Materials. Solvents were reagent grade. Alkyl bromides and iodides (Aldrich) were used as received. Syntheses of the ammonium iodide salts have been described.

tri-Decylphosphine (TDP), tri-tetradecylphosphine (TTP), and tri-octadecylphosphine (TOP) were from CYTEC, Inc. TOP contained 2-3% of branched octadecyl isomers, 15% octadecene, 8-10% toluene, and some phosphine oxides that developed over time. The other phosphines were not analyzed; all were used as received. (Caution. Phosphines should be handled only under oxygen-free conditions to avoid oxide formation.) The impurities were separated easily from the phosphonium salts via selective crystallization; NMR analyses indicate that the branched isomers of the salt were removed as well (vide infra). tri-Octadecylphosphine oxide was prepared as previously described.

mp 82.8-83.7°C (lit. mp 73-75°C8);

H-NMR (CDCl3) δ 1.62 (m, 12H), 1.26 (m, 90H), 0.88 (t, J 6.6 Hz, 9H) ppm;

The other phosphine oxide was prepared as previously described.

mp 82.8-83.7°C (lit. mp 73-75°C8);

The oxide that the branched isomers of the salt were removed as well (vide infra).

The other phosphines were not analyzed; all were used as received. (Caution. Phosphines should be handled only under oxygen-free conditions to avoid oxide formation.) The impurities were separated easily from the phosphonium salts via selective crystallization;

NMR analyses indicate that the branched isomers of the salt were removed as well (vide infra).

The other phosphines were not analyzed; all were used as received. (Caution. Phosphines that the other phosphines were not analyzed; all were used as received. (Caution. Phosphines that the other phosphines were not analyzed; all were used as received. (Caution.)

The other phosphines were not analyzed; all were used as received. (Caution. Phosphines that the other phosphines were not analyzed; all were used as received. (Caution.)

The other phosphines were not analyzed; all were used as received. (Caution.)

The other phosphines were not a

Additional instrumentation. Ultraviolet-visible (UV-VIS) absorption spectra were recorded on a Perkin-Elmer Lambda 6 spectrometer interfaced to a 386 SX PC with Perkin-Elmer Computerized Spectrometer Software (PECSS). Infrared spectra were recorded on a Midac FT-IR spectrometer interfaced to a PC with Spectra-Calc software using pressed KBr pellets.

tri-Decylmethylphosphonium perchlorate (1P10ClO₄) from 25 mL (11.67 mmol) 0.467 M 1P10EX and 2 mL (71 %, 23.6 mmol) of HClO₄. 2.10 g (31.6 %), mp 40.3-43.6 °C, of a white solid at -77 °C and a transparent deformable solid at room temperature. ¹H-NMR (CDCl₃) δ 2.21 (m, 6H), 1.90 (d, *J*_{P-CH3} 13.5 Hz, 3H), 1.50 (m, 12H), 1.26 (m, 36H), 0.88 (t, *J* 6.6 Hz, 9H) ppm. ³¹P-NMR (CDCl₃) δ 32.1 ppm. Anal. Calcd. for C₃₁H₆₆PClO₄: C, 65.41; H, 11.69; Cl, 6.23. Found: C, 65.53; H, 11.75; Cl, 6.28.

tri-Decylmethylphosphonium hexaflourophosphate (1P10PF₆) from 25 mL (11.67 mmol) 0.467 M 10P1EX and 2 mL (60 %, 13.6 mmol) of HPF₆: 4.7 g (65.6 %), mp 55.0-56.1 °C, of a white solid. 1 H-NMR (CDCl₃) δ 2.11 (m, 6H), 1.78 (d, J_{P-CH3} 13.5 Hz, 3H), 1.48 (m, 12H), 1.26 (m, 36H), 0.88 (t, J 6.6 Hz, 9H) ppm. 31 P-NMR (CDCl₃) δ

32.0, -143.8 (septet, J = 713Hz) ppm. ¹⁹F-NMR (CDCl₃) δ -72.1 (d, J = 713 Hz) ppm. Anal. Calcd. for C₃₁H₆₆P₂F₆: C, 60.58; H, 10.82. Found: C, 60.72; H, 10.90.

