glycine ($1.99 \mathrm{~g}, 9.52 \mathrm{mmol}$) by the same procedures as
described for 3b. Purification by column chromatography gave $2.40 \mathrm{~g}(97 \%)$ of $\mathbf{3 d}$ as colorless amorphous: IR (KBr) 1761, 1748, 1742, 1738, 1732, 1716, $1698 \mathrm{~cm}^{-1}$; HRMS (ES) $m / z 781.4493\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\mathrm{C}_{40} \mathrm{H}_{65} \mathrm{~N}_{2} \mathrm{O}_{13}$: 781.4487]. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{64} \mathrm{~N}_{2} \mathrm{O}_{13}$: C, 61.52; H, 8.26; N, 3.59. Found: C, 61.32; H, 8.07; N, 3.54.

5-O-Desosaminyl-3- \boldsymbol{O}-glycyl-6- \boldsymbol{O}-methylerythronolide $\mathbf{A} \mathbf{(3 c}$). A mixture of $\mathbf{3 e}(2.0 \mathrm{~g}$, 2.56 mmol), 10% palladium carbon (0.4 g), and ammonium formate ($1.6 \mathrm{~g}, 25.4 \mathrm{mmol}$) in $\mathrm{MeOH}(20 \mathrm{~mL})$ was stirred at room temperature for 1.5 h . The reaction mixture was passed through a celite pad, and the filtrate was concentrated in vacuo. The residue was purified by crystallization from ethyl acetate/ n-hexane to afford $0.95 \mathrm{~g}(50 \%)$ of $\mathbf{3 c}$ as colorless powder: mp 187-190 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1745, 1738, 1725, $1698 \mathrm{~cm}^{-1}$; HRMS (ES) $\mathrm{m} / z 647.4122$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\mathrm{C}_{32} \mathrm{H}_{59} \mathrm{~N}_{2} \mathrm{O}_{11}$: 647.4119]. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{11}: \mathrm{C}, 59.42 ; \mathrm{H}$, 9.04; N, 4.33. Found: C, 59.41; H, 9.11; N, 4.24.
(E)-5-O-Desosaminyl-6-O-methylerythronolide A 9-O-(Phenylmethyl)oxime (5). A mixture of clarithromycin 9 -oxime ${ }^{11}$ and 2 M aqueous hydrochloric acid (70 mL) was stirred at room temperature for 15 h . The reaction mixture was washed with CHCl_{3}, and then was adjusted to pH 10 with 2 M NaOH solution. The solution was extracted with ethyl acetate and washed with brine. The organic layer was dried over MgSO_{4} and evaporated in vacuo. The residue was crystallized from 2-propanol to afford 2.55 g (45%) of (E)-5-O-desosaminyl-6-O-methylerythronolide A 9-oxime. To a solution of the oxime (1.53 $\mathrm{g}, 2.52 \mathrm{mmol}$) in THF (30 mL) was added benzyl chloride ($0.87 \mathrm{~g}, 6.87 \mathrm{mmol}$), powdered potassium hydroxide ($0.34 \mathrm{~g}, 6.06 \mathrm{mmol}$), and tetra- n-butylammonium iodide $(0.19 \mathrm{~g}, 0.51$ mmol) at $0{ }^{\circ} \mathrm{C}$. After stirring at room temperature for 22 h , the reaction was quenched by addition of 50% dimethylamine solution and the reaction mixture was partitioned between ethyl acetate and water. The organic layer was washed with brine, dried over MgSO_{4} and evaporated in vacuo. The residue was purified by column chromatography eluting with $\mathrm{CHCl}_{3} / \mathrm{MeOH} / 25 \% \mathrm{NH}_{4} \mathrm{OH}(21 / 1 / 0.1)$ to give $1.09 \mathrm{~g}(62 \%)$ of $\mathbf{5}$ as colorless amorphous, along with $0.53 \mathrm{~g}(27 \%)$ of $2^{\prime}-O$-phenylmethylated derivative of $\mathbf{5}$ as colorless amorphous: IR (KBr) 1735, $1630 \mathrm{~cm}^{-1}$; HRMS (ES) $\mathrm{m} / \mathrm{z} 695.4485\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\mathrm{C}_{37} \mathrm{H}_{63} \mathrm{~N}_{2} \mathrm{O}_{10}: 695.4482$]. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{10}: \mathrm{C}, 63.95 ; \mathrm{H}, 8.99 ; \mathrm{N}, 4.03$. Found: C, 64.04; H, 9.06; N, 3.99.

9- \boldsymbol{O}-(phenylmethyl)oxime (7). To a solution of $\mathbf{5}(1.09 \mathrm{~g}, 1.57 \mathrm{mmol})$ in acetone (20 mL) was added acetic anhydride $(0.24 \mathrm{~g}, 2.35 \mathrm{mmol})$ at room temperature. After stirring at room temperature for 19 h , the reaction mixture was partitioned between ethyl acetate and saturated NaHCO_{3} solution. The organic layer was washed with brine, dried over MgSO_{4} and evaporated in vacuo to afford 1.1 g of crude 2^{\prime}-acetate $\mathbf{6}$, which was used without further purification. To a solution of $\mathbf{6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added 3,4-dihydro- $2 H$-pyran $(0.40 \mathrm{~g}, 4.76 \mathrm{mmol})$, p-toluenesulfonic acid monohydrate $(0.45 \mathrm{~g}, 2.37 \mathrm{mmol})$, and molecular sieves $4 \mathrm{~A}(2.0 \mathrm{~g})$ at room temperature. After stirring at room temperature for 9 h , the reaction mixture was filtered and the filtrate was partitioned between CHCl_{3} and saturated NaHCO_{3} solution. The organic layer was dried over MgSO_{4} and evaporated in vacuo. The residue was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$ and the solution was stirred at room temperature for 20 h . The reaction mixture was evaporated in vacuo, and the residue was purified by column chromatography eluting with $\mathrm{MeOH} / \mathrm{CHCl}_{3} / 25 \% \mathrm{NH}_{4} \mathrm{OH}$ (15.5/ 1/ $0.1)$ to afford and $0.68 \mathrm{~g}(56 \%)$ of 7 as colorless amorphous, along with $179 \mathrm{mg}(16 \%)$ of recovered starting material 5.
7: IR (KBr) 1734, $1630 \mathrm{~cm}^{-1}$. HRMS (ES) $m / z 779.5060\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\mathrm{C}_{42} \mathrm{H}_{71} \mathrm{~N}_{2} \mathrm{O}_{11}$: 779.5058]. Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{70} \mathrm{~N}_{2} \mathrm{O}_{11}$: C, 64.76; H, 9.06; N, 3.60. Found: C, 64.68; H, 9.18; N, 3.54.

3-O-(2-Tetrahydoropyranyl-5-O-desosaminyl-6-O-methylerythronolide A (3f). A

 mixture of $7(0.3 \mathrm{~g}, 0.39 \mathrm{mmol})$ and 10% palladium carbon (100 mg), ammonium formate ($40 \mathrm{mg}, 0.63 \mathrm{mmol}$), and 99% formic acid ($0.12 \mathrm{~mL}, 3.13 \mathrm{mmol}$) in $\mathrm{MeOH}(3 \mathrm{~mL})$ was stirred at $50{ }^{\circ} \mathrm{C}$ for 0.5 h . After removal of the insoluble by filtration, evaporation of the solvent under reduced pressure afforded 244 mg of crude 3-O-(2-tetrahydropyranyl)-5-O-desosaminyl-6-O-methylerythronolide A 9-oxime. To a solution of the oxime ($220 \mathrm{mg}, 0.32 \mathrm{mmol}$) in $\mathrm{EtOH}(1 \mathrm{~mL})$ and water $(1.5 \mathrm{~mL})$ was added sodium bisulfite ($432 \mathrm{mg}, 4.15 \mathrm{mmol}$), 99% formic acid ($0.02 \mathrm{~mL}, 0.52 \mathrm{mmol}$). After refluxing for 30 minutes, the mixture was adjusted to pH 10 with 2 M sodium hydroxide solution and extracted with ethyl acetate. The organic layer was dried over MgSO_{4} and evaporated in vacuo. The residue was purified by column chromatography eluting with $\mathrm{CHCl}_{3} / \mathrm{MeOH} / 25 \% \mathrm{NH}_{4} \mathrm{OH}(21 / 1 / 0.1)$ to give $130 \mathrm{mg}(51 \%)$ of $\mathbf{3 f}$ as colorless amorphous: IR (KBr) $1735,1694 \mathrm{~cm}^{-1}$; HRMS (ES) $m / z 674.4474\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for$\mathrm{C}_{35} \mathrm{H}_{64} \mathrm{NO}_{11}$: 674.4479]. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{63} \mathrm{NO}_{11}$: C, 62.38; H, 9.42; N, 2.08. Found: C, 62.31; H, 9.43; N, 1.96.

3-O-(2-Nitro)phenyl-5-O-desosaminyl-6-O-methylerythronolide A (3g). To a solution of $1.18 \mathrm{~g}(2.0 \mathrm{mmol})$ of $\mathbf{1}$ in THF (15 mL) was added 1-fluoro-2-nitrobenzene ($2.1 \mathrm{~mL}, 20.0$ $\mathrm{mmol})$ and 60% sodium hydride $(0.28 \mathrm{~g}, 17.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the reaction mixture was allowed to warm to room temperature. After stirring for 24 h , the reaction mixture was partitioned between ethyl acetate and brine. The organic layer was dried over MgSO_{4} and evaporated in vacuo. The residue was purified by column chromatography eluting with $\mathrm{CHCl}_{3} / \mathrm{MeOH} / 25 \% \mathrm{NH}_{4} \mathrm{OH}(95 / 5 / 0.5)$ to give 560 mg (39%) of $\mathbf{3 g}$ as slight yellow amorphous: IR (KBr) 1732, $1694 \mathrm{~cm}^{-1}$; HRMS (ES) $m / z 711.4058\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\mathrm{C}_{36} \mathrm{H}_{59} \mathrm{~N}_{2} \mathrm{O}_{12}$: 711.4068]. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{12} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 59.32 ; \mathrm{H}, 8.30 ; \mathrm{N}, 3.84$. Found: C, 59.02; H, 7.91; N, 3.70.

