

## **Terms & Conditions**

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html





Figure 1. Complete structure and numbering scheme for  $Ir((R,R)-Me-DuPHOS)]BF_4$  (5).



Figure 2. Unit cell diagram for  $[Ir((R,R)-Me-DuPHOS)(COD)]BF_4(5)$ .

| Table 1. Bond Lengths (Å) a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd Bond Angles           | (°) for $[Ir((R,R)-Me-Du$                       | 1PHOS)(COD)]BF <sub>4</sub> . |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------|-------------------------------|
| $\frac{1}{1} \frac{1}{1} \frac{1}$ | 2.188(4)                 | C(9)-C(13)                                      | 1.522(5)                      |
| II(1) - C(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.100(1)<br>2.197(3)     | C(9) - C(10)                                    | 1.537(5)                      |
| II(1) - C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.177(3)                 | $\hat{C}(10)-\hat{C}(11)$                       | 1.526(7)                      |
| $\lim_{n \to \infty} (1) - C(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.214(4)<br>2.23(3)      | C(11)-C(12)                                     | 1.536(5)                      |
| $\operatorname{Ir}(1)$ - $\operatorname{C}(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.235(3)                 | C(12)- $C(14)$                                  | 1.522(6)                      |
| $\operatorname{Ir}(1)$ -P(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.2790(0)                | C(15)- $C(19)$                                  | 1.533(5)                      |
| $\operatorname{Ir}(1)$ -P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.2839(0)                | C(15)-C(16)                                     | 1.537(5)                      |
| P(1)-C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.821(3)                 | C(16) - C(17)                                   | 1.530(6)                      |
| P(1)-C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.801(3)                 | C(10) - C(17)                                   | 1 538(5)                      |
| P(1)-C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.8/1(3)                 | C(17) - C(10)                                   | 1 518(5)                      |
| P(2)-C(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.831(3)                 | C(10) - C(20)                                   | 1.010(0)<br>1.403(4)          |
| P(2)-C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.835(3)                 | C(21) - C(22)                                   | 1.403(1)<br>1.404(4)          |
| P(2)-C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.854(3)                 | C(21)-C(20)                                     | 1.38/(5)                      |
| C(1)-C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.373(6)                 | C(22)-C(23)                                     | 1.307(5)                      |
| C(1)-C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.507(6)                 | C(23)-C(24)                                     | 1.302(3)<br>1.292(5)          |
| C(2)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.507(6)                 | C(24)-C(25)                                     | 1.303(J)                      |
| C(3)-C(4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.466(7)                 | C(25)-C(26)                                     | 1.399(4)                      |
| C(4) - C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <sup>^</sup> 1.515(7)    | B(1)-F(4)                                       | 1.379(5)                      |
| C(5)-C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.377(7)                 | B(1)-F(3)                                       | 1.384(5)                      |
| C(6)-C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.515(6)                 | B(1)-F(1)                                       | 1.386(5)                      |
| C(7)-C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.463(6)                 | B(1)-F(2)                                       | 1.389(5)                      |
| C(6)-Ir(1)- $C(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89.08(15)                | C(5)-C(6)-C(7)                                  | 123.2(5)                      |
| C(6)-Ir(1)- $C(5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36.5(2)                  | C(5)-C(6)-Ir(1)                                 | 72.8(2)                       |
| C(0)-Ir(1)- $C(5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80.02(14)                | C(7-C(6)-Ir(1))                                 | 111.7(3)                      |
| C(2) - II(1) - C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80.08(15)                | $\hat{C}(8)-\hat{C}(7)-\hat{C}(6)$              | 117.1(4)                      |
| $C(0) - \Pi(1) - C(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36.08(15)                | C(7) - C(8) - C(1)                              | 115.6(4)                      |
| C(2)-II(1)- $C(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 93 26(15)                | C(13)-C(9)-C(10)                                | 114.9(3)                      |
| $C(5) - \Pi(1) - C(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 08.96(10)              | C(13)-C(9)-P(1)                                 | 115.6(3)                      |
| C(0) - II(1) - F(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 153.09(11)               | C(10)-C(9)-P(1)                                 | 104.9(2)                      |
| C(2) - II(1) - F(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01.25(10)                | C(11)-C(10)-C(9)                                | 107.7(3)                      |
| C(5)-II(1)-F(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17074(11)                | C(10)- $C(11)$ - $C(12)$                        | 107.5(3)                      |
| C(1) - II(1) - F(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/0.74(11)<br>1/0.71(14) | C(14)-C(12)-C(11)                               | 116.1(3)                      |
| C(0)-II(1)-F(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10050(11)                | C(14)-C(12)-P(1)                                | 117.6(3)                      |
| C(2)-II(1)-F(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 173 45(13)               | C(11)-C(12)-P(1)                                | 104.1(2)                      |
| C(5)-II(1)-F(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00.03(11)                | C(19)-C(15)-C(16)                               | 114.8(3)                      |
| C(1)-If(1)-P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90.93(11)                | C(19)-C(15)-P(2)                                | 116.3(3)                      |
| P(2)-II(1)-P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104 1(2)                 | C(16)-C(15)-P(2)                                | 105.2(2)                      |
| C(21)-P(1)-C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104.1(2)<br>109.0(2)     | C(17) - C(16) - C(15)                           | 108.2(3)                      |
| C(21)-P(1)-C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108.0(2)                 | C(16)-C(17)-C(18)                               | 105.5(3)                      |
| C(12)-P(1)-C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94.9(2)                  | C(10) - C(17) - C(17)                           | 116 6(3)                      |
| C(21)-P(1)-Ir(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.08(10)<br>100.02(12) | C(20) - C(10) - C(17)                           | 110.0(3)<br>114 7(2)          |
| C(12)-P(1)-Ir(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.23(13)               | $C(20) - C(10) - \Gamma(2)$<br>C(17) C(18) P(2) | 106.0(2)                      |
| C(9)-P(1)-Ir(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 118.23(11)               | C(17)-C(10)-F(2)                                | 110.0(2)                      |
| C(26-P(2)-C(18))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 107.23(15)               | C(22) - C(21) - C(20)                           | 1232(2)                       |
| C(26-P(2)-C(15))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 105.07(15)               | C(22) - C(21) - F(1)                            | 123.2(2)<br>117.7(2)          |
| C(18-P(2)-C(15))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 94.5(2)                  | C(20)-C(21)-F(1)                                | 120 6(3)                      |
| C(26-P(2)-Ir(1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.72(11)               | C(23)-C(22)-C(21)                               | 120.0(3)<br>120.0(2)          |
| C(18-P(2)-Ir(1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 117.70(10)               | C(24)-C(23)-C(22)                               | 120.0(3)                      |
| C(15)-P(2)-Ir(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.86(11)               | C(23)-C(24)-C(25)                               | 120.4(3)                      |
| C(2)-C(1)-C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 126.0(4)                 | C(24)-C(25)-C(26)                               | 120.4(3)                      |
| C(2)-C(1)-Ir(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70.5(2)                  | C(25)-C(26)-C(21)                               | 119.4(3)                      |
| C(8)-C(1)-Ir(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.2(3)                 | C(25)-C(26)-P(2)                                | 123.2(2)                      |

|   | -  |  |
|---|----|--|
| c | Ξ. |  |
|   | ٩  |  |
|   |    |  |

| $\begin{array}{c} C(1)-C(2)-C(3)\\ C(1)-C(2)-Ir(1)\\ C(3)-C(2)-Ir(1)\\ C(4)-C(3)-C(2)\\ C(3)-C(4)-C(5)\\ C(6)-C(5)-C(4)\\ C(6)-C(5)-Ir(1)\\ C(4)-C(5)-Ir(1)\\ \end{array}$ | $123.0(4) \\73.4(2) \\112.0(3) \\115.7(4) \\115.6(4) \\127.1(4) \\70.7(2) \\108.6(3)$ | C(21)-C(26)-P(2)<br>F(4)-B(1)-F(3)<br>F(4)-B(1)-F(1)<br>F(3)-B(1)-F(1)<br>F(4)-B(1)-F(2)<br>F(3)-B(1)-F(2)<br>F(1)-B(1)-F(2) | 117.3(2)<br>111.2(4)<br>109.5(3)<br>108.9(3)<br>109.2(4)<br>108.2(3)<br>109.8(3) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|

