Preparation of 2-diethoxyphosphoryl-4-alkenoates 8a-e. General Procedure.

A solution of ethyl diethoxyphosphoryl acetate (22.42g; 100 mmol) in THF (50 mL) was added dropwise to a stirred suspension of NaH (2.64 g; 110 mmol) in THF (200 mL) at 0°C. Stirring was continued for 0.5 h at the same temperature and then allyl bromide (105 mmol) in THF (100 mL) was added. The reaction mixture was left overnight at r.t. and cooled to 0°C before quenching with saturated ammonium chloride solution (150 mL). THF was evaporated under reduced pressure, water (100 mL) was added and the aqueous layer was extracted with Et₂O (2 x 100 mL). The combined organic extracts were dried and evaporated to give the crude product, which was purified by distillation.

Ethyl 2-diethoxyphosphoryl-4-pentenoate (8a); oil, 47 % yield, bp 108-114 °C/0.8 mbar; IR (film) v 1736 (C=O), 1640 (C=C), 1256 (P=O) cm⁻¹; ¹H NMR (CDCl₃) δ 1.28 (t, J = 7.00 Hz, 3H, CO₂CH₂CH₃), 1.34 (td, J = 7.00, 0.50 Hz, 3H, POCH₂CH₃), 1.35 (td, J = 7.00, 0.50 Hz, 3H, POCH₂CH₃), 2.50-2.82 (m, 2H, H₂C-3), 3.04 (ddd, J = 22.26, 11.00, 4.00 Hz, 1H, HC-2), 4.09-4.26 (m, 6H, POCH₂ and COCH₂), 5.02-5.17 (m, 2H, H₂C-5), 5.76 (ddt, J = 17.01, 10.26, 6.50 Hz, 1H, HC-4); ³¹P NMR (CDCl₃) δ 22.78.

Ethyl 2-diethoxyphosphoryl-4-methyl-4-pentenoate (8b); oil, 64 % yield, bp 88-89 °C/0.013 mbar; IR (film) v 1736 (C=O), 1652 (C=C), 1260 (P=O) cm⁻¹; ¹H NMR (CDCl₃) δ 1.27 (t, J = 7.00 Hz, 3H, CO₂CH₂CH₃), 1.34 (t, J = 7.00 Hz, 3H, POCH₂CH₃), 1.35 (t, J = 7.00 Hz, 3H, POCH₂CH₃), 1.74 (s, 3H, CH₃C-4), 2.42-2.56 (m, 1H, HC-3), 2.72 (ddd, J = 15.26, 12.01, 6.75 Hz, 1H, HC-3), 3.19 (ddd, J = 22.76, 12.01, 3.25 Hz, 1H, HC-2), 4.14 (q, J = 7.00 Hz, 2H, COCH₂), 4.17 (quin, J = 7.00 Hz, 2H, POCH₂), 4.18 (quin, J = 7.00 Hz, 2H, POCH₂), 4.73 (s, 1H, HC-5), 4.78 (s, 1H, HC-5); ³¹P NMR (CDCl₃) δ 23.29.

Ethyl (*E*) and (*Z*)-2-diethoxyphosphoryl-4-hexenoate (*E*-) and (*Z*)-(8c); mixture of isomers (*E*) / (*Z*) = 80/20, oil, 50 % yield, bp 96-99 °C/0.2 mbar; IR (film) v 1736 (C=O), 1260 (P=O) cm⁻¹; (*E*)-(6c); ¹H NMR²² (CDCl₃) δ 1.24-1.40 (m, 9H, CO₂CH₂CH₃ and POCH₂CH₃), 1.60-1.75 (m, 3H, H₃C-6), 2.40-2.83 (m, 2H, H₂C-3), 2.97 (ddd, J = 22.01, 10.76, 4.00 Hz, HC-2), 4.08-4.26 (m, 6H, POCH₂ and COCH₂), 5.25-5.62 (m, 2H, HC-4 and HC-5); ³¹P NMR²² (CDCl₃) δ 23.00. (*Z*)-(6c); ¹H NMR²² (CDCl₃) δ 1.24-1.40 (m, 9H, CO₂CH₂CH₃ and POCH₂CH₃), 1.60-1.75 (m, 3H, H₃C-6), 2.40-2.83 (m, 2H, H₂C-3), 2.95 (dt, J = 22.51, 5.00 Hz, HC-2), 4.08-4.26 (m, 6H, POCH₂ and COCH₂), 5.25-5.62 (m, 2H, HC-4 and HC-5); ³¹P NMR²² (CDCl₃) δ 23.00.

Ethyl (*E*) 2-diethoxyphosphoryl-4-octenoate) (*E*)-(8d); oil, 59 % yield, bp 96-98 °C/0.07 mbar; IR (film) v 1736 (C=O), 1256 (P=O) cm⁻¹; ¹H NMR (CDCl₃) δ 0.86 (t, J = 7.50 Hz, 3H, H₃C-8), 1.27 (t, J = 7.25 Hz, 3H, CO₂CH₂CH₃), 1.33 (t, J = 7.00 Hz, 3H, POCH₂CH₃), 1.34 (td, J = 7.00, 0.25 Hz, 3H, POCH₂CH₃), 1.25-1.42 (m, 2H, H₂C-7), 1.94 (q, J = 7.25 Hz, 2H, H₂C-6), 2.43-2.75 (m, 2H, H₂C-3), 2.98 (ddd, J = 21.76, 10.76, 4.00 Hz, 1H, HC-2), 4.09-4.25 (m, 6H, POCH₂ and COCH₂), 5.34 (dt, J = 15.26, 7.00 Hz, 1H, HC-4), 5.52 (dt, J = 15.26, 7.25 Hz, 1H, HC-5); ³¹P NMR (CDCl₃) δ 23.00.