3- \boldsymbol{O}-Phenylacetyl-5- \boldsymbol{O}-desosaminyl-6-O-methylerythronolide A (3h). To a solution of $\mathbf{4}$ $(1.26 \mathrm{~g}, 2.0 \mathrm{mmol})$ in pyridine $(6.0 \mathrm{~mL})$ was added 4-dimethylaminopyridine ($122 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ and phenylacetyl chloride $(0.66 \mathrm{~mL}, 5.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at room temperature for 22 h , the reaction mixture was partitioned between ethyl acetate and brine. The organic layer was dried over MgSO_{4} and evaporated in vacuo. The residue was purified by column chromatography eluting with acetone/ n-hexane/ $\mathrm{Et}_{3} \mathrm{~N}(4 / 10 / 0.05)$ to give 730 $\mathrm{mg}(49 \%)$ of $2^{\prime}-\mathrm{Ac}-3 \mathrm{~h}$. This acetate was dissolved in methanol (10 mL) and the solution was refluxed for 6 h , and then evaporated in vacuo. The residue was diluted with ethyl acetate and washed with saturated NaHCO_{3} solution, brine successively, dried over MgSO_{4} and evaporated in vacuo. The residue was purified by column chromatography eluting with $\mathrm{CHCl}_{3} / \mathrm{MeOH} / 25 \% \mathrm{NH}_{4} \mathrm{OH}(20 / 1 / 0.1)$ to afford $490 \mathrm{mg}(71 \%)$ of $\mathbf{3 h}$ as slight yellow amorphous:IR (KBr) 1745, 1734, 1695 cm^{-1}; HRMS (ES) $m / z 708.4308\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\left.\mathrm{C}_{38} \mathrm{H}_{62} \mathrm{NO}_{11}: 708.4323\right]$. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{61} \mathrm{NO}_{11}: \mathrm{C}, 64.47 ; \mathrm{H}, 8.69 ; \mathrm{N}, 1.98$. Found: C, 64.48; H, 8.76; N, 1.88.

3-O-Benzylsulfonyl-5- \boldsymbol{O}-desosaminyl-6- \boldsymbol{O}-methylerythronolide $\mathbf{A (3 i)}$. To a solution of $\mathbf{4}$ $(1.26 \mathrm{~g}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and pyridine (2 mL) was added benzylsulfonyl chloride ($953 \mathrm{mg}, 5.0 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After stirring at room temperature for 23 h , the reaction mixture was partitioned between ethyl acetate and saturated NaHCO_{3} solution. The
organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and brine successively, dried over MgSO_{4} and evaporated in vacuo. The residue was purified by column chromatography eluting with acetone/ n-hexane/ $\mathrm{Et}_{3} \mathrm{~N}(4 / 10 / 0.05)$ to give $1.37 \mathrm{~g}(87 \%)$ of $2^{\prime}-\mathrm{Ac}-3 \mathrm{i}$ as colorless amorphous. The acetate $(0.48 \mathrm{~g}, 0.61 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and the solution was stirred at room temperature for 20.5 h . After evaporation of the solvent, the residue was purified by column chromatography eluting with $\mathrm{CHCl}_{3} / \mathrm{MeOH} / 25 \%$ $\mathrm{NH}_{4} \mathrm{OH}(21 / 1 / 0.1)$ to afford $210 \mathrm{mg}(46 \%)$ of $\mathbf{3 i}$ as colorless amorphous: IR (KBr) 1738, $1693 \mathrm{~cm}^{-1}$; HRMS (ES) $m / z 744.3981\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\left.\mathrm{C}_{50} \mathrm{H}_{54} \mathrm{~N}_{3} \mathrm{OS}: 744.3988\right]$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{61} \mathrm{NO}_{12} \mathrm{~S} \cdot{ }^{3} /{ }_{2} \mathrm{H}_{2} \mathrm{O}$: C, 57.64 ; H, 8.37; N, 1.82. Found: C, 57.69; H, 8.04; N, 1.79 .

3-O-(4-Nitrophenyl)acetyl-5-O-desosaminyl-6-O-methylerythronolide A (3j). 2'-Acetate

 of the title compound was prepared from compound 4 ($5.0 \mathrm{~g}, 7.91 \mathrm{mmol}$) and 4-nitrophenylacetic acid ($4.30 \mathrm{~g}, 23.7 \mathrm{mmol}$) by the same procedures as described for $\mathbf{3 b}$. Purification by column chromatography eluting with acetone/ n-hexane/ $\mathrm{Et}_{3} \mathrm{~N}(6 / 10 / 0.2)$ afforded $5.03 \mathrm{~g}(80 \%)$ of $2^{\prime}-O$-acetyl $-\mathbf{3 j}$ as light brown amorphous. A solution of this product in $\mathrm{MeOH}(50 \mathrm{~mL})$ was stirred at room temperature for 15 h , and evaporated in vacuo. The residue was crystallized from isopropylether to afford $3.86 \mathrm{~g}(81 \%)$ of $\mathbf{3 j}$ as colorless powder: mp $157-159{ }^{\circ} \mathrm{C}$; IR (KBr) $1742,1732,1694 \mathrm{~cm}^{-1}$; HRMS (ES) m / z $753.4189 \quad\left[(\mathrm{M}+\mathrm{H}){ }^{+}\right.$; calcd for $\left.\mathrm{C}_{38} \mathrm{H}_{61} \mathrm{~N}_{2} \mathrm{O}_{13}: 753.4174\right]$. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{13} .{ }^{1} /{ }_{2} \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 59.90 ; \mathrm{H}, 8.07$; N, 3.68. Found: C, 59.79; H, 7.97; N, 3.70.3- \boldsymbol{O}-(4-Nitro)benzoyl-5- \boldsymbol{O}-desosaminyl-6- \boldsymbol{O}-methylerythronolide A (3k). 2'-Acetate of the title compound was prepared from compound $4(5.0 \mathrm{~g}, 7.91 \mathrm{mmol})$ and 4-nitrobenzoic acid $(3.97 \mathrm{~g}, 23.7 \mathrm{mmol})$ by the same procedures as described for $\mathbf{3 b}$. Purification of the crude product by column chromatography eluting with acetone/ n-hexane/ $\mathrm{Et}_{3} \mathrm{~N}$ (6/10/0.2) afforded to $6.03 \mathrm{~g}(98 \%)$ of $2^{\prime}-\mathrm{Ac}-\mathbf{3 k}$ as slight yellow amorphous. This product in MeOH $(50 \mathrm{~mL})$ was stirred at room temperature for 15 h , and evaporated in vacuo. The residue was purified by column chromatography eluting with acetone/ n-hexane/ $\mathrm{Et}_{3} \mathrm{~N}(6 / 10 / 0.2)$ to afford $5.25 \mathrm{~g}(92 \%)$ of $\mathbf{3 i}$ as slight yellow amorphous: IR (KBr) 1740, 1694, $1610 \mathrm{~cm}^{-1}$; HRMS (ES) $m / z 739.4006\left[(M+H)^{+}\right.$; calcd for $\mathrm{C}_{37} \mathrm{H}_{59} \mathrm{~N}_{2} \mathrm{O}_{13}$: 739.4017]. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{13}$: C, 60.15; H, 7.91; N, 3.79. Found: C, $60.05 ; \mathrm{H}, 8.03 ; \mathrm{N}, 3.63$.

Table 1. Proton and carbon assignments of compound 1.

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR data			
	$\delta(\mathrm{ppm})$	peak	J (Hz)
C_{2}-H	2.66	m	-
2-Me	1.26	m	-
$\mathrm{C}_{3}-\mathrm{H}$	3.50-3.58	m	-
$\mathrm{C}_{4}-\mathrm{H}$	2.12	dq	7.3
4-Me	1.13	m	-
$\mathrm{C}_{5}-\mathrm{H}$	3.69	d	1.8
6-Me	1.37	S	-
$6-\mathrm{OMe}$	2.97	S	-
$\mathrm{C}_{7}-\mathrm{H}$	$\begin{gathered} 1.56 \\ 1.90-1.96 \end{gathered}$	$\begin{gathered} \mathrm{dd} \\ \mathrm{~m} \end{gathered}$	$4.6,1.8$
C_{8} - H	2.58	m	-
8 -Me	1.13	m	-
$\mathrm{C}_{10}-\mathrm{H}$	3.01	m	-
$10-\mathrm{Me}$	1.13	m	-
$\mathrm{C}_{11}-\mathrm{H}$	3.86	d	1.2
12-Me	1.18	s	-
$\mathrm{C}_{13}-\mathrm{H}$	5.18	dd	11.0, 2.4
$\mathrm{C}_{14}-\mathrm{H}$	$\begin{gathered} 1.49 \\ 1.90-1.96 \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	-
$\mathrm{C}_{15}-\mathrm{H}$	0.84	t	7.6
$\mathrm{C}_{1}{ }^{\prime}-\mathrm{H}$	4.38	d	7.3
$\mathrm{C}_{2}{ }^{\prime}-\mathrm{H}$	3.24	dd	10.4, 7.3
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{H}$	2.47	ddd	12.2, 10.4, 4.3
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	2.25	s	-
$\mathrm{C}_{4}{ }^{\prime}-\mathrm{H}$	$\begin{gathered} 1.20-1.28 \\ 1.67 \end{gathered}$	$\begin{gathered} \mathrm{m} \\ \mathrm{dq} \end{gathered}$	$12.2,1.8,1.8,1.8$
$\mathrm{C}_{5}{ }^{\prime}$	3.50-3.58	m	-
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	1.26	m	-
OH	$\begin{gathered} 3.27 \\ 3.50-3.58 \\ 3.89 \\ 3.92 \end{gathered}$	$\begin{gathered} \mathrm{s} \\ \mathrm{~m} \\ \mathrm{br} \\ \mathrm{~s} \end{gathered}$	-