 Table 2. Atomic Coordinates and Equivalent Isotropic Displacement Parameters ( $Å^2$ ) for

  $[Ir((R,R)-Me-DuPHOS)(COD)]BF_4$ .

|                    | v                           | v                        | Z                      | U(eq)                    |
|--------------------|-----------------------------|--------------------------|------------------------|--------------------------|
| T(1)               | 0 664585(12)                | 0.459161(7)              | 0.456250(6)            | 0.01679(3)               |
| $\mathbf{I}(1)$    | 0.004,383(12)<br>0.40742(0) | 0.437101(7)              | 0.37848(4)             | 0.0181(2)                |
| P(1)               | 0.49742(9)<br>0.54640(7)    | 0.51000(5)<br>0.53318(5) | 0.54437(4)             | 0.01541(13)              |
| P(2)               | 0.34049(7)                  | 0.33310(3)<br>0.3749(2)  | 0.3686(2)              | 0.0337(8)                |
| C(1)               | 0.7400(3)                   | 0.377(2)                 | 0.3813(2)              | 0.0353(9)                |
| C(2)               | 0.04/4(4)                   | 0.4218(A)                | 0.4212(3)              | 0.0559(14)               |
| C(3)               | 0.9887(3)                   | 0.4218(4)<br>0.4318(4)   | 0.4212(3)<br>0.5004(3) | 0.072(2)                 |
| C(4)               | 0.9827(3)                   | 0.4318(4)                | 0.5347(2)              | 0.0403(9)                |
| C(5)               | 0.8340(3)                   | 0.4100(3)<br>0.2527(2)   | 0.5277(2)              | 0.0407(11)               |
| C(6)               | 0.7390(0)                   | 0.3337(2)<br>0.2788(3)   | 0.5222(2)<br>0.4756(2) | 0.071(2)                 |
| $\mathbf{C}(7)$    | 0.771(8)                    | 0.2700(3)                | 0.4730(2)<br>0.3077(2) | 0.0497(12)               |
| C(8)               | 0.7540(6)                   | 0.2808(3)                | 0.3972(2)<br>0.3014(2) | 0.0263(7)                |
| C(9)               | 0.5659(4)                   | 0.5615(2)                | 0.3014(2)              | 0.0366(10)               |
| C(10)              | 0.4/32(4)                   | 0.5552(5)                | 0.2333(2)<br>0.2420(2) | 0.0387(9)                |
| C(11)              | 0.4409(4)                   | 0.4022(3)                | 0.2429(2)              | 0.0300(8)                |
| C(12)              | 0.3823(4)                   | 0.4475(2)                | 0.3202(2)<br>0.3155(3) | 0.0200(0)                |
| C(13)              | 0.5/10(5)                   | 0.0751(3)                | 0.3133(3)              | 0.0423(10)<br>0.0447(11) |
| C(14)              | 0.3650(5)                   | 0.3568(2)                | 0.5433(3)              | 0.0447(11)<br>0.0253(7)  |
| C(15)              | 0.6443(4)                   | 0.6129(2)                | 0.3909(2)              | 0.0233(1)                |
| C(16)              | 0.6389(4)                   | 0.5808(2)                | 0.0777(2)              | 0.0528(7)                |
| <b>C</b> (17)      | 0.4934(4)                   | 0.5357(3)                | 0.0009(2)              | 0.0296(7)                |
| C(18)              | 0.4788(4)                   | 0.4757(2)                | 0.0239(2)              | 0.0220(0)                |
| C(19)              | 0.7967(4)                   | • 0.6377(3)              | 0.3719(3)              | 0.0395(10)               |
| C(20)              | 0.3311(5)                   | 0.4345(2)                | 0.0134(2)              | 0.0323(6)                |
| C(21)              | 0.3658(3)                   | 0.5778(2)                | 0.4297(2)              | 0.0192(0)                |
| <sup>-</sup> C(22) | 0.2416(4)                   | 0.6140(2)                | (0.3982(2))            | 0.0247(7)                |
| C(23)              | 0.1445(4)                   | 0.6596(2)                | 0.4400(2)              | 0.0270(7)                |
| C(24)              | 0.1716(4)                   | 0.6716(2)                | 0.5133(2)              | 0.0236(0)                |
| C(25)              | 0.2942(3)                   | 0.6373(2)                | 0.5455(2)              | 0.0217(0)                |
| C(26)              | 0.3905(3)                   | 0.5883(2)                | 0.5046(2)              | 0.0100(0)                |
| <b>B</b> (1)       | 0.4602(5)                   | 0.7982(3)                | 0.7395(2)              | 0.0313(9)                |
| F(1)               | 0.4030(3)                   | 0.7350(2)                | 0.69668(15)            | 0.045/(6)                |
| F(2)               | 0.6114(3)                   | 0.7916(2)                | 0.74181(13)            | 0.0468(6)                |
| F(3)               | 0.4249(3)                   | 0.8744(2)                | 0.7086(2)              | 0.0585(8)                |
| F(4)               | 0.4054(4)                   | 0.7917(2)                | 0.8092(2)              | 0.0698(10)               |

U(eq) is defined as one third of the trace of the orthogonalized  $u_{ij}$  tensor.