Ethyl (E) 2-diethoxyphosphoryl-5-phenyl-4-pentenoate (E)-(8e); oil, 53 % yield, bp 135-140 °C/0.13 mbar; IR (film) ν 1732 (C=O), 1256 (P=O) cm⁻¹; ¹H NMR (CDCl₃) δ 1.26 (t, J = 7.25 Hz, 3H, CO₂CH₂CH₃), 1.35 (td, J = 7.00, 0.50 Hz, 3H, POCH₂CH₃), 1.35 (td, J = 7.00, 0.50 Hz, 3H, POCH₂CH₃), 2.67-2.96 (m, 2H, H₂C-3), 3.10 (ddd, J = 21.76, 10.51, 4.25 Hz, 1H, HC-2), 4.11-4.26 (m, 6H, POCH₂ and COCH₂), 6.13 (dt, J = 15.76, 7.00 Hz, 1H, HC-

4), 6.47 (dt, J = 15.76, 1.25 Hz, 1H, HC-5), 7.16-7.36 (m, 5H, Ph); ³¹P NMR (CDCl₃) δ 22.68.

General Procedure for the Preparation of 2-Diethoxyphosphoryl-4-alkenoic acids (E)-4a-e. To a cold (0°C) solution of 2-diethoxyphosphoryl-4-alkenoate 8 (20 mmol) in EtOH (16 mL) a solution of KOH (1.68g; 30 mmol) in H_2O (2.2 mL) was added. The reaction mixture was left for 24 h at r.t. After this time EtOH was evaporated under reduced pressure and H_2O (10 mL) was added to the residue. The mixture was washed with Et_2O (3 x 15 mL), aqueous layer was acidified to pH ~1.5 with 10% aq. HCl and extracted with CHCl₃ (4 x 30 mL). The combined organic extracts were dried and evaporation gave crude product, which was used in the next step without further purification.

- **2-Diethoxyphosphoryl-4-pentenoic acid (4a)**; oil, 84 % yield; IR (film) v 3000 (O-H), 1728 (C=O), 1640 (C=C), 1216 (P=O) cm⁻¹; ¹H NMR (CDCl₃) δ 1.34 (td, J = 7.00, 0.50 Hz, 3H, POCH₂CH₃), 1.35 (td, J = 7.00, 0.50 Hz, 3H, POCH₂CH₃), 2.45-2.80 (m, 2H, H₂C-3), 3.06 (ddd, J = 22.76, 10.76, 4.00 Hz, 1H, HC-2), 4.11-4.29 (m, 4H, POCH₂), 5.00-5.19 (m, 2H, H₂C-5), 5.79 (ddt, J = 17.01, 10.00, 6.75 Hz, 1H, HC-4), 9.25 (bs, 1H, O-H); ³¹P NMR (CDCl₃) δ 23.73.
- **2-Diethoxyphosphoryl-4-methyl-4-pentenoic acid (4b)**; oil, 89 % yield; IR (film) v 3050 (O-H), 1728 (C=O), 1652 (C=C), 1216 (P=O) cm⁻¹; ¹H NMR (CDCl₃) δ 1.34 (t, J = 7.00 Hz, 3H, POCH₂CH₃), 1.36 (t, J = 7.00 Hz, 3H, POCH₂CH₃), 1.74 (s, 3H, CH₃C-4), 2.38-2.52 (m, 1H, HC-3), 2.70 (ddd, J = 15.26, 11.50, 7.50 Hz, 1H, HC-3), 3.22 (ddd, J = 23.01, 11.50, 3.25 Hz, 1H, HC-2), 4.18 (quin, J = 7.00 Hz, 2H, POCH₂), 4.23 (quin, J = 7.00 Hz, 2H, POCH₂), 4.79 (s, 2H, H₂C-5), 8.09 (bs, 1H, O-H); ³¹P NMR (CDCl₃) δ 24.10.
- (*E*)- and (*Z*)-2-Diethoxyphosphoryl-4-hexsenoic acid (*E*)- and (*Z*)- (4c); mixture of isomers (*E*)/(*Z*) = 80/20, oil, 88 % yield; IR (film) v 3050 (O-H), 1728 (C=O), 1216 (P=O) cm⁻¹; (*E*)-(7c); ¹H NMR²² (CDCl₃) δ 1.30-1.40 (m, 6H, POCH₂CH₃), 1.58-1.70 (m, 3H, H₃C-6), 2.38-2.82 (m, 2H, H₂C-3), 3.00 (ddd, J = 22.51, 10.76, 4.25 Hz, 1H, HC-2), 4.10-4.30 (m, 4H, POCH₂), 5.30-5.64 (m, 2H, HC-4 and HC-5), 8.51 (bs, 1H, O-H); ³¹P NMR²² (CDCl₃) δ 23.92. (*Z*)-(7c); ¹H NMR²² (CDCl₃) δ 1.30-1.40 (m, 6H, POCH₂CH₃), 1.58-1.70 (m, 3H, H₃C-6), 2.38-2.82 (m, 2H, H₂C-4), 2.98 (dt, J = 22.01, 6.00 Hz, 1H, HC-2), 4.10-4.30 (m, 4H, POCH₂), 5.30-5.64 (m, 2H, HC-4 and HC-4), 8.51 (bs, 1H, O-H); ³¹P NMR²² (CDCl₃) δ 23.92.
- (*E*)-2-Diethoxyphosphoryl-4-octenoic acid (*E*)-(4d); oil, 84 % yield; IR (film) v 3000 (O-H), 1728 (C=O), 1216 (P=O) cm⁻¹; ¹H NMR (CDCl₃) δ 0.86 (t, J = 7.25 Hz, 3H, H₃C-8), 1.33 (t, J = 7.00 Hz, 3H, POCH₂CH₃), 1.34 (t, J = 7.25 Hz, 3H, POCH₂CH₃), 1.25-1.42 (m, 2H, H₂C-7), 1.94 (q, J = 7.00 Hz, 2H, H₂C-6), 2.40-2.74 (m, 2H, H₂C-3), 3.00 (ddd, J = 22.26, 10.76, 4.00 Hz, 1H, HC-2), 4.17 (dq, J = 8.00, 7.00 Hz, 2H, POCH₂), 4.22 (quin, J = 7.25 Hz, 2H, POCH₂), 5.37 (dt, J = 15.26, 6.50 Hz, 1H, HC-4), 5.54 (dt, J = 15.26, 7.00 Hz, 1H, HC-5), 8.34 (bs, 1H, O-H); ³¹P NMR (CDCl₃) δ 23.89.
- (E)-2-Diethoxyphosphoryl-5-phenyl-4-pentenoic acid (E)-(4e); oil, 96 % yield; IR (film) v 3000 (O-H), 1728 (C=C), 1216 (P=O) cm⁻¹; 1 H NMR (CDCl₃) δ 1.32 (t, J = 7.00 Hz, 3H, POCH₂CH₃), 1.33 (t, J = 7.00 Hz, 3H, POCH₂CH₃), 2.62-2.95 (m, 2H, H₂C-3), 3.13 (ddd, J = 22.51, 10.50, 4.25 Hz, 1H, HC-2), 4.17 (quin, 2H, J = 7.00 Hz, 2H, POCH₂), 4.23 (quin,