Methyl-tri-tetradecylphosphonium bromide (1P14Br). In a sealed glove bag purged with nitrogen, 20 mL (40 mmol) of a 2.0 M anhyd bromomethane in *tert*-butyl methyl ether, 17.47 g (29.22 mmol) of **TTP**, and 100 mL of chloroform were stirred in an ice-bath that was allowed to melt slowly. After 1 day at room temperature, the reaction mixture was concentrated and the residual white paste was recrystallized (3x) from ethyl acetate to afford 16.58 g (79.0 %) of a white solid: T_{K-SmA2} 103.5 °C, T_{SmA2-I} 112.4 °C. ¹H-NMR (CDCl₃) δ 2.45 (m, 6H), 2.10 (d, J_{P-CH3} 13.2 Hz, 3H), 1.50 (m, 12H), 1.26 (m, 60H), 0.88 (t, J 6.6 Hz, 9H) ppm. ³¹P-NMR (CDCl₃) δ 32.32 ppm. Anal. Calcd. for $C_{43}H_{90}PBr$: C, 71.93; H, 12.63; Br, 11.13. Found: C, 72.05; H, 12.74; Br, 11.03.

Methyl-tri-tetradecylphosphonium ethyl xanthate (1P14EX) 15.50 g (21.58 mmol) of 1P14Br, 3.68 g (22.96 mmol) potassium ethyl xanthate and 200 mL CHCl₃ were stirred for 1 day, filtered, and the concentration of the yellow filtrate was adjusted to 0.1 M of 1P14EX in CHCl₃ assuming complete conversion of 1P14Br. This solution was used to synthesize the other 1P14A.

Methyl-*tri*-tetradecylphosphonium chloride (1P14Cl). The procedure described for 1P14Cl was employed to prepare the other 1P14A: 12 mL (1.2 mmol) of the 0.1 M 1P14EX solution and 1 mL (12.2 mmol) conc HCl were stirred in an ice-bath that was allowed to melt slowly. After 1 day, the organic layer was washed with HPLC grade water (3X25 mL), the organic layer was concentrated to a yellow oil, and it was crystallized (3X) at 5 °C from ethyl acetate to afford 490 mg (57 %) of a white solid, mp 105.0-105.5 °C. ¹H-NMR (CDCl₃) δ 2.43 (m, 6H), 2.10 (d, *J*_{P-CH3} 13.2 Hz, 3H), 1.50 (m, 12H), 1.26 (m, 60H), 0.88 (t, *J* 6.6 Hz, 9H) ppm. ³¹P-NMR (CDCl₃) δ 32.56 ppm.

Methyl-*tri*-tetradecylphosphonium nitrate (1P14NO₃) from 40 mL (4 mmol) 1P14EX solution and 284 μL (70 %, 4.46 mmol) of HNO₃: 2.19 g (71.8 %) of a white amorphous solid after recrystallization (3X) from *tert*-butyl methyl ether, T_{K-SmA2} 43.4 °C, T_{SmA2-I} 110.4 °C. ¹H-NMR (CDCl₃) δ 2.25 (m, 6H), 1.92 (d, J_{P-CH3} 13.2 Hz, 3H), 1.49 (m, 12H), 1.25 (m, 60H), 0.88 (t, J 6.6 Hz, 9H) ppm. ³¹P-NMR (CDCl₃) δ 32.4 ppm. Anal. Calcd. for C₄₃H₉₀PNO₃: C, 73.76; H, 12.96; N, 2.00. Found: C, 73.84; H, 13.01; N, 1.97.

Methyl-*tri*-tetradecylphosphonium *tetra*-flouroborate (1P14BF₄) from 40 mL (4 mmol) 1P14EX solution and 575 μL (48 %, 4.40 mmol) of HBF₄: 2.52 g (81.8 %) of a white amorphous solid after recrystallization (3X) from ethyl acetate, T_{K-SmA2} 52.6 °C, T_{SmA2-I} 100.6 °C. ¹H-NMR (CDCl₃) δ 2.16 (m, 6H), 1.83 (d, J_{P-CH3} 13.2 Hz, 3H), 1.49 (m, 12H), 1.25 (m, 60H), 0.88 (t, J 6.6 Hz, 9H) ppm. ³¹P-NMR (CDCl₃) δ 32.2 ppm. ¹⁹F-NMR (CDCl₃) δ -151.7 (¹⁰BF₄), -151.8 (¹¹BF₄) ppm. Anal. Calcd. for $C_{43}H_{90}PBF_4$: C, 71.24; H, 12.51. Found: C, 71.33; H, 12.63.