6

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$       | Table 5      | • Amsonopic     | Displacement    | . Falainetels ( | $\mathbf{A}$ ) for $[\Pi((\mathbf{A},\mathbf{I})]$ |                 | $S_{4}$         |
|--------------------------------------------------------------|--------------|-----------------|-----------------|-----------------|----------------------------------------------------|-----------------|-----------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$        |              | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub>                                    | U <sub>13</sub> | U <sub>12</sub> |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | Ir(1)        | 0.01737(5)      | 0.01676(5)      | 0.01622(5)      | -0.00001(5)                                        | 0.00285(5)      | 0.00220(4)      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | P(1)         | 0.0173(3)       | 0.0223(4)       | 0.0147(4)       | -0.0012(3)                                         | 0.0010(3)       | -0.0004(3)      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | P(2)         | 0.0165(3)       | 0.0158(3)       | 0.0140(3)       | 0.0000(4)                                          | -0.0003(3)      | 0.0015(2)       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | <b>C</b> (1) | 0.052(2)        | 0.029(2)        | 0.020(2)        | -0.003(2)                                          | 0.012(2)        | 0.013(2)        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(2)         | 0.029(2)        | 0.045(2)        | 0.032(2)        | 0.010(2)                                           | 0.021(2)        | 0.013(2)        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(3)         | 0.024(2)        | 0.072(3)        | 0.071(3)        | 0.025(3)                                           | 0.017(2)        | 0.007(2)        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(4)         | 0.026(2)        | 0.118(5)        | 0.073(4)        | -0.022(4)                                          | -0.013(2)       | 0.016(3)        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(5)         | 0.035(2)        | 0.062(3)        | 0.024(2)        | -0.001(2)                                          | -0.006(2)       | 0.022(2)        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(6)         | 0.070(3)        | 0.029(2)        | 0.023(2)        | 0.0041(15)                                         | 0.009(2)        | 0.023(2)        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | <b>C</b> (7) | 0.147(6)        | 0.027(2)        | 0.038(3)        | 0.002(2)                                           | 0.030(3)        | 0.020(3)        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | - C(8)       | 0.089(4)        | 0.027(2)        | 0.033(2)        | -0.008(2)                                          | 0.002(2)        | 0.013(2)        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(9)         | 0.024(2)        | 0.034(2)        | 0.021(2)        | 0.0055(14)                                         | 0.0004(13)      | 0.0002(13)      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(10)        | 0.036(2)        | 0.059(3)        | 0.016(2)        | 0.002(2)                                           | -0.0015(13)     | 0.003(2)        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(11)        | 0.029(2)        | 0.064(3)        | 0.023(2)        | -0.014(2)                                          | -0.0031(13)     | 0.002(2)        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(12)        | 0.0215(15)      | 0.040(2)        | 0.029(2)        | -0.012(2)                                          | -0.0004(12)     | -0.0052(14)     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(13)        | 0.046(2)        | 0.035(2)        | 0.046(3)        | 0.015(2)                                           | 0.004(2)        | -0.003(2)       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(14)        | 0.044(3)        | 0.035(2)        | 0.055(3)        | -0.015(2)                                          | 0.012(2)        | -0.016(2)       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(15)        | 0.024(2)        | 0.020(2)        | 0.031(2)        | -0.0081(13)                                        | -0.0049(13)     | -0.0013(13)     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(16)        | 0.035(2)        | 0.038(2)        | 0.025(2)        | -0.0103(15)                                        | -0.0117(14)     | 0.011(2)        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(17)        | 0.041(2)        | 0.032(2)        | 0.0160(14)      | -0.0016(15)                                        | -0.0010(14)     | 0.013(2)        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(18)        | 0.031(2)        | 0.018(2)        | 0.0182(15)      | 0.0013(12)                                         | 0.0043(12)      | 0.0056(12)      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(19)        | 0.026(2)        | 0.032(2)        | 0.062(3)        | -0.007(2)                                          | -0.005(2)       | -0.0041(14)     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(20)        | 0.038(2)        | 0.022(2)        | 0.038(2)        | -0.0016(13)                                        | 0.014(2)        | -0.005(2)       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(21)        | 0.019(2)        | 0.0229(15)      | 0.0156(14)      | -0.0012(12)                                        | 0.0011(10)      | -0.0004(11)     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(22)        | 0.024(2)        | 0.030(2)        | 0.020(2)        | 0.0000(14)                                         | -0.0038(12)     | 0.0007(13)      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(23)        | 0.024(2)        | 0.027(2)        | 0.031(2)        | 0.0022(13)                                         | -0.0049(13)     | 0.0077(12)      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(24)        | 0.0215(15)      | 0.023(2)        | 0.033(2)        | -0.0014(13)                                        | 0.0041(15)      | 0.0059(14)      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | C(25)        | 0.0244(14)      | 0.0204(14)      | 0.0203(14)      | -0.0025(14)                                        | 0.0013(13)      | 0.0035(10)      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$        | C(26)        | 0.0153(13)      | 0.0168(14)      | 0.0181(15)      | 0.0019(12)                                         | -0.0003(11)     | 0.0017(10)      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | <b>B</b> (1) | 0.035(2)        | 0.029(2)        | 0.030(2)        | -0.008(2)                                          | 0.005(2)        | -0.005(2)       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | F(1)         | 0.0478(14)      | 0.0365(13)      | 0.053(2)        | -0.0239(12)                                        | -0.0088(12)     | 0.0020(11)      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$        | F(2)         | 0.0366(12)      | 0.068(2)        | 0.0358(14)      | 0.0123(12)                                         | -0.0042(10)     | -0.0101(12)     |
| F(4) 0.080(2) 0.080(2) 0.050(2) -0.029(2) 0.036(2) -0.044(2) | F(3)         | 0.054(2)        | 0.0289(13)      | 0.093(2)        | -0.0019(15)                                        | -0.005(2)       | 0.0031(12)      |
|                                                              | F(4)         | 0.080(2)        | 0.080(2)        | 0.050(2)        | -0.029(2)                                          | 0.036(2)        | -0.044(2)       |

Table 3. Anisotropic Displacement Parameters (Å<sup>2</sup>) for  $[Ir((R,R)-Me-DuPHOS)(COD)]BF_4$ .

The aniotropic displacement factor exponent takes the form  $-2\pi[(ha^*)^2U_{11} + ... + 2hka^*b^*U_{12}]$ 

7

|        | $\_$ DuPHOS)(COD)]BF <sub>4</sub> . |             |           |       |  |  |
|--------|-------------------------------------|-------------|-----------|-------|--|--|
|        | Х                                   | У           | Z         | U(eq) |  |  |
| H(1)   | 0.6938(5)                           | 0.3805(2)   | 0.3212(2) | 0.040 |  |  |
| H(2)   | 0.8550(4)                           | 0.4786(2)   | 0.3411(2) | 0.042 |  |  |
| H(3A)  | 1.0222(5)                           | 0.3644(4)   | 0.4103(3) | 0.067 |  |  |
| H(3B)  | 1.0630(5)                           | 0.4608(4)   | 0.4018(3) | 0.067 |  |  |
| H(4A)  | 1.0168(5)                           | 0.4887(4)   | 0.5127(3) | 0.087 |  |  |
| H(4B)  | 1.0520(5)                           | 0.3918(4)   | 0.5227(3) | 0.087 |  |  |
| H(5)   | 0.8238(5)                           | 0.4445(3)   | 0.5841(2) | 0.048 |  |  |
| H(6)   | 0.6739(6)                           | 0.3405(2)   | 0.5644(2) | 0.049 |  |  |
| H(7A)  | 0.8812(8)                           | 0.2652(3)   | 0.4839(2) | 0.085 |  |  |
| H(7B)  | 0.7189(8)                           | 0.2307(3)   | 0.4931(2) | 0.085 |  |  |
| H(8A)  | 0.6618(6)                           | 0.2581(3)   | 0.3844(2) | 0.060 |  |  |
| H(8B)  | 0.8343(6)                           | 0.2573(3)   | 0.3718(2) | 0.060 |  |  |
| H(9)   | 0.6683(4)                           | 0.5633(2)   | 0.2912(2) | 0.032 |  |  |
| H(10A) | 0.3809(4)                           | 0.5874(3)   | 0.2344(2) | 0.044 |  |  |
| H(10B) | 0.5271(4)                           | 0.5661(3)   | 0.1898(2) | 0.044 |  |  |
| H(11A) | 0.5310(4)                           | 0.4293(3)   | 0.2350(2) | 0.046 |  |  |
| H(11B) | 0.3673(4)                           | 0.4449(3)   | 0.2064(2) | 0.046 |  |  |
| H(12)  | 0.2820(4)                           | 0.4722(2)   | 0.3212(2) | 0.036 |  |  |
| H(13A) | 0.6295(5)                           | 0.6860(3)   | 0.3591(3) | 0.063 |  |  |
| H(13B) | 0.4716(5)                           | 0.6961(3)   | 0.3229(3) | 0.063 |  |  |
| H(13C) | 0.6152(5)                           | 0.7033(3)   | 0.2737(3) | 0.063 |  |  |
| H(14A) | 0.3396(5)                           | 0.3544(2)   | 0.3951(3) | 0.067 |  |  |
| H(14B) | 0.4570(5)                           | 0.3270(2)   | 0.3351(3) | 0.067 |  |  |
| H(14C) | 0.2873(5)                           | 0.3307(2)   | 0.3146(3) | 0.067 |  |  |
| H(15)  | 0.5832(4)                           | 0.6647(2)   | 0.5973(2) | 0.030 |  |  |
| H(16A) | 0.7211(4)                           | 0.5420(2)   | 0.6867(2) | 0.039 |  |  |
| H(16B) | 0.6472(4)                           | 0.6282(2)   | 0.7121(2) | 0.039 |  |  |
| H(17A) | 0.4115(4)                           | 0.5761(3)   | 0.6895(2) | 0.036 |  |  |
| H(17B) | 0.4936(4)                           | 0.5045(3)   | 0.7353(2) | 0.036 |  |  |
| H(18)  | 0.5501(4)                           | 0.4295(2)   | 0.6328(2) | 0.027 |  |  |
| H(19A) | 0.7914(4)                           | 0.6536(3)   | 0.5205(3) | 0.060 |  |  |
| H(19B) | 0.8634(4)                           | 0.5903(3)   | 0.5774(3) | 0.060 |  |  |
| H(19C) | 0.8328(4)                           | 0.6850(3)   | 0.6005(3) | 0.060 |  |  |
| H(20A) | 0.3333(5)                           | 0.3999(2)   | 0.5694(2) | 0.049 |  |  |
| H(20B) | 0.2558(5)                           | 0.4775(2)   | 0.6083(2) | 0.049 |  |  |
| H(20C) | 0.3090(5)                           | 0.3994(2)   | 0.6556(2) | 0.049 |  |  |
| H(22)  | 0.2240(4)                           | 0.6072(2)   | 0.3475(2) | 0.030 |  |  |
| H(23)  | 0.0593(4)                           | 0.6826(2)   | 0.4184(2) | 0.032 |  |  |
| H(24)  | 0.1056(4)                           | 0.7036(2)   | 0.5418(2) | 0.031 |  |  |
| H(25)  | 0.3132(3)                           | _ 0.6470(2) | 0.5956(2) | 0.026 |  |  |

