Supporting Information

Authors: F. Akif Tezcan, Jay R. Winkler and Harry B. Gray

Title: Probing protein folding with substitution-inert metal ions. Folding kinetics of cobalt(III)-cytochrome c.

Journal: Journal of the American Chemical Society

- **S1.** Denaturation curves of yeast-, horse- and tuna Co-cyt c and comparison of their stabilities with the Fe(III)-cyt c species.
- **S2.** Differences between the far-UV CD, Trp-fluorescence and UV-vis spectra of folded (no GuHCl) and unfolded Co-cyt c ([GuHCl] \geq 4.0 M).
- S3. Changes in the absorption spectrum of Co cyt c upon cyanide binding, and kinetics of cyanide binding to unfolded Co-cyt c (12 h of unfolding, [GuHCl] = 4.0 M, [Co-cyt c] ~ 5 μ M, [CN] ~ 50 mM).
- **S4.** pH-dependent changes in the Soret band of tuna Co-cyt c_n ([GuHCl] = 4.0 M).
- **S5.** Reaction scheme and parameters used for the simulation of horse Co-cyt c unfolding kinetics. The species in parentheses indicate the ligand and "+" indicates protonated species. The forward and backward rate constants for reactions 1 and 2 were set high (\geq 10^{6.5}) in order to accommodate fast (de)pronation equilibria and to temporally separate them from reactions 3 and 4. The rate constants for reactions 3 and 4 were best guesses to fit observed unfolding kinetics.
- **S6.** Simulation of horse Co-cyt *c* unfolding kinetics.

$\label{eq:comparison} \begin{tabular}{ll} Comparison of folding free energies (denaturation midpoint ([GuHCl], M)) \end{tabular}$

	yeast	horse	tuna
Co(III) cyt c	6.1 kcal/mol	9.9 kcal/mol	9.8 kcal/mol
	(1.75 M)	(3.0 M)	(3.25 M)
Fe(III) cyt c	4.6 kcal/mol	9.0 kcal/mol	9.4 kcal/mol
	(1.3 M)	(2.8 M)	(2.9 M)

Kinetics of CN⁻ binding to unfolded Co cyt c

1)
$$Co(H_2O)His^+Lys^+$$
 k_1 $Co(H_2O)HisLys^+$

· 2)
$$Co(H_2O)HisLys^+$$
 $k_2 Co(H_2O)HisLys$

3)
$$Co(H_2O)HisLys^+$$
 k_3 k_{-3} $Co(His)$

4)
$$Co(H_2O)HisLys$$
 k_4 k_{-4} $Co(Lys)$

$$-\log(k_1/k_{-1}) = 6.5 = pK_a$$
 of free histidine

$$-\log(k_2/k_{-2}) = 10 = pK_a$$
 of free lysine

$$-\log (k_3/k_{-3}) = -\log (10^{-2}/10^{-5}) = -3 = pK$$
 of histidine binding to Co(III)

$$-\log (k_4/k_{-4}) = -\log (9.5 / 3x10^{-5}) = -5.5 = pK$$
 of lysine binding to Co(III)

$$[Co(H_2O)His^+Lys^+]_0 = 2.4 \times 10^{-6} M$$

$$[Co(H_2O)HisLys^+]_0 = 7.6 \times 10^{-6} M$$

$$[Co(H_2O)HisLys]_0 = 1 \times 10^{-8} M$$

$$[Co(His)]_0 = 0 M$$

$$[Co(Lys)]_0 = 0 M$$

$$[H^+]_{const.} = 10^{-7} M$$

total concentration = $10 \times 10^{-6} M$