2H, J = 7.00 Hz, 2H, POCH₂), 6.15 (dt, J = 15.76, 7.00 Hz, 1H, HC-4), 6.48 (d, J = 15.76 Hz, 1H, HC-5), 7.15-7.35 (m, 5H, Ph), 9.30 (bs, 1H, O-H); ³¹P NMR (CDCl₃) δ 23.72.

General Procedure for the Preparation of Diethyl ($5R^*$, 1^*R^*)-5-(1^* -hydroxyalkyl)-2-oxotetrahydrofuran-3-ylphosphonates ($5R^*$, 1^*R^*)-6a-e. To a stirred mixture of 4-alkenoic acid 4 (5.0 mmol), N-methylmorpholine N-oxide (0.743g; 5.5 mmol) water (2 mL) and acetone (2.5 mL), 0.02 M solution of OsO₄ in t-BuOH (1.4 mL) was added at r.t. The reaction mixture was stirred for 24h and sodium metabisulphite (0.114g; 0.6 mmol) was added. After 0.5 h the precipitate was filtered off, the filtrate was acidified to pH \sim 2 with 1N H₂SO₄, and finally acetone and water were evaporated in vacuum. The residue was extracted with CHCl₃ ($4 \times 20 \text{ mL}$), the chloroform layer was dried over MgSO₄ and evaporated to give crude ($5R^*$, 1^*R^*)-6, which were purified by column chromatography (silica gel, EtOAc : MeOH = 95 : 5 as eluent).

Diethyl 5-(hydroxymethyl)-2-oxotetrahydrofuran-3-ylphosphonate (6a); mixture of diastereoisomers in a 70/30 ratio, oil, 73 % yield; $R_f = 0.21$ (AcOEt : MeOH = 95 : 5); IR (film) v 3400 (O-H), 1772 (C=O), 1248 (P=O) cm⁻¹; major diastereoisomer (70%) ¹H NMR²² (CDCl₃) δ 1.36 (t, J = 7.00 Hz, 6H, POCH₂CH₃), 2.05 (bs, 1H, O-H), 2.34-2.70 (m, 2H, H₂C-4), 3.24 (ddd, J = 23.51, 10.26, 5.75 Hz, 1H, HC-3), 3.64 (dd, J = 12.51, 3.75 Hz, 1H, HC-1'), 3.95 (dd, J = 12.51, 2.75 Hz, 1H, HC-1'), 4.10-4.40 (m, 4H, POCH₂), 4.76 (tdd, J = 7.25, 3.75, 2.75 Hz, 1H, HC-5); ³¹P NMR²² (CDCl₃) δ 21.59; minor diastereoisomer (30%) ¹H NMR²² (CDCl₃) δ 1.37 (t, J = 7.00 Hz, 6H, POCH₂CH₃), 2.05 (bs, 1H, O-H), 2.34-2.70 (m, 2H, H₂C-4), 3.21 (dt, J = 24.51, 10.25 Hz, 1H, HC-3), 3.75 (dd, J = 12.51, 5.00 Hz, 1H, HC-1'), 3.91 (dd, J = 12.51, 3.25 Hz, 1H, HC-1'), 4.10-4.40 (m, 4H, POCH₂), 4.63 (tdd, J = 7.75, 5.00, 3.25 Hz, 1H, HC-5); ³¹P NMR²² (CDCl₃) δ 21.59.