**Table 4.** Hydrogen Coordinates and Isotropic Displacement Paramters  $[Å^2]$  for [Ir((R,R)-Me-DuPHOS)(COD)]BF.



n

արավարությունությունությունը հայտարությունը հերեների հերեների հերեների հերեների հերեների հերեների հերեներինը հերեներինինը հերեների հերեներիներինը հերեներիներինը հերեներինեն

8.50 8.00 7.50 7.00 6.50 6.00 5.50 5.00 4.50 4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00 ppm

Figure 3. 300 MHz <sup>1</sup>H NMR of [Ir((*S*,*S*)-DIOP)(COD)]BF<sub>4</sub> in CD<sub>2</sub>Cl<sub>2</sub> at 25°C (O = free COD and  $\Delta$  = solvent).









Figure 5. 300 MHz <sup>1</sup>H NMR of [Ir(((R)-BINAP)COD)]BF<sub>4</sub> in CD<sub>2</sub>Cl<sub>2</sub> at 25°C (O = free COD and  $\Delta$  = solvent).



























© 1998 American Chemical Society, J. Am. Chem. Soc., Kimmich ja981536b Supporting Info Page 15



Figure 12. 500 MHz <sup>1</sup>H NMR of  $[IrH_2((R)-BINAP)(COD)]BF_4$  in  $CD_2Cl_2$  at -80°C (ppm) ( $\mathbf{0}$  = free COD and  $\mathbf{\Delta}$  = solvent).

17

© 1998 American Chemical Society, J. Am. Chem. Soc., Kimmich ja981536b Supporting Info Page 16







Figure 14. 500 MHz <sup>1</sup>H NMR of  $[IrH_2((R,R)-NORPHOS)(COD)]BF_4$  in  $CD_2Cl_2$  at  $-80^{\circ}C$ (O = free COD,  $\diamondsuit$  = trace  $[IrH_2(COD)_2]BF_4$ , and  $\triangle$  = solvent).

© 1998 American Chemical Society, J. Am. Chem. Soc., Kimmich ja981536b Supporting Info Page 18





© 1998 American Chemical Society, J. Am. Chem. Soc., Kimmich ja981536b Supporting Info Page 19



Figure 16. 500 MHz <sup>1</sup>H NMR of  $[IrH_2((S,R)-BPPFAc)(COD)]BF_4$  in  $CD_2Cl_2$  at -80°C



© 1998 American Chemical Society, J. Am. Chem. Soc., Kimmich ja981536b Supporting Info Page 20

Ņ







**Figure 18.** 300 MHz <sup>1</sup>H–<sup>1</sup>H COSY 45 Spectrum of  $[Ir((R,R)-Me-DuPHOS)(COD)]BF_4$  in  $CD_2Cl_2$  at 25°C ( $\Box = Et_2O$  and  $\Delta =$  solvent).









50.0

75.0 ppm

100.0

Figure 20. 126 MHz <sup>13</sup>C NMR and DEPT 135 of [IrH<sub>2</sub>(COD)((*R*,*R*)-Me-DuPHOS)]BF<sub>4</sub> in CD<sub>2</sub>Cl<sub>2</sub> at -80°C (O = free COD and  $\Delta$  = solvent).

50.0

0

125.0

25.0



**Figure 21.** 500 MHz <sup>1</sup>H NMR of the equilibrium mixture (reached at -45°C) of  $[IrH_2(COD)((R,R)-Me-DuPHOS)]BF_4$  in  $CD_2Cl_2$  taken at -80°C ( $\Delta$  = solvent).

26

© 1998 American Chemical Society, J. Am. Chem. Soc., Kimmich ja981536b Supporting Info Page 25



Figure 22. 126 MHz <sup>13</sup>C NMR and DEPT 135 of the equilibrium mixture (reached at -45°C) of  $[IrH_2(COD)((R,R)-Me-DuPHOS)]BF_4$  in  $CD_2Cl_2$  taken at -80°C ( $\Delta$  = solvent).

© 1998 American Chemical Society, J. Am. Chem. Soc., Kimmich ja981536b Supporting Info Page 26

















31





at  $-90^{\circ}$ C in acetone-d<sub>6</sub>.



32



at - 90°C in acetone- $d_6$ .

|       | C(III) | assignment                                         |
|-------|--------|----------------------------------------------------|
| H #   | 9(.H)  | assignment                                         |
| 17    | 0.14   | Me                                                 |
| 6     | -0.14  | Me                                                 |
| 18    | 1.00   | Me                                                 |
| 5     | 0.78   | Me                                                 |
| 22B   | 1.80   | COD CH <sub>2</sub>                                |
| 22A   | 1.15   | COD CH <sub>2</sub>                                |
| 26B   | 1.24   | $COD CH_2$                                         |
| 26A   | 2.04   | $\rm COD  CH_2$                                    |
| 4     | 1.86   | $\underline{CH}CH_3(6)$                            |
| 15A/B | 1.68   | Me-DuPHOS CH <sub>2</sub> cis to the adjacent Me   |
| 2A/B  | 1.80   | Me-DuPHOS $CH_2$ trans to the adjacent Me          |
| 3A/B  | 1.60   | Me-DuPHOS CH <sub>2</sub> trans to the adjacent Me |
| 15A/B | 1.47   | Me-DuPHOS CH <sub>2</sub> trans to the adjacent Me |
| 3A/B  | 1.20   | Me-DuPHOS $CH_2 cis$ to the adjacent Me            |
| 2A/B  | 1.15   | Me-DuPHOS CH <sub>2</sub> cis to the adjacent Me   |
| 1     | 2.47   | $\underline{CH}CH_3(5)$                            |
| 14A/B | 1.47   | Me-DuPHOS $CH_2 cis$ to the adjacent Me            |
| 14A/B | 1.96   | Me-DuPHOS CH <sub>2</sub> trans to the adjacent Me |
| 25A   | 2.42   | COD CH <sub>2</sub>                                |
| 25B   | 2.91   | <u>COD CH<sub>2</sub></u>                          |
| 21B   | 3.10   | COD CH <sub>2</sub>                                |
| 21A   | 2.15   | $COD CH_2$                                         |
| 16    | 2.50   | $\underline{CHCH}_{3}(17)$                         |
| 13    | 2.71   | $\underline{CHCH}_{3}(18)$                         |
| 23    | 4.32   | COD vinyl                                          |
| 20    | 3.89   | COD vinyl                                          |
| 19    | 4.51   | COD vinyl                                          |
| 24    | 4.12   | COD vinyl                                          |
| 8     | 7.56   | phenyl                                             |
| 9     | 7.20   | phenyl                                             |
| 10    | 7.26   | phenyl                                             |
| 11    | 7.71   | phenyl                                             |
| 27    | -10.81 | IrH trans                                          |
| 28    | -16.16 | IrH cis                                            |

**Table 5.** <sup>1</sup>H Data for the Major Diastereomer of  $[IrH_2((R,R)-Me-DuPHOS)(COD)]BF_4$ (10<sup>maj</sup>) in acetone at -90°C.