Methyl-*tri*-tetradecylphosphonium perchlorate (1P14ClO₄) from 40 mL (4 mmol) 14P1EX solution and 380 μL (71 %, 4.48 mmol) of HClO₄: 2.13 g (68.1 %) of a white amorphous solid after recrystallization from ethyl acetate, T_{K-SmA2} 60.9 °C, T_{SmA2-I} 103.2 °C. ¹H-NMR (CDCl₃) δ 2.18 (m, 6H), 1.87 (d, J_{P-CH3} 13.2 Hz, 3H), 1.49 (m, 12H), 1.25 (m, 60H), 0.88 (t, J 6.6 Hz, 9H) ppm. ³¹P-NMR (CDCl₃) δ 32.1 ppm. Anal. Calcd. for $C_{43}H_{90}PClO_4$: C, 70.02; H, 12.30; Cl, 4.81. Found: C, 70.12; H, 12.33; Cl, 4.87.

tri-Octadecylphosphonium bromide (0P18Br). In a seal glove bag purged with nitrogen, 1.0 g (1.26 mmol) of TOP, 15 mL chloroform, and 5 mL (22.2 mmol) of 48 % aqueous HBr were stirred at room temperature. ³¹P-NMR spectra of aliquots of the reaction mixture in CDCl₃ were used to monitor the progress of the reaction. The TOP peak at –31.8 ppm slowly disappeared and a new peak at 10.84 ppm appeared. After 1 d, the reaction mixture was cooled to 0 °C. A white solid, collected using a vacuum filtration apparatus packed in ice, was recrystallized (3X) from tert-butyl methyl ether to afford 882 mg (80 %) of a white solid, mp 103.1-106.7 °C. ¹H-NMR (CDCl₃) δ 7.62 (d, J_{P-H} 510 Hz, 1H₂), 2.39 (m, 6H) 1.64 (m, 6H), 1.46 (m, 6H), 1.26 (m, 84H), 0.88 (t, J 6.3 Hz, 9H) ppm. ³¹P-NMR (CDCl₃) δ 10.84 ppm.

tri-Octadecylphosphonium iodide (0P18I) was prepared from 1.0 g (1.26 mmol) of TOP, 15 mL chloroform and 5 mL (37.9 mmol) of 57 % aqueous HI according to the procedure for 0P18Br: 1.013 g (88 %) of a white amorphous solid, T_{K-SmA2} 94.3 °C, T_{SmA2-I} 109.0 °C. ¹H-NMR (CDCl₃) δ 7.62 (d, J_{P-H} = 510 Hz, 1H), 2.38 (m, 6H) 1.65 (m, 6H), 1.48 (m, 6H), 1.26 (m, 84H) 0.88 (t, J = 6.3 Hz, 9H) ppm. ³¹P-NMR (CDCl₃) δ 9.89 ppm. Anal. Calcd. for $C_{54}H_{112}PI$: C, 70.55; H, 12.28; I, 13.80. Found: C, 70.78; H, 12.14; I, 13.85.

Methyl-*tri*-octadecylphosphonium bromide (1P18Br). The other alkyl-*tri*-octadecylphosphonium halide salts were prepared at room temperature by procedures analogous to that for 1P18Br. In a sealed glove bag purged with nitrogen, 5 mL (10 mmol) of a 2.0 M anhyd bromomethane in *tert*-butyl methyl ether, 1 g (1.26 mmol) of TOP, and 15 mL of chloroform were stirred in an ice-bath that was allowed to melt slowly. Progress of the reaction was monitored as above; a new peak appeared in the ³¹P-NMR spectra at 33.2 ppm. After 1 d at room temperature, the reaction mixture was cooled to 0 °C. A white solid, collected using a vacuum filtration apparatus packed in ice, was recrystallized from *tert*-butyl methyl ether to afford 1.056 g (94 %) of a white solid, T_{K-SmA2} 99.4 °C, T_{SmA2-1} 106.9 °C. ¹H-NMR (CDCl₃) δ 2.43 (m, 6H), 2.09 (d, *J*_{P-CH3} 13.2 Hz, 3H), 1.49 (m, 12H), 1.25 (m, 84H), 0.88 (t, *J* 6.6 Hz, 9H) ppm. ³¹P-NMR (CDCl₃) δ 33.21 ppm. Anal. Calcd. for C₅₅H₁₁₄PBr: C, 74.53; H, 12.96; Br, 9.02. Found: C, 74.44; H, 12.94; Br, 9.37.