Diethyl 5-(hydroxymethyl)-5-methyl-2-oxotetrahydrofuran-3-ylphosphonate (6b); mixture of diastereoisomers in a 70/30 ratio, oil, 74 % yield; R_f = 0.38 (AcOEt : MeOH = 95 : 5);IR (film) ν 3384 (O-H), 1772 (C=O), 1244 (P=O) cm⁻¹; major diastereoisomer (70%) ¹H NMR²² (CDCl₃) δ 1.36 (t, J = 7.00 Hz, 6H, POCH₂CH₃), 1.43 (s, 3H, CH₃C-5), 2.28 (ddd, J = 21.26, 13.26, 9.50 Hz, 1H, HC-4), 2.68 (ddd, J = 13.26, 10.76, 8.75 Hz, 1H, HC-4), 2.80 (bs, 1H, O-H), 3.50 (ddd, J = 23.76, 10.76, 9.50 Hz, 1H, HC-3), 3.51 (d, J = 12.01 Hz, 1H, HC-1'), 4.12-4.35 (m, 4H, POCH₂); ³¹P NMR²² (CDCl₃) δ 21.91; minor diastereoisomer (30%) ¹H NMR²² (CDCl₃) δ 1.36 (td, J = 7.00, 0.50 Hz, 6H, POCH₂CH₃), 1.39 (s, 3H, CH₃C-5), 2.19 (ddd, J = 13.50, 10.76, 9.25 Hz, 1H, HC-4), 2.71 (ddd, J = 20.51, 13.50, 9.25 Hz, 1H, HC-4), 2.80 (bs, 1H, O-H), 3.33 (ddd, J = 24.76, 10.76, 9.25 Hz, 1H, HC-3), 3.59 (d, J = 12.26 Hz, 1H, HC-1'), 3.73 (d, J = 12.26 Hz, 1H, HC-1'), 4.12-4.35 (m, 4H, POCH₂); ³¹P NMR²² (CDCl₃) δ 22.04.

Diethyl (5*R**,1'*R**)-5-(1'-hydroxyethyl)-2-oxotetrahydrofuran-3-ylphosphonate (5*R**,1'*R**)-(6c); mixture of four diastereoisomers in 45/25/20/10 ratio, oil, 82 % yield; R_f = 0.20 (AcOEt : MeOH = 95 : 5); IR (film) ν 3376 (O-H), 1776 (C=O), 1248 (P=O) cm⁻¹; ¹H NMR (CDCl₃) δ 1.15-1.30 (m, 3H, CH₃-C-1'), 1.32-1.42 (m, 6H, POCH₂CH₃), 2.28-2.80 (m, 3H, H₂C-4 and O-H), 3.10-3.30 (m, 1H, HC-3), 3.74-4.57 (m, 6H, POCH₂, HC-5 and HC-1'); ³¹P NMR (CDCl₃) δ 21.54 (45%), 21.43 (25%), 21.75 (20%), 21.67 (10%).

Diethyl (5R*,1'R*)-5-(1'-hydroxybutyl)-2-oxotetrahydrofuran-3-ylphonate (5R*,1'R*)-(6d); mixture of diastereoisomers in 65/35 ratio, oil, 81 % yield; $R_f = 0.36$ (AcOEt: MeOH = 95: 5); IR (film) v 3376 (O-H), 1772 (C=O), 1244 (P=O) cm⁻¹; major

diastereoisomer (65%); 1 H NMR 22 (CDCl₃) δ 0.95 (t, J = 7.00 Hz, 3H, H₃C-4'), 1.36 (t, J = 7.25 Hz, 6H, POCH₂CH₃), 1.32-1.63 (m, 4H, H₂C-2' and H₂C-3'), 2.31 (bs, 1H, O-H), 2.35-2.70 (m, 2H, H₂C-4), 3.23 (ddd, J = 23.50, 10.30, 5.00 Hz, 1H, HC-3), 3.58 (dt, J = 8.00, 4.00 Hz, 1H, HC-1'), 4.15-4.35 (m, 4H, POCH₂), 4.57 (td, J = 7.00, 4.00 Hz, 1H, HC-5); 31 P NMR 22 (CDCl₃) δ 21.50; minor diastereoisomer (35%) 1 H NMR 22 (CDCl₃) δ 0.95 (t, J = 7.00 Hz, 3H, H₃C-4'), 1.37 (t, J = 7.25 Hz, 6H, POCH₂CH₃), 1.32-1.63 (m, 4H, H₂C-2' and H₂C-3'), 2.31 (bs, 1H, O-H), 2.35-2.70 (m, 2H, H₂C-4), 3.20 (dt, J = 24.60, 10.24 Hz, 1H, HC-3), 3.66 (q, J = 5.00 Hz, 1H, HC-1'), 4.15-4.35 (m, 4H, POCH₂), 4.39 (ddd, J = 9.00, 8.00, 5.00 Hz, 1H, HC-5); 31 P NMR 22 (CDCl₃) δ 21.27.