## Table 6.2DCPA input data

34\ number of distinct NOESY groups of the major diastereomer. # 1st number indicates whether methyl or not 1 = not methyl, 3 = methyl# 2nd number is the number of protons in the group # 3rd number is the atom number from the conformer file 1 \#1-ortho-aryl proton corresponds to H#11 in Figure 4 (Full paper) 1 2 \#2-ortho-aryl proton corresponds to H#8 in Figure 4 (Full paper) 1 3 \#3-meta-aryl proton corresponds to H#10 in Figure 4 (Full paper) 1 4 \#4-meta-aryl proton corresponds to H#9 in Figure 4 (Full paper) 1 5 \#5-vinyl proton corresponds to H#19 in Figure 4 (Full paper) 6 \#6-vinyl proton corresponds to H#23 in Figure 4 (Full paper) 7 \#7-vinyl proton corresponds to H#24 in Figure 4 (Full paper) 8 \#8-vinyl proton corresponds to H#20 in Figure 4 (Full paper) 9 \#9-CH2 proton on COD corresponds to H#21B in Figure 4 (Full paper)

1

1

1

1

1

10 \#10-CH2 proton on COD corresponds to H#25B in Figure 4 (Full paper)
11 \#11-CH proton on DuPhos corresponds to H#13 in Figure 4 (Full paper)
12 \#12-CH2 proton on COD corresponds to H#25A in Figure 4 (Full paper)
13 \#13-CH proton on DuPhos corresponds to H#1 in Figure 4 (Full paper)
14 \#14-CH proton on DuPhos corresponds to H#16 in Figure 4 (Full paper)
15 \#15-CH2 proton on COD corresponds to H#26A in Figure 4 (Full paper)
16 \#16-CH2 proton on COD corresponds to H#21A in Figure 4 (Full paper)

 $\bigcirc$ 

| 1      | 1<br>17 \#1 | 7-CH2 p    | roton on                  | COD corresponds to H#22B in Figure 4 (Full paper)                                                        |
|--------|-------------|------------|---------------------------|----------------------------------------------------------------------------------------------------------|
| 1      | 1           | 8-CH pr    | oton on E                 | DuPhos corresponds to H#4 in Figure 4 (Full paper)                                                       |
| 1      | 10,41       | 0 CU2 -    | roton on                  | DuPhos corresponds to H#15A/B cis to the adjacent Me in Figure 4 (Full paper)                            |
| 1      | 19 \#1      | 9-Сп2 р    |                           | Durnes corresponds to the state the adjacent Me in Figure 4 (Full paper)                                 |
| 1      | 20 \#2<br>1 | 20-CH2 p   | oroton on                 | DuPhos corresponds to H#14A/B cis to the adjacent ine in Figure 4 (i an puper)                           |
| ļ      | 21 \#2      | 21-CH2 p   | roton on                  | COD corresponds to H#26B in Figure 4 (Full paper)                                                        |
| 1      | 1<br>22 \#2 | 22-CH2 p   | oroton on                 | COD corresponds to H#22A in Figure 4 (Full paper)                                                        |
| 1      | 1<br>23 \#2 | 23-CH2 r   | proton on                 | DuPhos corresponds to H#3A/B cis to the adjacent Me in Figure 4 (Full paper)                             |
| 1      | 1           | 24_CH2 r   | proton on                 | DuPhos corresponds to H#2A/B cis to the adjacent Me in Figure 4 (Full paper)                             |
| 3      | 3           | 24-C112 }  |                           | 42/#25 Me protons (last number is the corresponding carbon) correspond to H#18 in Figure 4 (Full paper)  |
| 3      | 25<br>3     | 43         | 44                        | 42 (#25-Me protons (last number is the corresponding correspond to H#5 in Figure 4 (Full paper)          |
| ·<br>• | 26          | 55         | 56                        | 54 \#26-Me protons (last number is the corresponding carbon) correspond to This in Figure 1 (2 mi paper) |
| 3      | 3<br>27     | 48         | 49                        | 47 \#27-Me protons (last number is the corresponding carbon) correspond to H#17 in Figure 4 (Full paper) |
| 3      | -3<br>28    | 58         | 59                        | 57 \#28-Me protons (last number is the corresponding carbon) correspond to H#6 in Figure 4 (Full paper)  |
| 1      | 1<br>29∖#   | 29 the tra | ans-hydrie                | de corresponds to H#27 in Figure 4 (Full paper)                                                          |
| 1      | 1           | 30 the ci  | s-hydride                 | corresponds to H#11 in Figure 4 (Full paper)                                                             |
| 1      | 1           |            |                           | $\alpha$ means to H#14A/B <i>trans</i> to the adjacent Me in Figure 4 (Full paper)                       |
| 1      | 46 \∦<br>1  | #31-CH2    | proton c                  | onesponds to invitation in and the adjustent the in Figure 4 (Full paper)                                |
| 1      | 51 \i       | #32-CH2    | proton c                  | orresponds to H#15A/B trans to the adjacent Me in Figure 4 (Full paper)                                  |
| I      | 24 \;       | #33-CH2    | proton c                  | orresponds to H#2A/B trans to the adjacent Me in Figure 4 (Full paper)                                   |
| 1      | 1<br>61 \   | #34-CH2    | proton c                  | corresponds to H#3A/B trans to the adjacent Me in Figure 4 (Full paper)                                  |
| # 1st  | number      | is isotrop | oic rotatic               | onal correlation time (in ns)                                                                            |
| # 2nd  | d number    | r is methy | yi spin co<br>on rate (in | stretation. time (in ps)<br>sec. all extramolecular relaxation)                                          |
| ++ 11  |             |            |                           | · · <b>,</b> · · · · · · · · · · · · · · · · · · ·                                                       |

© 1998 American Chemical Society, J. Am. Chem. Soc., Kimmich ja981536b Supporting Info Page 34

-.

# 4th number is a bit flag that determines which relaxation parameter(s) is/are optimized

# by comparison with experimental data. This flag is integer sum of three binary numbers

# 1=optimize tau(1), 2=optimize tau(2), 4=optimize rext;

# i.e. 3 means optimize both isotropic and methyl spin correlation times

# 5th number is optimization gradient cutoff

0.5596 167.701 0.3560 0 5E-4 \

6 \# number of mixing times (must include 0 mix time  $\geq 2$ )

0 0.07 0.10 0.13 0.16 0.20 \# mixing time (in sec.)

#595 total points, 34 diagonal peaks, 49+4 good peaks, 30 noisy peaks, 458 absent peaks, 20 unresolved peaks #Four groups of all data point are classified.

#Diagonal peaks are from the same group.

#Good peaks are assigned if the observed intensities .GE. twice of the local noise level.

#Noisy peaks are assigned if the observed intensities are less than twice of the local noise level.

#Unresolved peaks are assigned if those are close to diagonal peaks.