Ethyl-tri-octadecylphosphonium bromide (2P18Br) from 3 mL (40.2 mmol) bromoethane, 10 mL CHCl₃, and 1g (1.26 mmol) TOP: 975 mg (86 %) of a white amorphous solid, T_{K-SmA2} 94.4°C, T_{SmA2-I} 79.8 °C. ¹H-NMR (CDCl₃) δ 2.61 (dq, J_{P-CH2} = 12.6 Hz, $J_{CH2-CH3}$ = 6.9 Hz, 2H), 2.43 (m, 6H) 1.51 (m, 12H), 1.31 (t, $J_{CH2-CH3}$ = 6.9 Hz, 3H) 1.26 (m, 84H), 0.88 (t, J = 6.6 Hz, 9H) ppm. ³¹P-NMR (CDCl₃), δ 34.89 ppm. IR (KBr) 2920, 2851, 1470, 720 cm⁻¹. Anal. Calcd. for $C_{56}H_{116}PBr$: C, 74.70; H, 12.98; Br, 8.87. Found: C, 74.61; H, 13.13; Br, 9.04.

tri-Octadecylpropylphosphonium bromide (3P18Br) from 1 mL (11.0 mmol) 1-bromopropane, 10 mL CHCl₃, and 1g (1.26 mmol) TOP: 752 mg (82 %) of a white amorphous solid, mp 79.6-81.9 °C. ¹H-NMR (CDCl₃) δ 2.42 (m, 8H) 1.64 (m, 2H) 1.51 (m, 12H), 1.25 (m, 84H), 1.14 (t, J = 6.8 Hz, 3H) 0.88 (t, J = 6.3 Hz, 9H) ppm. ³¹P-NMR (CDCl₃) δ 32.63 ppm.

tetra-Octadecylphosphonium bromide (18P18Br) from 1 g (3.00 mmol) 1-bromooctadecane, 10 mL CHCl₃, and 1g (1.26 mmol) TOP: 945 mg (28 %) of a white solid, mp 92.3- 94.8 °C. 1 H-NMR (CDCl₃) δ 2.44 (s, 8H), 1.60 (s, 16H), 1.25 (s, 112H), 0.87 (t, J 6.3 Hz, 12H) ppm. 31 P-NMR (CDCl₃) δ 33.12 ppm.

Benzyl-tri-octadecylphosphonium bromide (BzP18Br) from 1.0 g (4.07 mmol) α-bromotoluene 10 mL CHCl₃, and 1.0 g (1.26 mmol) TOP: 1.01 g (84 %) of a white

solid, T_{K-SmA2} 72.1 °C, T_{SmA2-I} 78.5 °C. ¹H-NMR (CDCl₃) δ 7.44 - 7.36 (m, 5H), 4.24 (d, J = 15.0 Hz, 2H), 2.40 (s, 6H), 1.43 (s, 12H), 1.25 (s, 84H), 0.87 (t, J = 6.0 Hz, 9H) ppm. ³¹P-NMR (CDCl₃) δ 31.90 ppm. IR (KBr) 2954, 2920, 2852, 1472, 1453, 718 cm⁻¹. UV-vis (CHCl₃) λ_{max} 238 nm (ϵ 488).

Methyl-*tri*-octadecylphosphonium iodide (1P18I) from 3 mL (48.2 mmol) 1-iodomethane, 100 mL CHCl₃, and 10 g (12.6 mmol) TOP: 6.23 g (53 %) of a white amorphous solid, T_{K-SmA2} 73.1 °C, T_{SmA2-I} 113.5 °C. ¹H-NMR (CDCl₃) δ 2.43 (m, 6H), 2.10 (d, J_{P-CH3} = 13.5, 3H) 1.51 (m, 12H), 1.24 (m, 84H), 0.88 (t, J = 6.9, 9H) ppm. ³¹P-NMR (CDCl₃) δ 31.82 ppm. Anal. Calcd. for $C_{55}H_{114}PI$: C, 70.77; H, 12.31; P, 3.32. Found: C, 70.68; H, 12.10; P, 3.17.

Ethyl-tri-octadecylphosphonium iodide (2P18I) from 0.7 mL (8.69 mmol) iodoethane, 15 mL CHCl₃, and 1g (1.26 mmol) **TOP**: 889 mg (75 %) of a white amorphous solid, T_{K-SmA2} 86.8 °C, T_{SmA2-I} 107.6 °C. ¹H-NMR (CDCl₃) δ 2.55 (dq, J_{P-CH2} = 12.6 Hz, $J_{CH2-CH3}$ = 6.9 Hz, 2H), 2.42 (m, 6H) 1.52 (m, 12H), 1.33 (t, $J_{CH2-CH3}$ = 6.9 Hz, 3H), 1.26 (m, 84H), 0.88 (t, J = 6.6 Hz, 9H) ppm. ³¹P-NMR (CDCl₃) δ 34.73 ppm. Anal. Calcd. for $C_{56}H_{116}PI$: C, 71.00; H, 12.34; I, 13.40. Found: C, 71.25; H, 12.12; I, 13.17.