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR data	
	$\delta(\mathrm{ppm})$
C_{1}	175.0
C_{2}	44.6
C_{2}-Me	15.2
C_{3}	79.0
C_{4}	35.9
$\mathrm{C}_{4}-\mathrm{Me}$	8.2
C_{5}	88.5
C_{6}	78.0
$\mathrm{C}_{6}-\mathrm{Me}$	18.8
$\mathrm{C}_{6}-\mathrm{OMe}$	49.5
C_{7}	38.7
C_{8}	45.5
C_{8}-Me	17.7
C_{9}	220.7
C_{10}	37.5
$\mathrm{C}_{10}-\mathrm{Me}$	12.6
C_{11}	69.8
C_{12}	74.2
$\mathrm{C}_{12}-\mathrm{Me}$	16.2
C_{13}	76.6
C_{14}	21.4
C_{15}	10.4
$\mathrm{C}_{1}{ }^{\prime}$	106.8
$\mathrm{C}_{2}{ }^{\prime}$	70.7
$\mathrm{C}_{3}{ }^{\prime}$	65.7
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	40.2
$\mathrm{C}_{4}{ }^{\text {- }}$	28.0
$\mathrm{C}_{5}{ }^{\prime}$	70.3
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	21.2

Table 2. Proton and carbon assignments of compound 2.

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR data			
	$\delta(\mathrm{ppm})$	peak	$J(\mathrm{~Hz})$
$\mathrm{C}_{2}-\mathrm{H}$	2.83	m	-
$2-\mathrm{Me}$	1.08	d	6.7
$\mathrm{C}_{3}-\mathrm{H}$	5.05	d	11.0
$\mathrm{C}_{4}-\mathrm{H}$	2.21-2.14	m	-
4-Me	0.99	d	7.3
$\mathrm{C}_{5}-\mathrm{H}$	3.67	d	3.1
6-Me	1.26	S	-
6-OMe	3.03	S	-
$\mathrm{C}_{7}-\mathrm{H}$	$\begin{gathered} 1.66-1.74 \\ 1.45 \end{gathered}$	$\begin{gathered} \mathrm{m} \\ \mathrm{dd} \end{gathered}$	$14.7,1.2$
$\mathrm{C}_{8}-\mathrm{H}$	2.54	m	-
$8-\mathrm{Me}$	1.11	d	7.3
$\mathrm{C}_{10}-\mathrm{H}$	2.99	m	-
$10-\mathrm{Me}$	1.12	d	6.7
$\mathrm{C}_{11}-\mathrm{H}$	3.80	d	1.2
12-Me	1.15	S	-
$\mathrm{C}_{13}-\mathrm{H}$	5.18	dd	11.0, 2.4
$\mathrm{C}_{14}-\mathrm{H}$	$\begin{gathered} 1.94 \\ 1.46-1.52 \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	- -
$\mathrm{C}_{15}-\mathrm{H}$	0.83	t	7.3
$\mathrm{C}_{1}{ }^{\prime}-\mathrm{H}$	4.06	d	7.3
$\mathrm{C}_{2}{ }^{\prime}-\mathrm{H}$	4.73	dd	10.4, 7.3
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{H}$	2.62	m	-
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	2.26	m	-
$\mathrm{C}_{4}^{\prime}-\mathrm{H}$	$\begin{aligned} & 1.66-1.74 \\ & 1.27-1.34 \end{aligned}$	m	
$\mathrm{C}_{5}{ }^{\prime}$	3.33	m	-
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	1.23	d	6.1
OH	$\begin{aligned} & 3.25 \\ & 3.97 \end{aligned}$	br br	
$\mathrm{C}_{2}{ }^{\prime}-\mathrm{COCH}_{3}$	2.08	s	-
$\mathrm{C}_{3}-\mathrm{COCH}_{3}$	2.17	s	-

75MHz ${ }^{13} \mathrm{C}$ NMR data

	$\delta(\mathrm{ppm})$
C_{1}	173.6
C_{2}	42.7
$\mathrm{C}_{2}-\mathrm{Me}^{\prime}$	15.2
C_{3}	77.8
C_{4}	35.8
$\mathrm{C}_{4}-\mathrm{Me}^{\prime}$	8.7
C_{5}	79.8
C_{6}	77.9
$\mathrm{C}_{6}-\mathrm{Me}$	19.3
$\mathrm{C}_{6}-\mathrm{OMe}$	50.1
C_{7}	38.3
C_{8}	45.3
$\mathrm{C}_{8}-\mathrm{Me}^{\prime}$	17.9
C_{9}	220.7
C_{10}	37.3
$\mathrm{C}_{10}-\mathrm{Me}^{\prime}$	12.5
C_{11}	69.5
C_{12}	74.2
$\mathrm{C}_{12}-\mathrm{Me}^{\prime}$	16.1
C_{13}	77.0
C_{14}	21.2
C_{15}	10.4
$\mathrm{C}_{1}{ }^{\prime}$	100.6
$\mathrm{C}_{2}{ }^{\prime}$	71.3
$\mathrm{C}_{3}{ }^{\prime}$	63.5
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	40.6
$\mathrm{C}_{4}{ }^{\prime}$	30.7
C_{5}^{\prime}	69.3
$\mathrm{C}_{5}^{\prime}-\mathrm{Me}^{\prime}$	20.9
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{COCH}_{3}$	21.2
$\mathrm{C}_{2}^{\prime}-\mathrm{COCH}_{3}$	21.4
$\mathrm{C}_{2}^{\prime}-\mathrm{COCH}_{3}$	169.8
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{COCH}_{3}$	170.2

Table 3. Proton and carbon assignments of compound 3a.

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR data			
	$\delta(\mathrm{ppm})$	peak	$J(\mathrm{~Hz})$
C_{2} - H	2.86	m	-
2-Me	1.08	d	6.7
$\mathrm{C}_{3}-\mathrm{H}$	5.07	d	11.0
$\mathrm{C}_{4}-\mathrm{H}$	2.21	m	-
4-Me	1.15	d	7.9
$\mathrm{C}_{5}-\mathrm{H}$	3.72	d	3.1
6-Me	1.29	S	-
6-OMe	3.05	s	-
$\mathrm{C}_{7}-\mathrm{H}$	1.57	dd	$14.7,11.6$
	1.81	dd	14.7, 1.2
$\mathrm{C}_{8}-\mathrm{H}$	2.56	m	-
$8-\mathrm{Me}$	1.11	d	7.3
$\mathrm{C}_{10}-\mathrm{H}$	3.01	m	-
$10-\mathrm{Me}$	1.13	d	7.3
$\mathrm{C}_{11}-\mathrm{H}$	3.83	d	1.2
12-Me	1.16	S	-
$\mathrm{C}_{13}-\mathrm{H}$	5.18	dd	11.0, 1.8
$\mathrm{C}_{14}-\mathrm{H}$	1.50	m	-
$\mathrm{C}_{14}-\mathrm{H}$	1.94	m	-
$\mathrm{C}_{15}-\mathrm{H}$	0.84	t	7.3
$\mathrm{C}_{1}{ }^{\prime}-\mathrm{H}$	3.99	d	7.3
$\mathrm{C}_{2}{ }^{\prime}-\mathrm{H}$	3.18	dd	7.3
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{H}$	2.41	m	-
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	2.29	S	-
$\mathrm{C}_{4}{ }^{\prime}-\mathrm{H}$	$\begin{gathered} 1.16-1.23 \\ 1.67 \end{gathered}$	m	$12.2,1.8,1.8,1.8$
$\mathrm{C}_{5}{ }^{\prime}$	3.36	m	-
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	1.22	d	6.1
OH	3.24	br	-
	3.97	br	-
$\mathrm{C}_{3}-\mathrm{COCH}_{3}$	2.14	s	-

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR data	
	$\delta(\mathrm{ppm})$
C_{1}	173.7
C_{2}	42.8
$\mathrm{C}_{2}-\mathrm{Me}$	15.2
C_{3}	77.9
C_{4}	36.0
$\mathrm{C}_{4}-\mathrm{Me}$	8.9
C_{5}	80.9
C_{6}	77.9
$\mathrm{C}_{6}-\mathrm{Me}$	19.3
$\mathrm{C}_{6}-\mathrm{OMe}$	50.2
C_{7}	38.7
C_{8}	45.4
$\mathrm{C}_{8}-\mathrm{Me}$	18.0
C_{9}	220.7
C_{10}	37.3
$\mathrm{C}_{10}-\mathrm{Me}$	12.5
C_{11}	69.5
C_{12}	74.2
$\mathrm{C}_{12}-\mathrm{Me}$	16.1
C_{13}	77.0
C_{14}	21.2
C_{15}	10.4
$\mathrm{C}_{1}{ }^{\prime}$	103.1
$\mathrm{C}_{2}{ }^{\prime}$	70.4
$\mathrm{C}_{3}{ }^{\prime}$	66.1
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	40.3
$\mathrm{C}_{4}{ }^{\prime}$	28.5
$\mathrm{C}_{5}{ }^{\prime}$	69.7
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	21.1
$\mathrm{C}_{3}-\mathrm{COCH}$	21.3
$\mathrm{C}_{3}-\mathrm{COCH}$	170.5

Table 4. Proton and carbon assignments of compound $\mathbf{3 b}$.

