Mono- and Dinuclear Silica-Supported Titanium (IV) Complexes and the Effect of TiOTi Connectivity on Reactivity Abdillahi Omar Bouh, Gordon L. Rice, and Susannah L. Scott* **Supplementary Material.** Figures S1-S3 and S5-S7 containing IR and ¹³C CP/MAS NMR spectra analogous to those shown in the published paper, but on Silica-200. **Figure S1:** ¹³C CP/MAS NMR spectra of silica-200 treated with a)Ti(O¹Pr)₄, b) Ti(NEt₂)₄, followed by desorption of unreacted starting material and evacuation of volatile products. Spin rate 4kHz. **Figure S2:** In situ IR difference spectra of self-supporting disk of silica-200, treated under conditions identical to those of Figure 2. **Figure S3:** In situ IR difference spectra of self-supporting disk of silica-200, treated under conditions identical to those of Figure 3. **Figure** S5: In situ IR difference spectra of self-supporting disk of silica-200, treated under conditions identical to those of Figure 5. **Figure S6:** ¹³C CP/MAS NMR spectra of silica-200 modified with Ti(NEt₂)₄, followed by a) *tert*-butanol; or b) 2-propanol. In each case, unreacted reagents were removed by evacuation before the spectrum was recorded. Spin rate 4kHz. **Figure S7:** In situ IR difference spectra of self-supporting disk of silica-200, treated under conditions identical to those of Figure 7. Figure S1 Figure S2 Figure S3 Figure S5 Figure S7