tri-Octadecylpropylphosphonium iodide (3P18I) from 0.5 mL (5.13 mmol) 1-iodopropane, 15 mL CHCl₃, and 1g (1.26 mmol) TOP: 988 mg (82 %) of a white amorphous solid, mp 86.9 - 88.7 °C. ¹H-NMR (CDCl₃) δ 2.42 (m, 8H) 1.64 (m, 2H) 1.51 (m, 12H), 1.25 (m, 84H), 1.16 (t, *J* 6.6 Hz, 3H) 0.88 (t, *J* 6.3 Hz, 9H) ppm. ³¹P-NMR (CDCl₃) δ 32.63 ppm. Anal. Calcd. for C₅₇H₁₁₈PI: C, 71.21; H, 12.37; I, 13.20. Found: C, 71.41; H, 12.34; I, 13.12.

Butyl-*tri*-octadecylphosphonium iodide (4P18I) from 0.5 mL (4.07 mmol) 1-iodobutane, 15 mL CHCl₃, and 1g (1.26 mmol) TOP: 998 mg (81 %) of a white amorphous solid, mp 86.7 - 88.5 °C. ¹H-NMR (CDCl₃) δ 2.44 (m, 8H), 1.52 (m, 16H), 1.25 (m, 84H), 1.00 (t, J 6.6 Hz, 3H), 0.88 (t, J 6.3 Hz, 9H) ppm. ³¹P-NMR (CDCL₃) δ 32.96 ppm. Anal. Calcd. for C₅₈H₁₂₀PI: C, 71.42; H, 12.40; I, 13.01. Found: C, 71.24; H, 12.29; I, 13.21.

tri-Octadecylpentylphosphonium iodide (5P18I) from 1 mL (7.66 mmol) 1-iodopentane, 15 mL CHCl₃, and 1g (1.26 mmol) TOP: 898 mg (72 %) of a white

amorphous solid, mp 82.9 - 84.9 °C. ¹H-NMR (CDCl₃) δ 2.44 (m, 8H), 1.52 (m, 16H), 1.25 (m, 86H), 0.91 (t, J = 7.2 Hz, 3H) 0.88 (t, J = 6.9 Hz, 9H) ppm ³¹P-NMR (CDCL₃) δ 32.96 ppm.

Dodecyl-*tri***-octadecylphosphonium iodide (12P18I)** from 1 mL (4.96 mmol) 1-iodododecane, 15 mL CHCl₃, and 1g (1.26 mmol) **TOP**: 850 mg (80 %) of a white amorphous solid, mp 83.9 - 85.0 °C. 1 H-NMR (CDCl₃) δ 2.44 (m, 8H), 1.52 (m, 16H), 1.25 (m, 100H), 0.88 (t, *J* 6.3 Hz, 12H) ppm. 31 P-NMR (CDCL₃) δ 32.96 ppm.

tetra-Octadecylphosphonium iodide (18P18I) from 1 g (2.63 mmol) 1-iodooctadecane, 10 mL CHCl₃, and 1g (1.26 mmol) TOP: 945 mg (64 %) of a white solid, mp 97.6 - 99.3°C. ¹H-NMR (CDCl₃) δ 2.42 (s, 8H), 1.61 (s, 16H), 1.27 (s, 112H), 0.89 (t, *J* 6.3 Hz, 12H) ppm. ³¹P-NMR (CDCl₃) δ 33.02 ppm.

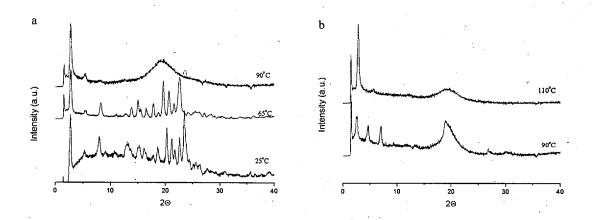
Methyl-*tri*-octadecylphosphonium ethyl xanthate (1P18EX). A solution of 1.0 g (1.13 mmol) of 1P18Br in 50 mL of CHCl₃ was added to 1.0 g (6.32 mmol) potassium ethyl xanthate and stirred for 24 h. The yellow solution was filtered and the solvent was reduced to a yellow oil residue using a rotary evaporator. The residue was dissolved in acetone and enough hexane was added to produce a clear yellow solution. A yellow plate-like crystalline solid (752 mg, 81%) was obtained upon cooling to 0 °C, T_{K-SmA2} 52.2 °C, T_{SmA2-1} 59.2 °C. ¹H-NMR (CDCl₃) δ 4.49 (q, J = 7.2 Hz, 2H), 2.41 (m, 6H), 2.10 (d, J = 13.2 Hz, 3H), 1.52 (m, 12H), 1.37 (t, J = 7.21 Hz, 3H), 1.25 (m, 84H), 0.88 (t, J = 6.3 Hz, 9H) ppm. ³¹P-NMR (CDCl₃) δ 32.96 ppm.