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR data				75MHz ${ }^{13} \mathrm{C}$ NMR data	
	$\delta(\mathrm{ppm})$	peak	J (Hz)		$\delta(\mathrm{ppm})$
C_{2} - H	2.93	m	-	C_{1}	173.1
2-Me	1.11	d	7.3	C_{2}	42.7
$\mathrm{C}_{3}-\mathrm{H}$	5.13	d	11.0	$\mathrm{C}_{2}-\mathrm{Me}$	15.2
$\mathrm{C}_{4}-\mathrm{H}$	2.23	m	-	C_{3}	81.7
4-Me	1.17	d	7.3	C_{4}	36.4
$\mathrm{C}_{5}-\mathrm{H}$	3.72	d	3.1	$\mathrm{C}_{4}-\mathrm{Me}$	8.8
6-Me	1.35	s	-	C_{5}	84.3
$6-\mathrm{OMe}$	3.04	s	-	C_{6}	78.0
	1.79	dd	14.7, 11.6	$\mathrm{C}_{6}-\mathrm{Me}$	19.4
$\mathrm{C}_{7}-\mathrm{H}$	1.57	dd	14.7, 1.8	C_{6}-OMe	49.9
$\mathrm{C}_{8}-\mathrm{H}$	2.57	m	-	C_{7}	38.7
$8-\mathrm{Me}$	1.12	d	7.3	C_{8}	45.2
$\mathrm{C}_{10}-\mathrm{H}$	3.00	m	-	$\mathrm{C}_{8}-\mathrm{Me}$	17.8
$10-\mathrm{Me}$	1.13	d	7.3	C_{9}	220.6
$\mathrm{C}_{11}-\mathrm{H}$	3.82	d	1.2	C_{10}	37.3
$12-\mathrm{Me}$	1.16	s	-	$\mathrm{C}_{10}-\mathrm{Me}$	12.4
$\mathrm{C}_{13}-\mathrm{H}$	5.18	dd	11.0, 2.4	C_{11}	69.5
	1.95	m	-	C_{12}	74.1
$\mathrm{C}_{14}-\mathrm{H}$	1.50	m	-	$\mathrm{C}_{12}-\mathrm{Me}$	16.1
$\mathrm{C}_{15}-\mathrm{H}$	0.84	t	7.3	C_{13}	77.4
$\mathrm{C}_{1}{ }^{\prime}-\mathrm{H}$	3.99	d	7.3	C_{14}	21.1
$\mathrm{C}_{2}{ }^{\prime}-\mathrm{H}$	3.17	dd	10.4, 7.3	C_{15}	10.4
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{H}$	2.48	m	-	$\mathrm{C}_{1}{ }^{\prime}$	105.1
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	2.27	s	-	$\mathrm{C}_{2}{ }^{\prime}$	70.4
				$\mathrm{C}_{3}{ }^{\prime}$	65.9
$\mathrm{C}_{4}-\mathrm{H}$	1.67	dq	$12.8,1.8,1.8,1.8$	$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	40.3
$\mathrm{C}_{5}{ }^{\text {a }}$	3.48	m	-	$\mathrm{C}_{4}{ }^{\prime}$	28.1
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	1.23	d	6.1	$\mathrm{C}_{5}{ }^{\prime}$	69.9
OH	3.26	s	-	$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	21.1
OH	3.98		-	$\mathrm{C}_{3}-\mathrm{COCH}_{2} \mathrm{CN}$	25.0
$\mathrm{C}_{3}-\mathrm{COCH}_{2} \mathrm{CN}$	3.52	d	18.9	$\mathrm{C}_{3}-\mathrm{COCH}_{2} \mathrm{CN}$	113.1
$\mathrm{C}_{3} \mathrm{COCH}_{2} \mathrm{CN}$	3.65	d	18.9	$\mathrm{C}_{3}-\mathrm{COCH}_{2} \mathrm{CN}$	163.4

Table 5. Proton and carbon assignments of compound 3c.

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR data				$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR data	
	$\delta(\mathrm{ppm})$	peak	J (Hz)		$\delta(\mathrm{ppm})$
C_{2} - H	2.88	m	-	C_{1}	173.6
2-Me	1.08	d	6.7	C_{2}	42.8
$\mathrm{C}_{3}-\mathrm{H}$	5.13	d	11.0	C_{2}-Me	15.2
$\mathrm{C}_{4}-\mathrm{H}$	2.20-2.27	m	-	C_{3}	78.7
4-Me	1.15	d	6.1	C_{4}	36.2
$\mathrm{C}_{5}-\mathrm{H}$	3.71	d	3.4	$\mathrm{C}_{4}-\mathrm{Me}$	8.9
6-Me	1.31	s	-	C_{5}	81.8
6-OMe	3.06	S	-	C_{6}	78.0
$\mathrm{C}_{7}-\mathrm{H}$	1.81	dd	14.6, 11.9	$\mathrm{C}_{6}-\mathrm{Me}$	19.3
$\mathrm{C}_{7}-\mathrm{H}$	1.57	dd	14.6, 1.5	$\mathrm{C}_{6}-\mathrm{OMe}$	50.1
C_{8}-H	2.57	m	-	C_{7}	38.7
$8-\mathrm{Me}$	1.12	d	7.9	C_{8}	45.4
$\mathrm{C}_{10}-\mathrm{H}$	3.01	m	-	$\mathrm{C}_{8}-\mathrm{Me}$	17.9
$10-\mathrm{Me}$	1.13	d	7.0	C_{9}	220.6
$\mathrm{C}_{11}-\mathrm{H}$	3.83	d	1.5	C_{10}	37.3
$12-\mathrm{Me}$	1.16	s	-	$\mathrm{C}_{10}-\mathrm{Me}$	12.5
$\mathrm{C}_{13}-\mathrm{H}$	5.19	dd	11.3, 2.1	C_{11}	69.5
$\mathrm{C}_{14}-\mathrm{H}$	1.95	m	-	C_{12}	74.2
$\mathrm{C}_{14}-\mathrm{H}$	1.50	m	-	$\mathrm{C}_{12}-\mathrm{Me}$	16.1
$\mathrm{C}_{15}-\mathrm{H}$	0.84	t	7.3	C_{13}	77.1
$\mathrm{C}_{1}{ }^{\prime}-\mathrm{H}$	3.95	d	7.3	C_{14}	21.2
$\mathrm{C}_{2}{ }^{\prime}-\mathrm{H}$	3.16	dd	10.4, 7.3	C_{15}	10.4
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{H}$	2.37	m	-	$\mathrm{C}_{1}{ }^{\prime}$	103.7
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	2.27	s	-	$\mathrm{C}_{2}{ }^{\prime}$	70.4
	1.16-1.19	m		$\mathrm{C}_{3}{ }^{\prime}$	66.1
$\mathrm{C}_{4}-\mathrm{H}$	1.65	dq	12.8,1.8,1.8, 1.8	$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	40.3
$\mathrm{C}_{5}{ }^{\prime}$	3.35	m	-8,	C_{4}^{\prime}	28.4
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	1.22	d	6.1	$\mathrm{C}_{5}{ }^{\prime}$	69.8
$\mathrm{C}_{3}-\mathrm{COCH}_{2} \mathrm{NH}_{2}$	3.53	s	-	$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	21.2
OH	3.98	br	-	$\mathrm{C}_{3}-\mathrm{COCH}_{2} \mathrm{NH}$	44.3
				$\mathrm{C}_{3}-\mathrm{COCH}_{2} \mathrm{NH}$	174.0

Table 6. Proton and carbon assignments of compound 3d.

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR data				$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR data	
	$\delta(\mathrm{ppm})$	Peak	J (Hz)		$\delta(\mathrm{ppm})$
$\mathrm{C}_{2}-\mathrm{H}$	2.88	m	-	C_{1}	173.5
2-Me	1.08	d	7.3	C_{2}	42.9
$\mathrm{C}_{3}-\mathrm{H}$	5.13	d	11.6	C_{2}-Me	15.2
$\mathrm{C}_{4}-\mathrm{H}$	2.22	m	-	C_{3}	79.5
4-Me	1.17	d	5.5	C_{4}	36.2
$\mathrm{C}_{5}-\mathrm{H}$	3.68	d	3.1	$\mathrm{C}_{4}-\mathrm{Me}$	8.9
6-Me	1.31	s	-	C_{5}	82.3
6-OMe	3.04	S	-	C_{6}	78.0
$\mathrm{C}_{7}-\mathrm{H}$	1.58	d	14.6	$\mathrm{C}_{6}-\mathrm{Me}$	19.3
	1.80	dd	14.6, 12.2	C_{6}-OMe	50.0
$\mathrm{C}_{8}-\mathrm{H}$	2.53-2.62	m	-	C_{7}	38.7
$8-\mathrm{Me}$	1.11	d	8.5	C_{8}	45.3
$\mathrm{C}_{10}-\mathrm{H}$	3.00	m	-	C_{8}-Me	17.9
$10-\mathrm{Me}$	1.13	d	6.7	C_{9}	220.7
$\mathrm{C}_{11}-\mathrm{H}$	3.83	s	-	C_{10}	37.3
$12-\mathrm{Me}$	1.16	S	-	$\mathrm{C}_{10}-\mathrm{Me}$	12.5
$\mathrm{C}_{13}-\mathrm{H}$	5.18	dd	11.6, 2.4	C_{11}	69.5
$\mathrm{C}_{14}-\mathrm{H}$	$1.45-1.53$	m	-	C_{12}	74.2
	1.94	m	-	$\mathrm{C}_{12}-\mathrm{Me}$	16.1
$\mathrm{C}_{15}-\mathrm{H}$	0.83	t	7.3	C_{13}	77.2
$\mathrm{C}_{1}{ }^{\prime}-\mathrm{H}$	3.94	d	7.3	C_{14}	21.2
$\mathrm{C}_{2}{ }^{\prime}-\mathrm{H}$	3.16	dd	10.4, 7.3	C_{15}	10.4
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{H}$	2.53-2.62	m	-	$\mathrm{C}_{1}{ }^{\prime}$	103.9
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	2.28	s	-	$\mathrm{C}_{2}{ }^{\prime}$	70.5
$\mathrm{C}_{4}^{\prime}-\mathrm{H}$	1.16-1.22	m	-	$\mathrm{C}_{3}{ }^{\prime}$	65.4
	1.63	m	-	$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	40.2
$\mathrm{C}_{5}{ }^{\prime}$	3.41	m	-	$\mathrm{C}_{4}{ }^{\prime}$	28.4
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	1.19	d	6.1	$\mathrm{C}_{5}{ }^{\prime}$	69.5
OH	3.26	brs	-	$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	21.1
	3.98	s	-	$-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	28.3
$\mathrm{C}_{3}-\mathrm{COCH}_{2} \mathrm{NH}-$	4.21	dd	18.3, 7.3	$-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	79.9
$\mathrm{C}_{3} \mathrm{COCH}_{2} \mathrm{NH}-$	$3.79-3.83$	m	-	$\mathrm{C}_{3}-\mathrm{COCH}_{2} \mathrm{NH}-$	42.6
$-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.45	s	-	$\mathrm{C}_{3}-\mathrm{COCH}_{2} \mathrm{NH}-$	170.4

Table 7. Proton and carbon assignments of compound 3e.