# 1st two numbers are the group (group matrix elements)

# the input file only requires upper triangular part of the matrix

# next set of numbers is the volumes at each mixing time (arbitrary units)

# next number is weighting factor which can be of several types

# 999 for good peaks, 997 for noisy peaks and absent peaks, 0.0 for diagonal peaks and unresolved peaks.

| 1 | 1  | 2.294E+09 | 0.189E+10 | 0.184E+10 | 0.171E+10 | 0.156E+10 | 0 140F+10 | ٥   | 0\diagonal pool |
|---|----|-----------|-----------|-----------|-----------|-----------|-----------|-----|-----------------|
| 1 | 2  | 0.000E+00 | 7.282E+05 | 4.047E+05 | 5.611E+05 | 5 696E+05 | 9.572E+05 | 007 | Olabaant naak   |
| 1 | 3  | 0.000E+00 | 3.800E+07 | 4.570E+07 | 4.955E+07 | 5.175E+07 | 5 720E+07 | 000 | 0\abself peak   |
| 1 | 4  | 0.000E+00 | 1.651E+05 | 8.331E+05 | 2.409E+04 | 8.612E+04 | 6 502E+05 | 007 | Olgobu peak     |
| 1 | 5  | 0.000E+00 | 4.424E+05 | 8.745E+05 | 1.194E+05 | 7 842E+05 | 5 439E+05 | 007 | Olabsent peak   |
| 1 | 6  | 0.000E+00 | 1.929E+05 | 1.735E+05 | 5.155E+05 | 8.398E+05 | 8 601E+05 | 007 | 0\absent peak   |
| 1 | 7  | 0.000E+00 | 4.552E+05 | 3.345E+05 | 1.512E+05 | 8.764E+05 | 2 925E+05 | 007 | 0\absent peak   |
| 1 | 8  | 0.000E+00 | 5.796E+05 | 2.367E+05 | 1.903E+05 | 8.510E+05 | 2.525E+05 | 007 | Olabsent peak   |
| 1 | 9  | 0.000E+00 | 8.211E+05 | 4.873E+05 | 6.368E+05 | 7.248E+05 | 5 478E+05 | 997 | 0\absent peak   |
| 1 | 10 | 0.000E+00 | 3.588E+04 | 7.429E+05 | 4.817E+05 | 3.472E+05 | 5 596E+05 | 997 | 0\absent peak   |
| 1 | 11 | 0.000E+00 | 1.690E+07 | 2.355E+07 | 2.940E+07 | 3.460E+07 | 3 905E+07 | 999 | 0\abselit peak  |
| 1 | 12 | 0.000E+00 | 7.814E+05 | 6.601E+05 | 9.624E+05 | 6.729E+05 | 9 798E+05 | 907 | 0\absent peak   |
| 1 | 13 | 0.000E+00 | 8.985E+05 | 4.570E+05 | 1.672E+04 | 5.775E+05 | 3.448E+05 | 997 | 0\absent peak   |
| 1 | 14 | 0.000E+00 | 7.299E+05 | 4.407E+05 | 7.721E+05 | 8.804E+05 | 3 904E+05 | 997 | 0\absent peak   |
| 1 | 15 | 0.000E+00 | 2.412E+05 | 6.391E+05 | 9.117E+04 | 2.758E+05 | 6 874F+04 | 907 | Olabsent peak   |
| 1 | 16 | 0.000E+00 | 3.074E+05 | 6.984E+05 | 3.667E+05 | 7.939E+05 | 4 731E+05 | 907 | Olabsent peak   |
| 1 | 17 | 0.000E+00 | 2.348E+05 | 5.906E+05 | 3.518E+05 | 6.719E+05 | 6 577E+05 | 997 | Olabsent peak   |
| 1 | 18 | 0.000E+00 | 9.921E+05 | 2.666E+04 | 2.862E+05 | 6.558E+04 | 2.313E+05 | 997 | 0\absent peak   |

36

|                |     |                 |            |             |           | 5 000E 107    | 5 2805+07              | 999          | 0\good peak     |
|----------------|-----|-----------------|------------|-------------|-----------|---------------|------------------------|--------------|-----------------|
|                | 10  | 0.0005+00       | 2 565E+07  | 3.575E+07   | 4.465E+07 | 5.000E+07     | 5.260E+07<br>9.561E+05 | 997          | 0\absent peak   |
|                | 19  | 0.000E+00       | 2.079E+05  | 5.047E+05   | 4.668E+05 | 8.647E+05     | 8.301E+05              | 997          | 0\absent peak   |
|                | 20  | $0.000E \pm 00$ | 3 110E+05  | 1.756E+05   | 8.424E+05 | 1.819E+05     | 8.931E+05              | 997          | 0\absent peak   |
|                | 21  |                 | 2.074E+05  | 5.284E+05   | 8.675E+05 | 7.825E+05     | 1.3/0E+03              | 007          | 0\absent peak   |
|                | 22  | 0.000E+00       | 7.250E+05  | 2.862E+05   | 4.788E+05 | 8.544E+05     | 5.790ET03              | 007          | 0\absent peak   |
|                | 23  | 0.000E+00       | 0.145E+05  | 2.105E+04   | 6.794E+05 | 5.651E+05     | 2.164E+05              | 007          | 0\noisy peak    |
|                | 24  | 0.000E+00       | 2 850F+04  | 3.360E+05   | 5.280E+05 | 9.690E+05     | 8.240E+05              | 007          | 0\absent peak   |
|                | 25  | 0.000E+00       | -3.830L+04 | 1.442E+05   | 2.238E+05 | 9.534E+05     | 7.9/4E+05              | 000          | 0\good peak     |
|                | 26  | 0.000E+00       | 0.470E+05  | 2 415E+06   | 2.615E+06 | 2.865E+06     | 3.175E+00              | 777<br>007   | 0\poisy peak    |
|                | 27  | 0.000E+00       | 7.2405+00  | 2.610E+05   | 6.430E+04 | 2.740E+04     | 2.860E+05              | 997          | 0\absent neak   |
|                | 28  | 0.000E+00       | 7.340ET 04 | 3 760E+05   | 7.547E+04 | 6.597E+04     | 6.191E+05              | 997          | 0\absent peak   |
| Ľ              | 29  | 0.000E+00       | 2.494ET03  | 4 407E+05   | 7.493E+05 | 6.716E+05     | 7.961E+05              | 997          | 0\absent peak   |
| l              | 30  | 0.000E+00       | 8.//9ETUJ  | 3 300E+05   | 1.917E+05 | 8.879E+04     | 5.465E+05              | 997          | 0\absent peak   |
| l              | 31  | 0.000E+00       | 1.081E+05  | 3.270E+05   | 9.538E+05 | 1.241E+05     | 7.014E+05              | 997          | Olabsent peak   |
| l              | 32  | 0.000E+00       | 4.640E+03  | 2.768E+04   | 4.649E+05 | 2.824E+05     | 1.346E+05              | 997          | 0\absent peak   |
| 1              | 33  | 0.000E+00       | 6.82/E+04  | 1.077E+05   | 3.632E+05 | 6.509E+05     | 1.451E+05              | 997          | 0\absent peak   |
| 1              | 34  | 0.000E+00       | 7.160E+03  | 0.156E+10   | 0.146E+10 | 0.134E+10     | 0.122E+10              | 0            | 0\ulagonal peak |
| 2              | 2   | 1.882E+09       | 0.158E+10  | 0.130E+05   | 1.672E+04 | 5.775E+05     | 3.448E+05              | 997          | 0\aosent peak   |
| 2              | 3   | 0.000E+00       | 8.985E+05  | 4.370E+03   | 8.035E+07 | 8.310E+07     | 8.045E+07              | 999          | 0\goou peak     |
| 2              | 4   | 0.000E+00       | 6.940E+07  | 0.275E+07   | 3 421E+05 | 6.325E+04     | 4.995E+05              | 997          | Olabsent peak   |
| 2              | 5   | 0.000E+00       | 8.104E+04  | 7.4520 · 04 | 2.764E+05 | 7.396E+05     | 6.226E+05              | 997          | 0\absent peak   |
| 2              | 6   | 0.000E+00       | 7.996E+04  | 9.619E+05   | 9 524E+05 | 4.714E+05     | 9.075E+04              | 997          | 0\absent peak   |
| 2              | 7   | _0.000E+00      | 3.087E+05  | 1 2005+05   | 3 984E+05 | 6.026E+05     | 1.142E+05              | 997          | 0\absent peak   |
| 2              | 8   | 0.000E+00       | 4.11/E+05  | 1.117E+05   | 5 488E+03 | 7.563E+04     | * 8.082E+05            | 997          | 0\absent peak   |
| 2              | 9   | 0.000E+00       | 2.332E+05  | 1.11/ET 05  | 5 191E+05 | 2.919E+05     | 4.679E+05              | 997          | 0\absent peak   |
| 2              | 10  | 0.000E+00       | 7.737E+05  | 0.009E+05   | 3.647E+05 | 1.287E+05     | 9.255E+05              | 997          | 0\absent peak   |
| 2              | 11  | 0.000E+00       | 8.029E+05  | 4./13E+03   | 8 083E+04 | 2.097E+05     | 2.607E+05              | <b>99</b> 7  | 0\absent peak   |
| 2              | 12  | 0.000E+00       | 1.510E+05  | 1.140ETV4   | 4 415E+07 | 5.035E+07     | 5.740E+07              | 999          | 0\good peak     |
| 2              | 13  | 0.000E+00       | 2.580E+07  | 5.400ET07   | 9 558E+05 | 6.123E+05     | 4.611E+05              | <b>99</b> 7  | 0\absent peak   |
| 2              | 14  | 0.000E+00       | 3.816E+05  | 5.521ETUJ   | 3.967E+05 | 3.589E+05     | 8.686E+05              | <b>99</b> 7  | 0\absent peak   |
| $\overline{2}$ | 15  | 0.000E+00       | 2.773E+05  | 1.000E+03   | 8 014F+05 | 5.055E+05     | 4.397E+05              | 997          | 0\absent peak   |
| $\frac{1}{2}$  | 16  | 0.000E+00       | 6.059E+05  | 7.625E+05   | 0.0142+05 | 1.209E+05     | 7.737E+05              | 997          | 0\absent peak   |
| $\overline{2}$ | 17  | 0.000E+00       | 1.114E+05  | 7.635E+05   | 1 470E+05 | -1.380E+05    | 2.610E+06              | <b>997</b> · | 0\noisy peak    |
| $\overline{2}$ | 18  | 0.000E+00       | 5.280E+05  | -3.930E+05  | 9.815E+05 | 4.663E+05     | 3.927E+05              | 997          | 0\absent peak   |
| 2              | 19  | 0.000E+00       | 4.334E+03  | 6.801E+05   | 5 200E+05 | 8 811E+04     | 5.562E+05              | 997          | 0\absent peak   |
| 2              | 20  | 0.000E+00       | 4.950E+04  | 4.971E+05   | 3.300E+03 | 8.137E+05     | 1.825E+05              | 997          | 0\absent peak   |
| 2<br>2         | 21  | 0.000E+00       | 5.126E+03  | 9.299E+05   | 1 0000105 | 6 089E+05     | 8.295E+05              | 997          | 0\absent peak   |
| ź              | 22  | 0.000E+00       | 2.785E+05  | 3.473E+04   | 1.020ETUJ | 2 015E+07     | 2.230E+07              | 999          | 0\good peak     |
| 2              | 23  | 0.000E+00       | 1.160E+07  | 1.335E+07   | 1.890070/ | 2.015E+04     | 2.372E+05              | 997          | 0\absent peak   |
| ∠<br>2         | 23  | 0.000E+00       | 2.661E+05  | 9.452E+05   | 0.3/2E+03 | 2./ 4412 - 04 |                        |              |                 |
| 4              | 2-7 |                 |            |             |           |               |                        |              |                 |