Methyl-tri-octadecylphosphonium chloride (1P18Cl). The procedure described for 1PCl was employed to prepare the other anion-exchanged salts. Conc hydrochloric acid (1 mL, 12.2 mmol) was added slowly to a solution of 500 mg (0.539 mmol) 1P18EX in 20 mL CHCl₃. The yellow solution became clear during the addition. After 1 h additional stirring, the solution was washed with HPLC grade water (5x20 mL). The cloudy organic layer was reduced to a solid residue on a rotary evaporator. Recrystallization from tert-butyl methyl ether (3x) afforded 454 mg (89 %) of a white solid, mp 95.5 – 97.5 °C. ¹H-NMR (CDCl₃) δ 2.43 (m, 6H), 2.10 (d, J_{P-CH3} 13.2 Hz, 3H), 1.48 (m, 12H), 1.25 (m, 84H), 0.88 (t, J 6.6 Hz, 9H) ppm. ³¹P-NMR (CDCl₃) δ 33.5 ppm.

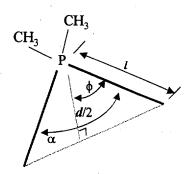
Anal. Calcd. for C₅₅H₁₁₄PCl: C, 78.46; H, 13.65; Cl, 4.21. Found: C, 78.29; H, 13.85; Cl, 4.18.

Methyl-*tri*-octadecylphosphonium nitrate (1P18NO₃) from 500 mg (0.539 mmol) of 1P18EX, 20 mL CHCl₃, and 1 mL of HNO₃ (69 %, 15.5 mmol): 323 mg (69 %) of a white amorphous solid, T_{K-SmA2} 69.4 °C, T_{SmA2-1} 107.8 °C. ¹H-NMR (CDCl₃) δ 2.17 (m, 6H), 1.91 (d, J_{P-CH3} 13.2 Hz, 3H), 1.47 (m, 12H), 1.25 (m, 84H), 0.88 (t, J 6.6 Hz, 9H) ppm. ³¹P-NMR (CDCl₃) δ 33.4 ppm. Anal. Calcd. for $C_{55}H_{114}PNO_3$: C, 76.06; H, 13.23; N, 1.61. Found: C, 75.92; H, 13.30; N, 1.76.

Methyl-*tri*-octadecylphosphonium tetrafluoroborate (1P18BF₄) from 650 mg (0.701 mmol) of 1PEX, 20 mL CHCl₃, and 1 mL of HBF₄ (48 %, 7.65 mmol): 505 mg (81 %) of a white amorphous solid, T_{K-SmA2} 69.6 °C, T_{SmA2-I} 105.4 °C. ¹H-NMR (CDCl₃) δ 2.15 (m, 6H), 1.83 (d, J_{P-CH3} 13.5 Hz, 3H), 1.48 (m, 12H), 1.25 (m, 84H), 0.88 (t, J 6.6 Hz, 9H) ppm. ³¹P-NMR (CDCl₃) δ 32.1 ppm. ¹⁹F-NMR (CDCl₃) δ -151.6 (¹⁰BF₄), -151.7 (¹¹BF₄) ppm. Anal. Calcd. for $C_{55}H_{114}PBF_4$: C, 73.95; H, 12.86. Found: C, 73.87; H, 12.94.


Methyl-tri-octadecylphosphonium perchlorate (1P18ClO₄) from 500 mg (0.564 mmol) of 1P18EX, 25 mL CHCl₃, and 1 mL of HClO₄ (70 %, 11.6 mmol): 358 mg (70.1%) of a white amorphous solid, T_{K-SmA2} 75.4 °C, T_{SmA2-I} 107.6 °C. ¹H-NMR (CDCl₃) δ 2.17 (m, 6H), 1.86 (d, 3H, J_{P-CH3} 13.2 Hz), 1.47 (m, 12H), 1.25 (s, 84H), 0.88 (t, 9H, J 6.6 Hz) ppm. ³¹P-NMR (CDCl₃) δ 33.21 ppm. Anal. Calcd. for $C_{55}H_{114}PClO_4$. C, 72.92; H, 12.68; Cl, 3.91. Found: C, 72.84; H, 12.77; Cl, 3.92.