Diethyl (5*R**,1'*R**)-5-(hydroxy-phenyl-methyl)-2-oxotetrahydrofuran-3-ylphosphonate (5*R**,1'*R**)-(6e); mixture of diastereoisomers in 65/35 ratio, white solid, 85 % yield; $R_f = 0.38$ (AcOEt: MeOH = 95: 5); IR (CCl₄) v 3368 (O-H), 1756 (C=O), 1232 (P=O) cm⁻¹; major diastereoisomer (65%) ¹H NMR²² (CDCl₃) δ 1.32 (t, J = 7.25 Hz, 6H, POCH₂CH₃), 2.38-2.47 (m, 2H, H₂C-4), 2.96-3.23 (m, 2H, HC-3 and O-H), 4.07-4.33 (m, 4H, POCH₂), 4.70 (d, J = 5.50 Hz, 1H, HC-1'), 4.80 (td, J = 7.25, 5.50 Hz, 1H, HC-5), 7.29-7.45 (m, 5H, Ph); ³¹P NMR²² (CDCl₃) δ 21.19; minor diastereoisomer (35%) ¹H NMR²² (CDCl₃) δ 1.35 (t, J = 7.25 Hz, 6H, POCH₂CH₃), 2.38-2.47 (m, 2H, H₂C-4), 2.96-3.23 (m, 1H, HC-3 and O-H), 4.07-4.33 (m, 4H, POCH₂), 4.60 (q, J = 7.50 Hz, 1H, HC-5), 4.78 (d, J = 7.50 Hz, 1H, HC-1'), 7.29-7.45 (m, 5H, Ph); ³¹P NMR²² (CDCl₃) δ 21.17.

General Procedure for the Preparation of Ethyl $(4R^*,5R^*)$ -4,5-epoxy-2-diethoxyphosphoryl alkanoate $(4R^*,5R^*)$ -9c-e. To a stirred solution of 4-alkenoate 8 (7.0 mmol) in CH₂Cl₂ (15 mL) a solution of m-chloroperbenzoic acid (70%)(1.9 g; 7.7 mmol) in CH₂Cl₂ (25 mL) was added at r.t. The reaction mixture was stirred at this temperature for 24 h (9c,d) or 48 h (9e) and 10% aqueous Na₂CO₃ solution was added until the iodine test for the presence of peracid was negative. The organic layer was separated, washed with 5% Na₂CO₃ (10 mL), H₂O (10 mL), and brine (10 mL) dried and evaporated to give crude product which was purified by column chromatography (silica gel, CHCl₃: acetone = 9 : 1 as eluent).

Ethyl 4,5-epoxy-2-diethoxyphosphorylhexanoate (9c); mixture of diastereoisomers, oil, 82 % yield; R_f = 0.33 (CHCl₃: acetone = 8:1); IR (film) ν 1736 (C=O), 1252 (P=O) cm⁻¹; H NMR (CDCl₃) δ 1.25-1.39 (m, 6H, CO₂CH₂CH₃ and POCH₂CH₃), 1.80-2.42 (m, 2H, H₂C-3), 22.64-3.25 (m, 3H, HC-2, HC-4 and HC-5), 4.08-4.32 (m, 6H, POCH₂ and COCH₂); ³¹P NMR (CDCl₃) δ 22.50, 22.60.

Ethyl (4*R**,5*R**)-4,5-epoxy-2-diethoxyphosphoryloctanoate (4*R**,5*R**)-(9d); mixture of diastereoisomers in 60/40 ratio, oil, 91 % yield; R_f = 0.37 (CHCl₃ : acetone = 8 : 1); IR (film) ν 1756 (C=O), 1260 (P=O) cm⁻¹; major diastereoisomer (60%) ¹H NMR²² (CDCl₃) δ 0.94 (t, J = 7.25 Hz, 3H, H₃C-8), 1.25-1.60 (m, 13H, CO₂CH₂CH₃, POCH₂CH₃, H₂C-6 and H₂C-7), 1.93 (dddd, J = 13.20, 9.76, 6.25, 3.25 Hz, 1H, HC-3), 2.32 (dddd, J = 13.20, 12.01, 7.00, 4.75 Hz, 1H, HC-3), 2.66-2.98 (m, 2H, HC-4 and HC-5), 3.13 (ddd, J = 23.51, 12.01, 3.25 Hz, 1H, HC-2), 4.08-4.32 (m, 6H, POCH₂ and COCH₂); ³¹P NMR²² (CDCl₃) δ 22.39; minor diastereoisomer (40%) ¹H NMR²² (CDCl₃) δ 0.98 (t, J = 7.00 Hz, 3H, H₃C-8), 1.25-1.60 (m, 13H, CO₂CH₂CH₃, POCH₂CH₃, H₂C-6 and H₂C-7), 2.00-2.23 (m, 2H, H₂C-3), 2.66-2.98 (m, 2H, HC-4 and HC-5), 3.07 (ddd, J = 23.01, 5.50, 3.50 Hz, 1H, HC-2), 4.08-4.32 (m, 6H, POCH₂ and COCH₂); ³¹P NMR²² (CDCl₃) δ 22.46.