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR data			
	$\delta(\mathrm{ppm})$	peak	$J(\mathrm{~Hz})$
C_{2}-H	2.80	m	-
2-Me	1.05	d	6.7
$\mathrm{C}_{3}-\mathrm{H}$	5.10	d	10.7
$\mathrm{C}_{4}-\mathrm{H}$	2.19	m	-
4-Me	1.13	d	8.5
$\mathrm{C}_{5}-\mathrm{H}$	3.66	d	2.7
6-Me	1.30	S	-
$6-\mathrm{OMe}$	3.03	S	-
$\mathrm{C}_{7}-\mathrm{H}$	$\begin{aligned} & 1.55 \\ & 1.79 \end{aligned}$	$\begin{aligned} & \mathrm{dd} \\ & \mathrm{dd} \end{aligned}$	$\begin{gathered} 14.6,1.2 \\ 14.6,11.9 \end{gathered}$
C_{8} - H	2.56	m	-
$8-\mathrm{Me}$	1.11	d	7.3
$\mathrm{C}_{10}-\mathrm{H}$	3.00	m	-
$10-\mathrm{Me}$	1.16	s	-
$\mathrm{C}_{11}-\mathrm{H}$	3.82	d	1.5
12-Me	0.84	t	7.3
$\mathrm{C}_{13}-\mathrm{H}$	5.17	dd	11.3, 2.4
$\mathrm{C}_{14}-\mathrm{H}$	$\begin{aligned} & 1.51 \\ & 1.95 \end{aligned}$	m	-
$\mathrm{C}_{15}-\mathrm{H}$	0.84	t	7.3
$\mathrm{C}_{1}{ }^{\prime}-\mathrm{H}$	3.92	d	7.0
$\mathrm{C}_{2}{ }^{\prime}-\mathrm{H}$	3.18	dd	10.4, 7.3
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{H}$	2.64	m	-
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	2.31	s	-
$\mathrm{C}_{4}{ }^{\prime}-\mathrm{H}$	1.13-1.19	m	-
	1.60	m	-
$\mathrm{C}_{5}{ }^{\prime}$	3.37	m	-
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	1.17	d	4.9
OH	3.26	br	-
	3.97	br	-
$-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	$\begin{aligned} & 5.08 \\ & 5.14 \end{aligned}$	$\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$	12.2
$-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	$7.31-7.37$	m	-
$-\mathrm{CH}_{2} \mathrm{NHCO}-$	5.64	br t	-
	3.86	dd	18.6, 4.0
$-\mathrm{CH}_{2} \mathrm{NHCO}-$	4.27	dd	18.6, 7.3

	$\delta(\mathrm{ppm})$
C_{1}	173.5
C_{2}	42.9
$\mathrm{C}_{2}-\mathrm{Me}$	15.2
C_{3}	79.8
C_{4}	36.2
$\mathrm{C}_{4}-\mathrm{Me}$	8.9
C_{5}	83.2
C_{6}	78.0
$\mathrm{C}_{6}-\mathrm{Me}$	19.4
$\mathrm{C}_{6}-\mathrm{OMe}$	50.0
C_{7}	38.7
C_{8}	45.3
$\mathrm{C}_{8}-\mathrm{Me}^{\prime}$	17.9
C_{9}	220.7
C_{10}	37.3
$\mathrm{C}_{10}-\mathrm{Me}^{2}$	12.5
C_{11}	69.5
C_{12}	74.2
$\mathrm{C}_{12}-\mathrm{Me}^{2}$	16.1
C_{13}	77.1
C_{14}	21.2
C_{15}	10.4
$\mathrm{C}_{1}{ }^{\prime}$	104.1
C_{2}^{\prime}	70.3
C_{3}^{\prime}	65.7
$\mathrm{C}_{3}^{\prime} \mathrm{NMe}_{2}$	40.0
C_{4}^{\prime}	28.6
C_{5}^{\prime}	69.2
$\mathrm{C}_{5}^{\prime}-\mathrm{Me}^{\prime}$	21.1
$\mathrm{C}_{3}-\mathrm{COCH}_{2} \mathrm{NH}-$	43.1
$\mathrm{C}_{3}-\mathrm{COCH}_{2} \mathrm{NH}-$	170.0
$-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	67.0
$-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	156.3
	128.1
$-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	128.2
	128.5
	136.3

Table 8. Proton and carbon assignments of compound 3f.

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR data				$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR data	
	$\delta(\mathrm{ppm})$	peak	$J(\mathrm{~Hz})$		$\delta(\mathrm{ppm})$
C_{2} - H	2.89	m	-	C_{1}	175.3
2-Me	1.22	d	7.0	C_{2}	44.4
$\mathrm{C}_{3}-\mathrm{H}$	3.62	d	11.3	$\mathrm{C}_{2}-\mathrm{Me}$	15.5
C_{4}-H	1.88-1.99	m	-	C_{3}	80.9
4-Me	1.07	d	7.6	C_{4}	36.7
$\mathrm{C}_{5}-\mathrm{H}$	4.23	d	4.0	$\mathrm{C}_{4}-\mathrm{Me}$	9.1
6-Me	1.31	S	-	C_{5}	79.2
$6-\mathrm{OMe}$	2.98	S	-	C_{6}	78.0
$\mathrm{C}_{7}-\mathrm{H}$	1.61	dd	14.6, 1.5	$\mathrm{C}_{6}-\mathrm{Me}$	19.5
$\mathrm{C}_{7}-\mathrm{H}$	1.81	dd	14.6, 12.2	C_{6} - OMe	50.0
$\mathrm{C}_{8}-\mathrm{H}$	2.57	m	-	C_{7}	38.8
$8-\mathrm{Me}$	1.10	d	7.3	C_{8}	45.5
$\mathrm{C}_{10}-\mathrm{H}$	3.01	m	-	$\mathrm{C}_{8}-\mathrm{Me}$	18.0
$10-\mathrm{Me}$	1.12	d	7.0	C_{9}	221.1
$\mathrm{C}_{11}-\mathrm{H}$	3.81	d	1.2	C_{10}	37.3
12-Me	1.15	S	-	$\mathrm{C}_{10}-\mathrm{Me}$	12.5
C_{13} - H	5.14	dd	11.3, 2.4	C_{11}	69.4
$\mathrm{C}_{14}-\mathrm{H}$	1.35-1.56	m	-	C_{12}	74.3
$\mathrm{C}_{14}-\mathrm{H}$	1.88-1.99	m	-	$\mathrm{C}_{12}-\mathrm{Me}$	16.1
$\mathrm{C}_{15}-\mathrm{H}$	0.84	t	7.3	C_{13}	76.6
$\mathrm{C}_{1}{ }^{\prime}-\mathrm{H}$	4.52	d	7.6	C_{14}	22.8
$\mathrm{C}_{2}{ }^{\prime}-\mathrm{H}$	3.20	dd	10.6, 7.6	C_{15}	10.5
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{H}$	2.49	ddd	12.2, 10.4, 4.3	$\mathrm{C}_{1}{ }^{\prime}$	101.9
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	2.30	s	-	$\mathrm{C}_{2}{ }^{\prime}$	70.8
$\mathrm{C}_{4}{ }^{\prime}-\mathrm{H}$	1.17-1.27	m	-	$\mathrm{C}_{3}{ }^{\prime}$	66.0
$\mathrm{C}_{4}-\mathrm{H}$	1.66	m	-	$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	40.4
$\mathrm{C}_{5}{ }^{\text {a }}$	3.58	m	-	$\mathrm{C}_{4}{ }^{\text {- }}$	29.0
$\mathrm{C}_{5}^{\prime}{ }^{\prime}-\mathrm{Me}$	1.22	d	6.4	$\mathrm{C}_{5}{ }^{\text {' }}$	68.7
$\operatorname{THP}\left(\mathrm{C}_{1}-\mathrm{H}\right)$	4.41	dd	9.4, 1.2	$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	21.2
THP($\left.\mathrm{C}_{2}-\mathrm{H}\right)$	1.88-1.99	m	-	$\mathrm{THP}\left(\mathrm{C}_{1}\right)$	102.6
THP($\left.\mathrm{C}_{3}-\mathrm{H}\right)$	1.35-1.56	m	-	$\operatorname{THP}\left(\mathrm{C}_{2}\right)$	31.4
THP($\left.\mathrm{C}_{3}-\mathrm{H}\right)$	1.88-1.99	m	-	THP(C_{3})	21.2
THP($\left.\mathrm{C}_{4}-\mathrm{H}\right)$	1.35-1.56	m	-	THP(C_{4})	25.4
THP($\left.\mathrm{C}_{5}-\mathrm{H}\right)$	$\begin{gathered} 3.45 \\ 3.95-3.97 \end{gathered}$	ddd	$11.6,11.6,2.4$	$\mathrm{THP}\left(\mathrm{C}_{5}\right)$	66.3
	3.95-3.97	m	-		
OH	$\begin{aligned} & 3.22 \\ & 3.95 \end{aligned}$	$\begin{gathered} \mathrm{br} \mathrm{~s} \\ \mathrm{~s} \end{gathered}$			

Table 9. Proton and carbon assignments of compound $\mathbf{3 g}$.