© 1998 American Chemical Society, J. Am. Chem. Soc., Kimmich ja981536b Supporting Info Page 36

|                |     |           |            | 0.6740.04  | 9 688E+05  | 6 318E+05              | 6.407E+05  | 997 | 0\absent peak     |
|----------------|-----|-----------|------------|------------|------------|------------------------|------------|-----|-------------------|
| 2              | 25  | 0.000E+00 | 4.755E+04  | 2.5/4E+04  | 0.000E+05  | 1.070E+06              | 9.360E+05  | 997 | 0\noisy peak      |
| 2              | 26  | 0.000E+00 | -3.480E+04 | 5.900E+05  | 1.040E+00  | 2 703E+03              | 5.410E+05  | 997 | 0\absent peak     |
| 2              | 27  | 0.000E+00 | 1.191E+05  | 3.305E+05  | 7.3726+03  | 1.575E+07              | 1.565E+07  | 997 | 0\noisy peak      |
| 2              | 28  | 0.000E+00 | 1.579E+06  | 1.522E+06  | /.105E+0/  | 2 384E+05              | 1.152E+05  | 997 | 0\absent peak     |
| 2              | 29  | 0.000E+00 | 7.727E+05  | 4.162E+05  | 8.380ET04  | 5.156E+05              | 9.075E+05  | 997 | 0\absent peak     |
| $\overline{2}$ | 30  | 0.000E+00 | 5.599E+04  | 6.538E+05  | 9.8100-05  | 3.616E+05              | 3 331E+04  | 997 | 0\absent peak     |
| $\overline{2}$ | 31  | 0.000E+00 | 6.299E+05  | 6.758E+05  | 2.34/E+03  | 9.010E+05              | 1 532E+05  | 997 | 0\absent peak     |
| $\frac{1}{2}$  | 32  | 0.000E+00 | 1.515E+05  | 6.235E+05  | 6.819E+03  | 0.759E+07              | 0 300E+07  | 997 | 0\noisy peak      |
| 2              | 33  | 0.000E+00 | 0.387E+06  | 0.820E+06  | 0.221E+07  | 0.253E+06              | 0.140E+07  | 997 | 0\noisy peak      |
| $\overline{2}$ | 34  | 0.000E+00 | 0.323E+06  | 0.422E+06  | 0.689E+00  | 0.333E+00<br>0.102E+10 | 0.183E+10  | 0   | 0\diagonal peak   |
| 3              | 3   | 2.341E+09 | 0.209E+10  | 0.214E+10  | 0.206E+10  | 0.193E+10<br>0.578E+06 | 8 733E+06  | Ō   | 0\unresolved peak |
| 3              | 4   | 0.000E+00 | 9.557E+06  | 9.448E+06  | 5.509E+06  | 2 420E+00              | 6.937E+05  | 997 | 0\absent peak     |
| 3              | 5   | 0.000E+00 | 1.082E+05  | 6.931E+05  | 5.229E+05  | 2.430E+03              | 8 460E+04  | 997 | 0\absent peak     |
| 3              | 6   | 0.000E+00 | 8.119E+05  | 7.438E+05  | 1.994E+05  | 3.033E+04              | 4 364E+05  | 997 | 0\absent peak     |
| 3              | 7   | 0.000E+00 | 8.088Ė+05  | 5.854E+05  | 2.709E+05  | 4.320E+05              | 4.50-1E+05 | 997 | 0\absent peak     |
| ž              | 8   | 0.000E+00 | 7.043E+05  | 6.499E+05  | 1.330E+05  | 3.301E+03              | 6 888E+05  | 997 | 0\absent peak     |
| ž              | 9   | 0.000E+00 | 1.173E+04  | 5.341E+05  | 2.551E+05  | 4.030ETUJ              | 2 441E+05  | 997 | 0\absent peak     |
| 3              | 10  | 0.000E+00 | 7.478E+05  | 8.370E+05  | 4.446E+04  | 5.55/E+05              | 0 144F+07  | 999 | 0\good peak       |
| 3              | 11  | 0.000E+00 | 0.200E+06  | 0.406E+06  | 0.850E+06  | 0.090E+00              | 8 995E+05  | 997 | 0\absent peak     |
| 3              | 12  | 0.000E+00 | 8.414E+05  | 2.942E+05  | 7.975E+05  | 0.4370103              | 4 180E+05  | 997 | 0\absent peak     |
| 3              | 13  | 0.000E+00 | 2.437E+05  | 2.174E+05  | 9.12/E+05  | 9.985ET05              | 7 804E+05  | 997 | 0\absent peak     |
| ž              | 14  | 0.000E+00 | 8.199E+05  | 9.099E+04  | 8.956E+05  | 4.030E+05              | 2 788E+05  | 997 | 0\absent peak     |
| 3              | 15  | 0.000E+00 | 6.673E+05  | 5.015E+05  | 6.903E+05  | 2.773E+05              | 2.700E+05  | 997 | 0\absent peak     |
| 3              | 16  | 0.000E+00 | 4.094E+04  | 4.926E+05  | 5.165E+04  | 7.172E+05              | 3 898E+05  | 997 | 0\absent peak     |
| 3              | 17  | 0.000E+00 | 5.879E+05  | 6.965E+05  | 7.705E+05  | 3.230E+05              | 5 089E+05  | 997 | 0\absent peak     |
| 3              | 18  | 0.000E+00 | 4.119E+05  | 1.886E+05  | 2.665E+05  | 3.772ETUJ<br>9.220E±05 | 6 910E+05  | 997 | 0\noisy peak      |
| 3              | 19  | 0.000E+00 | 4.630E+05  | -3.950E+04 | -2.400E+03 | 8.220E+05              | 3 816E+05  | 997 | 0\absent peak     |
| 3<br>3         | 20  | 0.000E+00 | 6.548E+05  | 5.581E+05  | 8.930E+05  | 5.225E+05              | 3 818E+05  | 997 | 0\absent peak     |
| 3              | 21  | 0.000E+00 | 5.927E+05  | 4.369E+05  | 4.911E+05  | 0.293E+03              | 2 081E+05  | 997 | 0\absent peak     |
| 3              | 22  | 0.000E+00 | 3.487E+05  | 8.342E+05  | 8.515E+05  | _ 9.900E+0J            | 3 437E+05  | 997 | 0\absent peak     |
| 3              | 23  | 0.000E+00 | 7.050E+05  | 1.802E+05  | 4.025E+05  | 0.274E + 04            | 2 300E+05  | 997 | 0\absent peak     |
| 3              | 24  | 0.000E+00 | 2.941E+05  | 5.759E+05  | 9.129E+05  | 0.140E+03              | 9.079F+05  | 997 | 0\absent peak     |
| ž              | 25  | 0.000E+00 | 8.094E+05  | 4.192E+05  | 3.605E+05  | 3.323E+03              | 8 564F+04  | 997 | 0\absent peak     |
| 3.             | 26  | 0.000E+00 | 3.275E+05  | 7.693E+05  | 7.056E+05  | 3:207ET03              | 5 370E+05  | 997 | 0\noisy peak      |
| 3              | 27  | 0.000E+00 | 3.880E+05  | 1.940E+05  | 5.240E+05  | 7.120ET03              | 4 905E+05  | 997 | 0\absent peak     |
| ĩ              | 28  | 0.000E+00 | 8.481E+05  | 5.118E+04  | 5.482E+03  | 3.0/4ET04              | 7 251E+05  | 997 | 0\absent peak     |
| ĩ              | 29  | 0.000E+00 | 6.143E+04  | 5.059E+05  | 7.550E+05  | 8.390E+04              | A 682E+05  | 997 | 0\absent peak     |
| 3              | 30  | 0.000E+00 | 6.839E+05  | 3.603E+05  | 4.326E+05  | 9./80E+05              | 4.002E+05  | 997 | 0\absent peak     |
| 3              | 31  | 0.000E+00 | 5.111E+05  | 5.390E+05  | 5.320E+05  | 4.424E+05              | 1.5521-05  |     |                   |
| J              | ~ . |           |            |            |            |                        |            |     |                   |