Ethyl (4*R**,5*R**)-4,5-epoxy-2-diethoxyphosphoryl-5-phenylpentanoate (4*R**,5*R**)-(9e); mixture of diastereoisomers in 65/35 ratio, oil, 88 % yield; R_f = 0.35 (CHCl₃ : acetone = 8 : 1); IR (film) ν 1732 (C=O), 1260 (P=O) cm⁻¹; major diastereoisomer (65%) ¹H NMR²² (CDCl₃) δ 1.27 (t, J = 7.25 Hz, 3H, CO₂CH₂CH₃), 1.33 (td, J = 7.25, 0.50 Hz, 3H, POCH₂CH₃), 1.34 (td, J = 7.00, 0.50 Hz, 3H, POCH₂CH₃), 2.08-2.52 (m, 2H, H₂C-3), 3.01 (td, J = 5.50, 2.00 Hz, 1H, HC-4), 3.20 (ddd, J = 23.51, 11.51, 3.25 Hz, 1H, HC-2), 3.69 (d, J = 2.00 Hz, 1H, HC-5), 4.10-4.30 (m, 6H, POCH₂ and COCH₂), 7.19-7.37 (m, 5H, Ph); ³¹P NMR²² (CDCl₃) δ 22.25; minor diastereoisomer (35%) ¹H NMR²² (CDCl₃) δ 1.29 (t, J = 7.25 Hz, 3H, CO₂CH₂CH₃), 1.31 (td, J = 7.25, 0.25 Hz, 3H, POCH₂CH₃), 1.33 (td, J = 7.25, 0.25 Hz, 3H, POCH₂CH₃), 2.08-2.52 (m, 2H, H₂C-3), 3.12 (td, J = 5.50, 1.75 Hz, 1H, HC-4), 3.15 (ddd, J = 20.76, 8.50, 5.50 Hz, 1H, HC-2), 3.65 (d, J = 1.75 Hz, 1H, HC-5), 4.10-4.30 (m, 6H, POCH₂ and COCH₂), 7.19-7.37 (m, 5H, Ph); ³¹P NMR²² (CDCl₃) δ 22.36.

General Procedure for the Preparation of Diethyl $(5R^*,1^*S^*)$ -5- $(1^*$ -hydroxyalkyl)-2-oxotetrahydrofuran-3-ylphosphonate $(5R^*,1^*S^*)$ -6c-e. To the epoxide 9 (5.0 mmol) 30% HClO₄ (5mL) was added and the mixture was left overnight at r.t. The reaction mixture was extracted with CHCl₃ $(4 \times 15 \text{ mL})$, combined organic layers were dried and evaporated to give crude product, which was purified by column chromatography (silica gel, EtOAc: MeOH = 95: 5 as eluent).

Diethyl 5-(1'-hydroxyethyl)-2-oxotetrahydrofuran-3-ylphosphonate (6c); Mixture of four diastereoisomers in 45/25/20/10 ratio, oil, 82 % yield; R_f = 0.20 (AcOEt : MeOH = 95 : 5); IR (film) ν 3376 (O-H), 1776 (C=O), 1248 (P=O) cm⁻¹; ¹H NMR (CDCl₃) δ 1.15-1.30 (m, 3H, CH₃-C-1'), 1.32-1.42 (m, 6H, POCH₂CH₃), 2.28-2.80 (m, 3H, H₂C-4 and O-H), 3.10-3.30 (m, 1H, HC-3), 3.74-4.57 (m, 6H, POCH₂, HC-5 and HC-1'); ³¹P NMR (CDCl₃) δ 21.75 (45%), 21.67 (25%), 21.54 (20%), 21.43 (10%).

Diethyl (5*R**,1'*S**)-5-(1'-hydroxybutyl)-2-oxotetrahydrofuran-3-ylphosphonate (5*R**,1'*S**)-(6d); mixture of diastereoisomers in 60/40 ratio, oil, 72 % yield; R_f = 0.36 (AcOEt : MeOH = 95 : 5); IR (film) v 3384 (O-H), 1772 (C=O), 1236 (P=O) cm⁻¹; major diastereoisomer (60%) ¹H NMR²² (CDCl₃) δ 0.95 (t, J = 7.00 Hz, 3H, H₃C-4'), 1.36 (td, J = 7.25, 0.50 Hz, 6H, POCH₂CH₃), 1.25-1.65 (m, 4H, H₂C-2' and H₂C-3'), 2.36-2.88 (m, 3H, H₂C-4 and O-H), 3.31 (dt, J = 23.76, 10.25 Hz, 1H, HC-3), 3.88-4.00 (m, 1H, HC-1'), 4.13-4.30 (m, 4H, POCH₂), 4.57 (td, J = 7.25, 2.75 Hz, 1H, HC-5); ³¹P NMR²² (CDCl₃) δ 21.63; minor diastereoisomer (40%) ¹H NMR²² (CDCl₃) δ 0.95 (t, J = 7.00 Hz, 3H, H₃C-4'), 1.39 (t, J = 7.25 Hz, 6H, POCH₂CH₃), 1.25-1.65 (m, 4H, H₂C-2' and H₂C-3'), 2.36-2.88 (m, 3H, H₂C-4 and O-H), 3.33 (dt, J = 23.76, 10.25 Hz, 1H, HC-3), 3.88-4.00 (m, 1H, HC-1'), 4.13-4.30 (m, 4H, POCH₂), 4.44 (ddd, J = 9.00, 7.00, 4.00 Hz, 1H, HC-5); ³¹P NMR²² (CDCl₃) δ 21.37.