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR data				$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR data	
	$\delta(\mathrm{ppm})$	peak	J (Hz)		$\delta(\mathrm{ppm})$
C_{2} - H	3.08-3.11	m	-	C_{1}	174.4
2-Me	1.10	d	7.3	C_{2}	44.0
$\mathrm{C}_{3}-\mathrm{H}$	4.68	d	10.4	C_{2}-Me	15.4
$\mathrm{C}_{4}-\mathrm{H}$	2.25-2.28	m	-	C_{3}	82.5
4-Me	1.24	d	7.3	C_{4}	37.0
$\mathrm{C}_{5}-\mathrm{H}$	3.69	d	3.7	$\mathrm{C}_{4}-\mathrm{Me}$	8.3
6-Me	1.26	S	-	C_{5}	78.6
6-OMe	3.11	S	-	C_{6}	78.2
$\mathrm{C}_{7}-\mathrm{H}$	1.62	dd	14.7, 1.2	$\mathrm{C}_{6}-\mathrm{Me}$	19.3
$\mathrm{C}_{7}-\mathrm{H}$	1.85	dd	14.7, 12.2	C_{6}-OMe	50.2
$\mathrm{C}_{8}-\mathrm{H}$	2.57	m	-	C_{7}	38.6
$8-\mathrm{Me}$	1.13	d	7.3	C_{8}	45.5
$\mathrm{C}_{10}-\mathrm{H}$	3.02-3.05	m	-	C_{8}-Me	17.8
$10-\mathrm{Me}$	1.15	d	6.7	C_{9}	220.9
$\mathrm{C}_{11}-\mathrm{H}$	3.84	d	1.8	C_{10}	37.3
12-Me	1.18	S	-	$\mathrm{C}_{10}-\mathrm{Me}$	12.5
$\mathrm{C}_{13}-\mathrm{H}$	5.19	dd	11.0, 2.4	C_{11}	69.6
$\mathrm{C}_{14}-\mathrm{H}$	1.52	m	-	C_{12}	74.2
$\mathrm{C}_{14}-\mathrm{H}$	1.96	m	-	$\mathrm{C}_{12}-\mathrm{Me}$	16.1
C_{15}-H	0.84	t	7.3	C_{13}	77.3
$\mathrm{C}_{1}{ }^{\prime}-\mathrm{H}$	4.10	d	7.3	C_{14}	21.1
$\mathrm{C}_{2}{ }^{\prime}-\mathrm{H}$	3.02-3.05	m	-	C_{15}	10.4
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{H}$	2.34	m	-	$\mathrm{C}_{1}{ }^{\prime}$	101.3
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	2.23	S	-	$\mathrm{C}_{2}{ }^{\prime}$	70.4
$\mathrm{C}_{6}<$ -	1.02	m	12.8, 1.8, 1.8,	$\mathrm{C}_{3}{ }^{\prime}$	65.2
$\mathrm{C}_{4}-\mathrm{H}$	1.43	dq	1.8	$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	40.2
$\mathrm{C}_{5}{ }^{\text {a }}$	2.47	m	-	$\mathrm{C}_{4}{ }^{\text {' }}$	28.4
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	0.75	d	6.1	$\mathrm{C}_{5}{ }^{\text {a }}$	69.0
OH	3.26	S	-	$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	20.8
OH	$\begin{aligned} & 3.20 \\ & 4.05 \end{aligned}$	s	-	$-\mathrm{Ph}\left(\mathrm{C}_{1}\right)$	152.2
$-\mathrm{Ph}\left(\mathrm{C}_{3}-\mathrm{H}\right)$	7.75	dd	7.9, 1.8	$-\mathrm{Ph}\left(\mathrm{C}_{2}\right)$	140.2
$-\mathrm{Ph}\left(\mathrm{C}_{4}-\mathrm{H}\right)$	7.01	t	7.9	$-\mathrm{Ph}\left(\mathrm{C}_{3}\right)$	125.4
$-\mathrm{Ph}\left(\mathrm{C}_{5}-\mathrm{H}\right)$	7.53	m	-	$-\mathrm{Ph}\left(\mathrm{C}_{4}\right)$	120.1
$-\mathrm{Ph}\left(\mathrm{C}_{6}-\mathrm{H}\right)$	7.31	d	8.6	$-\mathrm{Ph}\left(\mathrm{C}_{5}\right)$	133.6
				$-\mathrm{Ph}\left(\mathrm{C}_{3}\right)$	113.4

Table 10. Proton and carbon assignments of compound $\mathbf{3 h}$.

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR data			
	$\delta(\mathrm{ppm})$	peak	$J(\mathrm{~Hz})$
C_{2} - H	2.83	m	-
2-Me	0.89	d	6.4
$\mathrm{C}_{3}-\mathrm{H}$	5.07	d	11.3
C_{4}-H	2.20	m	-
4-Me	1.16	d	7.6
$\mathrm{C}_{5}-\mathrm{H}$	3.75	d	3.7
6-Me	1.29	S	-
6-OMe	3.05	S	-
$\mathrm{C}_{7}-\mathrm{H}$	$\begin{aligned} & 1.80 \\ & 1.57 \end{aligned}$	dd dd	$\begin{gathered} 14.9,11.6 \\ 14.9,1.5 \end{gathered}$
$\mathrm{C}_{8}-\mathrm{H}$	2.56	m	-
$8-\mathrm{Me}$	1.11	d	7.3
$\mathrm{C}_{10}-\mathrm{H}$	2.98-3.08	m	-
$10-\mathrm{Me}$	1.12	d	7.0
$\mathrm{C}_{11}-\mathrm{H}$	3.82	d	1.5
$12-\mathrm{Me}$	1.15	S	-
$\mathrm{C}_{13}-\mathrm{H}$	5.15	dd	11.3, 2.4
$\mathrm{C}_{14}-\mathrm{H}$	$\begin{gathered} 1.41-1.55 \\ 1.92 \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	-
$\mathrm{C}_{15}-\mathrm{H}$	0.81	t	7.3
$\mathrm{C}_{1}{ }^{\prime}-\mathrm{H}$	3.91	d	7.3
$\mathrm{C}_{2}{ }^{\prime}-\mathrm{H}$	3.14	dd	10.4, 7.3
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{H}$	2.32	m	-
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	2.27	S	-
$\mathrm{C}_{4}{ }^{\prime}-\mathrm{H}$	$\begin{aligned} & 1.07-1.19 \\ & 1.41-1.55 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	-
$\mathrm{C}_{5}{ }^{\prime}$	2.98-3.08	m	-
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	1.13	d	6.1
OH	3.23	br s	-
	3.95	d	15.2
$-\mathrm{COCH}_{2} \mathrm{Ph}$	3.73	d	15.2
$-\mathrm{COCH}_{2} \mathrm{Ph}$	7.26-7.36	m	-

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR data	
	δ (ppm)
C_{1}	173.6
C_{2}	43.0
$\mathrm{C}_{2}-\mathrm{Me}$	15.0
C_{3}	78.5
C_{4}	36.2
$\mathrm{C}_{4}-\mathrm{Me}$	9.0
C_{5}	81.1
C_{6}	78.0
$\mathrm{C}_{6}-\mathrm{Me}$	19.4
C_{6}-OMe	50.1
C_{7}	38.7
C_{8}	45.3
$\mathrm{C}_{8}-\mathrm{Me}$	18.0
C_{9}	220.6
C_{10}	37.3
$\mathrm{C}_{10}-\mathrm{Me}$	12.5
C_{11}	69.4
C_{12}	74.2
$\mathrm{C}_{12}-\mathrm{Me}$	16.1
C_{13}	77.0
C_{14}	21.1
C_{15}	10.4
$\mathrm{C}_{1}{ }^{\prime}$	103.3
$\mathrm{C}_{2}{ }^{\prime}$	70.5
$\mathrm{C}_{3}{ }^{\prime}$	65.8
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	40.3
$\mathrm{C}_{4}{ }^{\text {' }}$	28.3
$\mathrm{C}_{5}{ }^{\text {' }}$	69.4
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	21.0
$\mathrm{C}_{3}-\mathrm{COCH}_{2} \mathrm{Ph}$	41.5
$\mathrm{C}_{3}-\mathrm{COCH}_{2} \mathrm{Ph}$	171.1
$\mathrm{C}_{3}-\mathrm{COCH}_{2} \mathrm{Ph}$	127.3
	128.6
	129.5
	133.6

Table 11. Proton and carbon assignments of compound 3i.