Methyl-*tri*-octadecylphosphonium hexafluorophosphate (1P18PF₆) from 780 mg (0.841 mmol) of 1P18EX, 20 mL CHCl₃, and 1 mL of HPF₆ (60%, 6.79 mmol): 380 mg (48 %) of a white solid, T_{K-SmA2} 79.8 °C, T_{SmA2-1} 92.3 °C. ¹H-NMR (CDCl₃) δ 2.12 (m, 6H), 1.80 (d, J_{P-CH3} 13.5 Hz, 3H), 1.48 (m, 12H), 1.25 (s, 84H), 0.88 (t, J 6.6 Hz, 9H) ppm. ³¹P-NMR (CDCl₃) δ 32.0, -143.8 (septet) ppm. ¹⁹F-NMR (CDCl₃) δ -72.1 ppm. Anal. Calcd. for $C_{55}H_{114}P_2F_6$: C, 69.43; H, 12.08. Found: C, 69.61; H, 12.25.


Relationship between the SmA_2 phases of 1PmA and corresponding salts with two long chains. The packing model proposed for SmA_2 phases of the nPmA (and nNmA) in Figure 5 can be extended to the smectic phases of salts with two long n-alkyl

chains and two methyl groups⁴ (Supplementary Figure 2). The lamellar spacings for liquid-crystalline di-methyl-di-n-alkylphosphonium chloride (alkyl = octadecyl (35.6Å), tetradecyl (28.1Å), or decyl (21.2Å)) are much larger than those for **1PmA** salts with chains of the same length; the height of a non-tilted triangle, defined by the phosphorus atom and the termini of the (hypothetically) extended long (tilted) chains, is greater than that of a **1PmA** tetrahedron. However, the calculated angles between chains of di-methyl-di-alkylphosphonium chlorides, $\alpha = 92 - 93^{\circ}$, are only slightly larger than those of **1PmA** salts. Chain tilting can compensate for slight differences between A_{3C} and A_{H} , but not for larger ones that would occur if **1PmA** were to pack like di-methyl-di-alkylphosphonium chlorides.⁴

In this regard, the **1PmCl** are **not** liquid-crystalline, but the corresponding di-methyl-di-alkylphosphonium chlorides are.⁴ The cross-sectional area projected on an ionic plane by the two long alkyl chains of the di-methyl-di-alkylphosphonium chlorides, A_{2C} , is $2*21.2/\cos(46.5^{\circ}) = 61.6\text{Å}^2$ when the chain tilt angle ϕ is $\alpha/2$ (= 46.5°). The minimum cross-sectional area of three chains, $3*21.2 = 63.6\text{Å}^2$, occurs when they are *untilted*. Thus, the **1PmA** (and **nNmA**) cannot pack like their di-methyl-di-alkyl analogues in their liquid-crystalline phases even both are SmA₂.

Supplementary Figure 1. XRD patterns for **1P18I** (a) and **1N18I** (b) at the temperature indicated. The patterns at 110°C in (a) and 90°C in (b) are for liquid-crystalline phases.

Supplementary Figure 2. Average conformations of *di*-methyl-*di-n*-alkylphosphonium chlorides⁴ in SmA₂ phases. Long alkyl chains are represented as lines.

Supplementary Table 1. Transition Temperatures, Enthalpies (ΔH) and Entropies (ΔS) of nP18Br from DSC Thermograms.

	Transition	1st cycle				2nd cycle		
ņ		heating		cooling		heating		
		T (°C)ª	ΔH (kJ/mol)	T (°C)	-ΔH (kJ/mol)	T (°C)	ΔH (kJ/mol)	ΔS ^b (J/mol- T(K))
		•	-	-	-	55.8	14.0	· _
		92.4	4.0	48.2	50.1	72.7	2.3	- ·
	K - I	103.4	52.9	96.0	10.7	99.4	48.6	
1	K-K	66.5	2.4	-		 -	-	
		83	41.3 ^s	70.0	66.1	82.2	62.0	183.5
	$K - SmA_2$	94.6	8.8 ^s	95.3	. 12.0	94.5	12.1 ^s	32.7
	SmA ₂ – I	102.4	3.4	103.0	3.3	102.7	2.8 ^s	8.1
2	K - K	79.7	5.9	81.8	47.1	91.4	57.0	
	$K-SmA_2$	93.8	66.2 ^s	89.8	22.8	93.7	8.5	
	$SmA_2 - I$	97.4	1.8	97.3	3.6	97.6	3.4	9.5
3	K-K	-	•	_	-	54.6	4.4	- -
		-	-	- '	-	64.6	-4.7	-
	K-I	. 79	147.8	63.7	89.6	76.7	104.8	283.2
18	K-K	-			-	87.6	49.5°	\. <u>.</u>
	K-I	94.8	201.6	83.6	185.6	94.6	129.1°	434.5
Bz ^c	K-K	37.1	-1.3	59.7	100.2	-	-	_
	K - SmA ₂	70.8	117.7	64.6	23.3	70.5	124.5	<u>.</u>
	$SmA_2 - I$	78.8	3.8	78.1	4.3	78.3	3.7	11.4