Diethyl (5*R**,1'*S**)-5-(1'-hydroxyphenylmethyl)-2-oxotetrahydrofuran-3-ylphosphonate (5*R**,1'*S**)-(6e); mixture of diastereoisomers in 65/35 ratio, oil, 90 % yield; $R_f = 0.36$ (AcOEt : MeOH = 95 : 5); IR (film) v 3344 (O-H), 1772 (C=O), 1252 (P=O) cm⁻¹; major diastereoisomer (65%) ¹H NMR²² (CDCl₃) δ 1.27-1.40 (m, 6H, POCH₂CH₃), 2.15-2.75 (m, 2H, H₂C-4), 3.20 (ddd, J = 23.26, 10.76, 5.75 Hz, 1H, HC-4), 4.08-4.37 (m, 4H, POCH₂), 4.81 (ddd, J = 7.75, 6.25, 3.00 Hz, 1H, HC-5), 5.15 (d, J = 3.00 Hz, 1H, HC-5), 7.30-7.41 (m, 5H, Ph); ³¹P NMR²² (CDCl₃) δ 21.52; minor diastereoisomer (35%) ¹H NMR²² (CDCl₃) δ 1.27-1.40 (m, 6H, POCH₂CH₃), 2.15-2.75 (m, 2H, H₂C-4), 3.13 (dt, J = 24.01, 10.26 Hz, 1H,

HC-4), 4.08-4.37 (m, 4H, POCH₂), 4.65 (td, J = 6.75, 3.75 Hz, 1H, HC-5), 5.14 (d, J = 3.75 Hz, 1H, HC-5), 7.30-7.41 (m, 5H, Ph); ³¹P NMR²² (CDCl₃) δ 21.63.

Preparation of (5R,1'R)-5-(Hydroxy-phenyl-methyl)-3-methylidenetetrahydro-2-furanone (5R,1'R)-(7e). A mixture of AD-mix- β (2.80 g) and potassium osmate dihydrate (6.0 mg, 0.8 mol%) in 50% aqueous *tert*-BuOH (20 mL) was stirred at r.t. until two clear phases were formed. Then CH₃SO₂NH₂ (0.19 g, 2.0 mmol) was added. The resultant mixture was cooled to 0°C and a solution of alkenoic acid 4e (0.625g; 2 mmol) in 50% aqueous *tert*-BuOH (4 mL) was added in one portion. After stirring for 2 h the mixture was allowed to warm to r.t. and was stirred for additional 48 h. The reaction was quenched with Na₂SO₃ (6.0 g), stirred for 1 h and acidified to pH ~2 with 3N HCl. Then solvents were evaporated under reduced pressure and the residue was extracted with CHCl₃ (5 x 20 mL). Combined chloroform extracts were dried over MgSO₄ and evaporated. Crude product was purified by column chromatography (silica gel, AcOEt/MeOH, 95/5, as eluent) to give 0.29g (71 %) of (5R,1'R)-(7e); $[\alpha]_D^{20} = -42.7^\circ$ (c 1.038, CHCl₃). Spectral data identical with the data of $(5R^*,1'R^*)$ -(7e). Anal $(C_{12}H_{12}O_3)$ C, H.

Preparation of Mosher's ester of (5R,1'R)-7e.

To a solution of 2-furanone ($5R,1^*R$)-7e (16 mg; 0.08 mmol) in CH₂Cl₂ (2 mL) and pyridine (0.5 mL), (R)-(-)- α -methoxy- α -(trifluoromethyl)phenylacetic acid chloride (40 mg; 0.16 mmol) was added and the reaction mixture was stirred at r.t. for 14 h. Solvents were evaporated under reduced pressure and the residue was extracted with Et₂O (4 x 5 mL). Combined ether layers were washed with 0.1N HCl (5 mL) and H₂O (5mL), dried and evaporated. Yield 32 mg (95%); mixture of diastereoisomers in 95/5 ratio.

- (2S, 1'R, 2''R)-(4''-methylidene-5''-oxo-tetrahydrofuran-2''-yl)-(phenyl)-methyl 3,3,3-trifluoro-2-methoxy-2-phenyl-propionate; oil; major diastereoisomer (95%); 1 H NMR 22 (CDCl₃) δ 2.58 (ddt, J = 17.76, 5.75, 2.50 Hz, 1H, HC-4), 2.81 (ddt, J = 17.76, 8.25, 2.50 Hz, 1H, HC-4), 3.47 (q, J = 1.25 Hz, 3H, OCH₃), 4.82 (td, J = 8.25, 5.75 Hz, 1H, HC-5), 5.46 (t, J = 2.50 Hz, 1H, =CH), 6.01 (d, J = 5.75 Hz, 1H, HC-1'), 6.13 (t, J = 2.50 Hz, 1H, =CH), 7.22-7.50 (m, 10H, Ph).
- (2S, 1'S, 2''S)-(4''-methylidene-5''-oxo-tetrahydrofuran-2''-yl)-(phenyl)-methyl 3,3,3-trifluoro-2-methoxy-2-phenyl-propionate; oil; minor diastereoisomer (5%); 1 H NMR 22 (CDCl₃) δ 2.60 (ddt, J = 17.76, 6.50, 2.50 Hz, 1H, HC-4), 2.77 (ddt, J = 17.76, 8.25, 2.50 Hz, 1H, HC-4), 3.61 (q, J = 1.25 Hz, 3H, OCH₃), 4.84 (td, J = 8.25, 6.50 Hz, 1H, HC-5), 5.58 (t, J = 2.50 Hz, 1H, =CH), 5.88 (d, J = 6.50 Hz, 1H, HC-1'), 6.23 (t, J = 2.50 Hz, 1H, =CH), 7.22-7.50 (m, 10H, Ph).