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR data				$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR data	
	$\delta(\mathrm{ppm})$	peak	$J(\mathrm{~Hz})$		$\delta(\mathrm{ppm})$
C_{2} - H	2.95-3.02	m	-	C_{1}	173.3
$2-\mathrm{Me}$	1.17	d	6.7	C_{2}	43.6
$\mathrm{C}_{3}-\mathrm{H}$	4.82	d	11.0	$\mathrm{C}_{2}-\mathrm{Me}$	16.5
$\mathrm{C}_{4}-\mathrm{H}$	2.15	m	-	C_{3}	85.9
4-Me	1.15	d	7.9	C_{4}	37.9
$\mathrm{C}_{5}-\mathrm{H}$	4.03	d	4.9	$\mathrm{C}_{4}-\mathrm{Me}$	8.8
6-Me	1.37	S	-	C_{5}	80.0
6-OMe	3.05	S	-	C_{6}	78.3
C_{7} -	1.65	dd	14.7, 1.8	$\mathrm{C}_{6}-\mathrm{Me}$	19.5
$\mathrm{C}_{7}-\mathrm{H}$	1.72-1.77	m	-	C_{6} - OMe	50.5
$\mathrm{C}_{8}-\mathrm{H}$	2.57	m	-	C_{7}	39.0
$8-\mathrm{Me}$	1.12	d	7.3	C_{8}	45.1
$\mathrm{C}_{10}-\mathrm{H}$	2.95-3.02	m	-	$\mathrm{C}_{8}-\mathrm{Me}$	18.0
$10-\mathrm{Me}$	1.12	d	6.7	C_{9}	220.7
$\mathrm{C}_{11}-\mathrm{H}$	3.76	d	1.2	C_{10}	37.2
$12-\mathrm{Me}$	1.12	S	-	$\mathrm{C}_{10}-\mathrm{Me}$	12.3
$\mathrm{C}_{13}-\mathrm{H}$	5.12	dd	11.6, 2.4	C_{11}	69.2
$\mathrm{C}_{14}-\mathrm{H}$	1.49	m	-	C_{12}	74.2
$\mathrm{C}_{14} \mathrm{H}$	1.93	m	-	$\mathrm{C}_{12}-\mathrm{Me}$	16.0
$\mathrm{C}_{15}-\mathrm{H}$	0.84	t	7.3	C_{13}	77.4
$\mathrm{C}_{1}{ }^{\prime}-\mathrm{H}$	4.30	d	7.3	C_{14}	21.0
$\mathrm{C}_{2}{ }^{\prime}-\mathrm{H}$	3.14	dd	9.8, 7.3	C_{15}	10.4
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{H}$	2.37	m	-	$\mathrm{C}_{1}{ }^{\prime}$	102.7
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	2.26	s	-	$\mathrm{C}_{2}{ }^{\prime}$	70.7
$\mathrm{C}_{4}{ }^{-}$-	1.14-1.20	m		$\mathrm{C}_{3}{ }^{\prime}$	65.8
$\mathrm{C}_{4}-\mathrm{H}$	1.58	dq	12.8,1.8,1.8,1.8	$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	40.2
$\mathrm{C}_{5}{ }^{\prime}$	3.44	m	-	$\mathrm{C}_{4}{ }^{\prime}$	28.3
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	1.16	d	5.5	$\mathrm{C}_{5}{ }^{\text {a }}$	68.8
		S	-	$\mathrm{C}_{5}^{\prime}-\mathrm{Me}$	21.1
OH	3.21	br	-	$\mathrm{C}_{3}-\mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	57.5
	3.34	S	-		128.0
$-\mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	4:96	d	14.0	$\mathrm{C}_{3}-\mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	128.8
	4.46	d		$\mathrm{C}_{3}-\mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	129.0
$-\mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	$7.38-7.44$	m	-		130.8

Table 12. Proton and carbon assignments of compound $\mathbf{3 j}$.

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR data			
	$\delta(\mathrm{ppm})$	peak	J (Hz)
$\mathrm{C}_{2}-\mathrm{H}$	2.83	m	-
$2-\mathrm{Me}$	0.90	d	6.7
$\mathrm{C}_{3}-\mathrm{H}$	5.09	d	11.0
$\mathrm{C}_{4}-\mathrm{H}$	2.21	m	-
4-Me	1.16	d	7.6
$\mathrm{C}_{5}-\mathrm{H}$	3.72	d	3.7
6-Me	1.31	s	-
6-OMe	3.04	S	-
$\mathrm{C}_{7}-\mathrm{H}$	$\begin{gathered} 1.79 \\ 1.56-1.59 \end{gathered}$	dd m	$14.6,11.9$
$\mathrm{C}_{8}-\mathrm{H}$	2.56	m	-
$8-\mathrm{Me}$	1.12	d	7.0
$\mathrm{C}_{10}-\mathrm{H}$	3.00	m	-
$10-\mathrm{Me}$	1.12	d	7.0
$\mathrm{C}_{11}-\mathrm{H}$	3.81	S	-
$12-\mathrm{Me}$	1.15	S	-
$\mathrm{C}_{13}-\mathrm{H}$	5.15	dd	11.3, 2.1
$\mathrm{C}_{14}-\mathrm{H}$	$\begin{aligned} & 1.47 \\ & 1.93 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	- -
$\mathrm{C}_{15}-\mathrm{H}$	0.81	t	7.3
$\mathrm{C}_{1}{ }^{\prime}-\mathrm{H}$	3.92	d	7.3
$\mathrm{C}_{2}{ }^{\prime}-\mathrm{H}$	3.17	dd	10.4, 7.3
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{H}$	2.30	m	-
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	2.27	S	-
$\mathrm{C}_{4}^{\prime}-\mathrm{H}$	$\begin{aligned} & 1.16-1.23 \\ & 1.56-1.59 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	
$\mathrm{C}_{5}{ }^{\prime}$	3.15	m	-
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	1.17	d	6.1
OH	$\begin{aligned} & 3.23 \\ & 3.35 \end{aligned}$	$\begin{gathered} \mathrm{br} \mathrm{~s} \\ \mathrm{br} \\ \mathrm{~s} \end{gathered}$	-
$-\mathrm{COCH}_{2} \mathrm{Ph}$	$\begin{aligned} & 3: 96 \\ & 3.86 \end{aligned}$	$\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.5 \end{aligned}$
$-\mathrm{COCH}_{2} \mathrm{Ph}$	$\begin{aligned} & 7.54 \\ & 8.21 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR data	
	$\delta(\mathrm{ppm})$
C_{1}	173.4
C_{2}	42.9
C_{2}-Me	15.1
C_{3}	79.4
C_{4}	36.3
$\mathrm{C}_{4}-\mathrm{Me}$	9.0
C_{5}	82.2
C_{6}	78.0
$\mathrm{C}_{6}-\mathrm{Me}$	19.4
$\mathrm{C}_{6}-\mathrm{OMe}$	50.1
C_{7}	38.8
C_{8}	45.3
$\mathrm{C}_{8}-\mathrm{Me}$	17.9
C_{9}	220.6
C_{10}	37.3
$\mathrm{C}_{10}-\mathrm{Me}$	12.4
C_{11}	69.5
C_{12}	74.2
$\mathrm{C}_{12}-\mathrm{Me}$	16.1
C_{13}	77.2
C_{14}	21.1
C_{15}	10.4
$\mathrm{C}_{1}{ }^{\prime}$	104.0
$\mathrm{C}_{2}{ }^{\prime}$	70.4
$\mathrm{C}_{3}{ }^{\prime}$	66.2
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	40.3
$\mathrm{C}_{4}{ }^{\prime}$	28.2
$\mathrm{C}_{5}{ }^{\prime}$	69.7
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	21.1
$\mathrm{C}_{3}-\mathrm{COCH}_{2} \mathrm{Ph}$	41.1
$\mathrm{C}_{3}-\mathrm{COCH}_{2} \mathrm{Ph}$	169.9
$\mathrm{C}_{3}-\mathrm{COCH}_{2} \mathrm{Ph}$	123.7
	130.5
	140.9
	147.3

Table 13. Proton and carbon assignments of compound 3k.

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR data			
	$\delta(\mathrm{ppm})$	peak	J (Hz)
C_{2} - H	$3.01-3.13$	m	-
2-Me	1.12-1.17	m	-
$\mathrm{C}_{3}-\mathrm{H}$	5.38	d	11.0
$\mathrm{C}_{4}-\mathrm{H}$	2.37	m	-
4-Me	1.32	d	7.9
$\mathrm{C}_{5}-\mathrm{H}$	3.73	d	3.1
6-Me	1.29	S	-
$6-\mathrm{OMe}$	3.10	S	-
$\mathrm{C}_{7}-\mathrm{H}$	$\begin{gathered} 1.84 \\ 1.49-1.61 \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	-
C_{8} - H	2.54-2.59	m	-
$8-\mathrm{Me}$	1.12-1.17	m	-
$\mathrm{C}_{10}-\mathrm{H}$	$3.01-3.13$	m	-
$10-\mathrm{Me}$	1.12-1.17	m	-
$\mathrm{C}_{11}-\mathrm{H}$	3.87	d	1.2
12-Me	1.20	s	-
$\mathrm{C}_{13}-\mathrm{H}$	5.23	dd	11.0, 1.8
$\mathrm{C}_{14}-\mathrm{H}$	1.97 $1.49-1.61$	m	-
	$1.49-1.61$	m	-
C_{15}-H	0.85	t	7.3
$\mathrm{C}_{1}{ }^{\prime}-\mathrm{H}$	3.78	d	7.3
$\mathrm{C}_{2}{ }^{\prime}-\mathrm{H}$	$3.01-3.13$	m	-
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{H}$	1.49-1.61	m	-
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	2.08	S	-
$\mathrm{C}_{4}{ }^{\prime}-\mathrm{H}$	$1.26-1.33$ $0.96-1.05$	m	-
	0.96-1.05	m	-
$\mathrm{C}_{5}{ }^{\text {' }}$	2.54-2.59	m	-
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	1.05	d	6.1
OH	3.28	br	-
-COPh	$\stackrel{4.01}{ } 8.30-8.36$	br m	-

$75 \mathrm{MHz}^{13} \mathrm{C}$ NMR data	
	$\delta(\mathrm{ppm})$
C_{1}	173.4
C_{2}	42.9
$\mathrm{C}_{2}-\mathrm{Me}$	15.3
C_{3}	80.1
C_{4}	36.4
$\mathrm{C}_{4}-\mathrm{Me}$	9.1
C_{5}	81.3
C_{6}	77.9
$\mathrm{C}_{6}-\mathrm{Me}$	19.3
$\mathrm{C}_{6}-\mathrm{OMe}$	50.1
C_{7}	38.7
C_{8}	45.4
$\mathrm{C}_{8}-\mathrm{Me}$	17.9
C_{9}	220.6
C_{10}	37.3
$\mathrm{C}_{10}-\mathrm{Me}$	12.5
C_{11}	69.5
C_{12}	74.2
$\mathrm{C}_{12}-\mathrm{Me}$	16.1
C_{13}	77.3
C_{14}	21.2
C_{15}	10.4
$\mathrm{C}_{1}{ }^{\prime}$	103.0
$\mathrm{C}_{2}{ }^{\prime}$	70.1
C_{3}^{\prime}	65.8
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	40.1
$\mathrm{C}_{4}{ }^{\prime}$	28.0
C_{5}^{\prime}	69.5
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	20.9
$\mathrm{C}_{3}-\mathrm{COPh}^{\prime}$	123.6
	131.2
$\mathrm{C}_{3}-\mathrm{COPh}^{\prime}$	135.8
	150.8

Table 14. Proton and carbon assignments of compound 5.