^aPeak onset. ^bΔS calculated from the average ΔH and T based on the first cooling and second heating thermograms. ^cBenzyl-*tri*-octadecylphosphonium bromide. - No transition was observed; ^S Shoulder peak; ^O Two overlapping peaks.

Supplementary Table 2. Transition Temperatures, Enthalpies (ΔH) and Entropies (ΔS)

of nP18I from DSC Thermograms

01 111	F181 HOM D	1st cycle				2nd cyc	le	
		heating		cooling		heating		
			ΔΗ		-ΔH		ΔΗ	ΔS^{b}
n =	Transition	T (°C)a	(kJ/mol)	T (°C)	(kJ/mol)	T (°C)	(kJ/mol)	(J/moi-T(K))
0	K-K	-	-	76.5	33.5	-	-	. •
	K - SmA ₂	92.5	45.4	92.2	15.6	92.1	45.5	-
	$SmA_2 - I$	111.7	2.8	111.4	2.8	110.5	2.8	7.3
1	K - K	-	-	45	16.2	48	20.2	
		· -	• .	55.7	33.8	60.4	-11.7	. · ·
	$K - SmA_2$	72.1	92.9	67.6	2.8	68.7	60.6	-
	$SmA_2 - I$	112.7	3.5	112.2	3.6	112.6	3.4	9.1
2	K-K	78.6	22.5°	72.7	29.9	82.4	2.8	-
	$K-SmA_2$	85.3	61.7°	77.3	24.1	84.4	49.0	-
	$SmA_2 - 1$	106.9	5.1	106.4	5.5	107	5.2	14.1
3	K-K	57.4	3.7		-	76.5	-4.9	•
	SmA ₂ – K	-	-	60.5	98.3	-	•	-
	I – SmA ₂	86.8 ^m	114.4	84.2	4.3	86.7 ^m	114.9	-
4	K-K	-	-	-		77	-3.1	<u>.</u>
	$SmA_2 - K$		-	64.6	94.5	-	-	
	$I - SmA_2$	86.3 ^m	106.7	71.0	4.4	85.3 ^m	96.3	-
5	K - K	52.6	7.2	-	-	77.2	-0.5	.
	K-1	79.9	72.1 ^s	68.0	61.5 ^s	79.2	60.1	175.5
12	K-K	-	_	_	_	68	12.2°	-
		-	_	66.3	20.2	73.1	0.5°	-
	K-1	82.4	108.4	72.6	75.4	81.7	66.3	202.3
18	K-K	-	·	-	_	92.4	5.6°	. •
	K-I	97.8	143.2 ^s	92.9	154.8	97.2	145.6°	408.1

^aPeak onset. ^bΔS calculated from the average $\Delta H_{SmA2\rightarrow I}$ and $T_{SmA2\rightarrow I}$ based on the first cooling and second heating thermograms. - No transition was observed; ^S Shoulder peak; ^O Two overlapping peaks; ^m Melting transition.

© 2000 American Chemical Society, J. Am. Chem. Soc., Abdallah ja994055g Supporting Info Page 12

References

¹ Lu, L.; Sharma, N.; Nagana Gowda, G. A.; Khetrapal, C. L.; Weiss, R. G. Liq. Cryst. 1997, 22, 23.

² Franks, S.; Hartley, F. R.; McCaffrey, D. J. A. J. Chem. Soc., Perkin 1 1979, 3029.

³ Rao, S. R. Xanthates and Related Compounds Dekker: New York, 1971, p 7.

⁴ Kanazawa, A.; Tsutsumi, O.; Ikeda, T.; Nagase, Y. J. Am. Chem. Soc. 1997, 119, 7670.