Lipophilicity calculations. Logarithms of the n-octanol/water partition coefficients (logP) of the new furanones were calculated by means of software package Pallas (CompuDrug Chemistry, Hungary). In these calculations $logP_{\text{CDR}}$, $logP_{\text{ATOMIC}}$ and $logP_{\text{ATOMICA}}$ were obtained using three different sets of additive and constitutive atomic constants reflecting furanones structures. Additionally, the values of $logP_{\text{combined}}$ were predicted according to the formula derived as the weighed average of lipophilicity obtained in three individual procedures:

 $logP_{combined} = 0.313 logP_{CDR} + 0.208 logP_{ATOMIC} + 0.479 logP_{ATOMICA}$

where $logP_{\rm CDR}$ means that calculated logP values have taken into account the lipophilic fragmental constants and their correction terms derived from an extended set of about 1000 experimental n-octanol/water partition coefficients, by using the constrained least-squares technique as proposed by Rekker and De Kort²⁴ and further modified by producer of Pallas software; $logP_{\rm ATOMIC}$ means that calculated logP values have taken into account the additive and constitutive predefined lipophilicity of 222 atomic contributions calculated by applying the Monte Carlo optimization and linear regression analysis to the matrix of experimental values of the n-octanol/water partition coefficients determined for 1868 compounds as reported by Broto et al.²⁵; $logP_{\rm ATOMICA}$ means that calculated logP value have taken into account the predefined lipophilicity values of 120 atomic state subtypes (which included their oxidation and hybridized state and the influence of immediately bonded atoms) estimated by using the simple least-squares fitting method to the set of experimental values of the n-octanol/water partition coefficients collected for 893 compounds as described by Viswanadhan et al.²⁶

- 24. Rekker, R.F.; De Kort, H.M. The Hydrophobic Fragmental Constant; an Extension to 1000 Data Point Set. Eur. J. Med. Chem.-Chim. Ther. 1979, 14, 479-488.
- 25. Broto, P.; Moreau, G.; Vandycke C. Molecular Structures: Perception, Autocorrelation Descriptor and SAR Studies. System of Automatic Contributions for the Calculation of the n-Octanol/Water Partition Coefficients. Eur. J. Chem.-Chim. Ther. 1984, 19, 71-78.
- 26. Viswanadhan V.N.; Ghose A.K.; Revankar, G.N., Robins R.K. Hydrophobicity and residue-residue constants in globular proteins. *J. Chem. Inf. Comput. Chem.* 1987, 29, 163-171.

Experimental determination of logP for 7a. The partition coefficient P was determined as described 4.27 using a Pharmacia LKB Ultraspec III spectrophotometer. Three experiments were made in which furanone 7a (1 mg) was partitioned between 100 mL of water and 1-octanol in different volume ratios (water/1-octanol: 25/75, 50/50 and 75/25) and absorbance for the water layer was measured (A = 0.585, 0.620 and 0.656 respectively, $\lambda_{max} = 215$ nm). Concentration in the water layer was then determined and concentration in the octanol layer was obtained by difference. From these concentrations partition coefficients P were calculated (P = 1.244, 1.228 and 1.219 respectively). The average value for P was then calculated $P_{average} = 1.230$ and $logP = 0.09 \pm 1$.

27. Fujita, T.; Iwasa, J.; Hansch, C. A New Substituent Constant, π , Derived from Partition Coefficients. J. Am. Chem. Soc., **1964**, 86, 5175-5180.

LogP prediction for 7e Database: a:7e.cdb $log P_{CDR} = 1.79$ $log P_{ATOMIC} = 1.32$ $log P_{ATOMICA} = 2.01$ $\log P_{\text{combined}} = 0.313 \log P_{\text{CDR}} + 0.208 \log P_{\text{ATOMIC}} + 0.479 \log P_{\text{ATOMICA}} = 1.80$ PREDICTION DETAILS Fragment database CDR Occ. Name of contributor Value CONJUGATION II. 0.29 1 PROXIMITY: 2C SEPARATION 0.58 1 0.34 -CH-2 -CH2-0.52 AL-COO-AL -1.29 1 -1.49 1 AL-OH C-ATOM 0.16 $\log P_{\rm CDR} = 1.79$ Fragment database ATOMIC Occ. Name of contributor Value **CONJUGATION 1** 0.54 1 C11 0.46 1 2 C111 0.03 2 C112 -0.55 1 0.09 C144 1 C2 0.74 5 C44 0.31 12 0.00 H 1 O11C11C12 0.59 01C11 -0.94 -0.68 1 **O2C11** $log P_{ATOMIC} = 1.32$ Fragment database ATOMICA Name of contributor Value Occ. 1 002 C:CH2R2 -0.202 008_C: =CHR2X -0.411 015_C: =CH2 0.14 1 017 C: =CR2 0.02 5 024_C: R[CH]R 0.14 1 025 C: R[CR]R 0.18 040_C: R-C(=X)-X,R-C#X, X=C=X -1.07 047 H: C1(SP3), C0(SP2) 9 0.21 050 H: H-HETEROATOM -0.151 052 H: H-C0(SP3)[1X ON THE NEXT C] 0.28 056_O: IN ALCOHOL -0.37 1 0.74 058 O: =O 060 O: AL-O-AR, AR20, R%O%R, R-O-C=X 0.38 $log P_{ATOMICA} = 2.01$