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR data			
	$\delta(\mathrm{ppm})$	peak	J (Hz)
C_{2} - H	2.65	m	-
$2-\mathrm{Me}$	1.25	d	5.8
$\mathrm{C}_{3}-\mathrm{H}$	$3.50-3.55$	m	-
$\mathrm{C}_{4}-\mathrm{H}$	2.12	m	-
4-Me	1.08	d	7.3
$\mathrm{C}_{5}-\mathrm{H}$	3.64	d	1.2
6-Me	1.36	S	-
6-OMe	2.88	s	-
$\mathrm{C}_{7}-\mathrm{H}$	$\begin{gathered} 1.65 \\ 1.19-1.24 \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	
$\mathrm{C}_{8}-\mathrm{H}$	3.73	m	-
$8-\mathrm{Me}$	0.95	d	7.0
$\mathrm{C}_{10}-\mathrm{H}$	2.58	m	-
$10-\mathrm{Me}$	1.14	d	7.0
$\mathrm{C}_{11}-\mathrm{H}$	3.83	d	1.5
$12-\mathrm{Me}$	1.19	S	-
$\mathrm{C}_{13}-\mathrm{H}$	5.22	dd	11.0, 2.4
$\mathrm{C}_{14}-\mathrm{H}$	1.49	m	-
Cl_{14}	1.96	m	-
C_{15} - H	0.84	t	7.3
$\mathrm{C}_{1}{ }^{\prime}-\mathrm{H}$	4.35	d	7.3
$\mathrm{C}_{2}{ }^{\prime}-\mathrm{H}$	3.22	dd	10.4, 7.3
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{H}$	2.45	m	-
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	2.24	s	-
$\mathrm{C}_{4}^{\prime}-\mathrm{H}$	$\begin{gathered} 1.58 \\ 1.32-1.37 \end{gathered}$	m	-
$\mathrm{C}_{5}{ }^{\prime}$	$3.50-3.55$	m	-
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	1.25	d	5.8
OH	3.28	brs	-
	4.48	s	-
$-\mathrm{CH}_{2} \mathrm{Ph}$	$\begin{aligned} & 4.97 \\ & 4.97 \\ & 5.05 \end{aligned}$	$\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$	11.6
$-\mathrm{CH}_{2} \mathrm{Ph}$	$7.26-7.37$	m	-

$75 \mathrm{MHz}^{13} \mathrm{C}$ NMR data	
	$\delta(\mathrm{ppm})$
C_{1}	175.0
C_{2}	44.6
$\mathrm{C}_{2}-\mathrm{Me}$	15.2
C_{3}	79.0
C_{4}	36.0
$\mathrm{C}_{4}-\mathrm{Me}$	8.2
C_{5}	88.2
C_{6}	78.4
$\mathrm{C}_{6}-\mathrm{Me}$	18.8
$\mathrm{C}_{6}-\mathrm{OMe}$	49.5
C_{7}	28.1
C_{8}	26.4
$\mathrm{C}_{8}-\mathrm{Me}$	18.3
C_{9}	170.2
C_{10}	33.1
$\mathrm{C}_{10}-\mathrm{Me}^{2}$	15.4
C_{11}	70.6
C_{12}	74.0
$\mathrm{C}_{12}-\mathrm{Me}^{2}$	16.2
C_{13}	76.9
C_{14}	21.7
C_{15}	10.5
$\mathrm{C}_{1}{ }^{\prime}$	106.8
$\mathrm{C}_{2}{ }^{\prime}$	70.7
$\mathrm{C}_{3}{ }^{\prime}$	65.7
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	40.3
$\mathrm{C}_{4}{ }^{\prime}$	37.4
$\mathrm{C}_{5}{ }^{\prime}$	70.3
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}^{2}$	21.3
$-\mathrm{CH}_{2} \mathrm{Ph}$	75.8
$-\mathrm{CH}_{2} \mathrm{Ph}$	127.7
	128.3
	137.9

Table 15. Proton and carbon assignments of compound 7.

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR data			
	$\delta(\mathrm{ppm})$	peak	$J(\mathrm{~Hz})$
$\mathrm{C}_{2}-\mathrm{H}$	2.84-2.95	m	-
2 -Me	1.21	d	6.7
$\mathrm{C}_{3}-\mathrm{H}$	3.54-3.60	m	-
$\mathrm{C}_{4}-\mathrm{H}$	1.87-1.99	m	-
4-Me	1.03	d	7.3
$\mathrm{C}_{5}-\mathrm{H}$	4.22	d	3.7
6-Me	1.30	s	-
6-OMe	2.92	s	-
$\mathrm{C}_{7}-\mathrm{H}$	$1.30-1.53$	m	-
C_{8} - H	3.70	m	-
8 -Me	0.93	d	6.7
$\mathrm{C}_{10}-\mathrm{H}$	2.57	m	-
10-Me	1.13	d	6.7
$\mathrm{C}_{11}-\mathrm{H}$	3.78	d	1.8
12-Me	1.15	s	-
$\mathrm{C}_{13}-\mathrm{H}$	5.19	dd	11.0, 1.8
$\mathrm{C}_{14}-\mathrm{H}$	1.87-1.99	m	-
$\mathrm{C}_{15}-\mathrm{H}$	0.84	t	7.3
C_{1} - -H	4.50	d	7.3
C_{2} - -H	3.20	dd	9.8, 7.3
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{H}$	2.48	m	-
$\mathrm{C}_{3}-\mathrm{NMe}_{2}$	2.30	s	-
$\mathrm{C}_{4}{ }^{\prime}-\mathrm{H}$	1.65	m	-
$\mathrm{C}_{5}{ }^{\prime}$	3.54-3.60	m	-
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	1.22	d	6.1
	3.15	br	-
OH	3.24	s	-
	4.54	s	-
$-\mathrm{CH}_{2} \mathrm{Ph}$	4.98	d	11.6
$-\mathrm{CH}_{2} \mathrm{Ph}$	7.28-7.35	m	-
$\mathrm{THP}\left(\mathrm{C}_{1}-\mathrm{H}\right)$	4.41	dd	9.2, 1.2
THP($\left.\mathrm{C}_{2}-\mathrm{H}\right)$	3.44	m	-
$\mathrm{THP}\left(\mathrm{C}_{3}-\mathrm{H}\right)$	$1.30-1.53$	m	-
THP($\mathrm{C}_{4}-\mathrm{H}$)	$1.30-1.53$	m	-
$\mathrm{THP}\left(\mathrm{C}_{5}-\mathrm{H}\right)$	$1.30-1.53$	m	-

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR data

	$\delta(\mathrm{ppm})$
C_{1}	175.1
C_{2}	44.5
C_{2}-Me	15.4
C_{3}	80.9
C_{4}	36.7
$\mathrm{C}_{4}-\mathrm{Me}$	9.1
C_{5}	78.9
C_{6}	783
$\mathrm{C}_{6}-\mathrm{Me}$	196
C_{6}-OMe	50.0
C_{7}	37.2
C_{8}	26.4
C_{8}-Me	18.6
C_{9}	170.4
C_{10}	33.0
$\mathrm{C}_{10}-\mathrm{Me}$	15.3
C_{11}	70.4
C_{12}	74.0
$\mathrm{C}_{12}-\mathrm{Me}$	16.1
C_{13}	76.9
C_{14}	214
C_{15}	10.5
$\mathrm{C}_{1}{ }^{\prime}$	101.9
$\mathrm{C}_{2}{ }^{\prime}$	70.9
$\mathrm{C}_{3}{ }^{\prime}$	65.9
$\mathrm{C}_{3}{ }^{\prime}-\mathrm{NMe}_{2}$	40.4
$\mathrm{C}_{4}{ }^{\text {' }}$	29.2
$\mathrm{C}_{5}{ }^{\prime}$	68.6
$\mathrm{C}_{5}{ }^{\prime}-\mathrm{Me}$	21.2
$-\mathrm{CH}_{2} \mathrm{Ph}$	75.7
$-\mathrm{CH}_{2} \mathrm{Ph}$	127.6, 128.1, 128.3, 137.9
$\operatorname{THP}\left(\mathrm{C}_{1}\right)$	102.6
$\operatorname{THP}\left(\mathrm{C}_{2}\right)$	66.3
$\operatorname{THP}\left(\mathrm{C}_{3}\right)$	22.7
THP(C_{4})	25.4
$\mathrm{THP}\left(\mathrm{C}_{5}\right)$	31.4