| -  |     |            | 2 642E±05              | 1 844E+05              | 4.236E+04   | 2.355E+05 | 6.503E+05 | 997         | 0∖absent peak   |
|----|-----|------------|------------------------|------------------------|-------------|-----------|-----------|-------------|-----------------|
| 3  | 32  | 0.000E+00  | 9.043ET03              | 8 271E+05              | 4 382E+05   | 4.270E+05 | 3.835E+05 | 997         | 0\absent peak   |
| 3  | 33  | 0.000E+00  | 6.902E+03              | 2 221E+05              | 2 590E+05   | 2.692E+05 | 7.667E+05 | 997         | 0\absent peak   |
| 3  | 34  | 0.000E+00  | 4.7736703              | 0.213E+10              | 0.205E+10   | 0.196E+10 | 0.186E+10 | 0           | 0\diagonal peak |
| 4  | 4   | 2.344E+09  | 0.213E+10              | 0.215E+10              | 7.633E+05   | 2 379E+05 | 4.889E+05 | 997         | 0\absent peak   |
| 4  | 5   | 0.000E+00  | 5.233E+03              | 7.043E+05              | 9.878E+05   | 1 708E+05 | 6.160E+05 | 997         | 0\absent peak   |
| 4  | 6   | 0.000E+00  | 5.048E+05              | 2 780E±04              | 8 838E+05   | 3 938E+03 | 3.648E+05 | 997         | 0\absent peak   |
| 4  | 7   | 0.000E+00  | 3.521E+05              | 3./09ET04              | 0.03E+05    | 4 760E+05 | 3.176E+05 | 997         | 0\absent peak   |
| 4  | 8   | 0.000E+00  | 1.399E+05              | Z.822E+05              | 7.503E+05   | 1.633E+05 | 1.624E+03 | 997         | 0\absent peak   |
| 4  | 9   | 0.000E+00  | 4.863E+05              | 7.554E+05              | 7.505E+05   | 1.600E+05 | 1.360E+05 | 997         | 0\absent peak   |
| 4  | 10  | 0.000E+00  | 5.662E+05              | 2.510E+05              | 2.707E+03   | 5.015E+05 | 8.357E+05 | 997         | 0\absent peak   |
| 4  | 11  | 0.000E+00  | 5.673E+05              | 2.122E+04              | 5.007E+04   | 1 548E+05 | 8.768E+05 | 997         | 0\absent peak   |
| 4  | 12  | 0.000E+00  | 6.8/1E+05              | 2.327ETUS              | 0.901E+06   | 0.565E+06 | 0.119E+07 | 997         | 0\noisy peak    |
| 4  | 13  | 0.000E+00  | 0.228E+06              | 0.4/0E+03              | 5.064E+05   | 7 903E+05 | 1.956E+05 | 997         | 0\absent peak   |
| 4  | 14  | 0.000E+00  | 3.800E+05              | 5.940ETUS              | 7.045E+05   | 5 640E+05 | 5.675E+04 | 997         | 0\absent peak   |
| 4  | 15  | 0.000E+00  | 9.676E+05              | 7.003ET03              | 5 2538+05   | 8 236E+05 | 6.444E+05 | 997         | 0\absent peak   |
| 4  | 16  | 0.000E+00  | 5.895E+05              | 0.4/JETUJ              | 9.333E+05   | 7 232E+05 | 6 230E+05 | 997         | 0\absent peak   |
| 4  | 17  | 0.000E+00  | 1.382E+05              | 4.302E+03              | 7.308E+0.04 | 5 363E+05 | 7.415E+05 | 997         | 0\absent peak   |
| 4  | 18  | 0.000E+00  | 3.1/9E+05              | 9.237ETUJ              | 8 086E+05   | 3 596E+05 | 7.639E+05 | 997         | 0\absent peak   |
| 4  | 19  | 0.000E+00  | 1.1/9E+05              | 5.746ET05              | 2 852E+05   | 3 580E+05 | 8.724E+05 | 997         | 0\absent peak   |
| 4  | 20  | 0.000E+00  | 1.390E+03              | 0.310E+03              | 2.852E+05   | 5 934E+05 | 5.951E+05 | 997         | 0\absent peak   |
| 4  | 21  | 0.000E+00  | 7.034E+05              | 5.812E+05              | 6 961E+05   | 3.566E+05 | 3.331E+05 | 997         | 0\absent peak   |
| 4  | 22  | 0.000E+00  | 5.853E+U3              | 5.680E±04              | 1 280F+04   | 1.010E+05 | 4.200E+05 | 997         | 0\noisy peak    |
| 4  | 23  | 0.000E+00  | 5.350E+04              | 5.000E+04              | 7 796E+05   | 6 685E+05 | 5.702E+05 | 997         | 0\absent peak   |
| 4  | 24  | 0.000E+00  | 2.958E+05              | 0.3420+05<br>1 229E±05 | 1.730E+04   | 6 986E+05 | 5.869E+05 | 997         | 0\absent peak   |
| 4  | 25  | 0.000E+00  | 3.203E+05              | 0 116E+05              | 6 154E+05   | 9 956E+05 | 6.604E+05 | 997         | 0\absent peak   |
| 4  | 26  | 0.000E+00  | 4./13E+03              | 5.77E+05               | 3 965E+05   | 1.068E+05 | 4.765E+05 | 997         | 0\absent peak   |
| 4  | 27  | 0.000E+00  | 2.800E+05              | 3.277E+03              | 8 810E+05   | 3.110E+05 | 1.510E+05 | 997         | 0\noisy peak    |
| 4  | 28  | 0.000E+00  | 1.700ETUJ              | 4.010E+04              | 4 699E+05   | 2.405E+05 | 4.306E+05 | 997         | 0\absent peak   |
| 4. | 29  | 0.000E+00  | 4.090ET04              | 6 038E+05              | 3.611E+05   | 2.686E+05 | 5.660E+05 | 997         | 0\absent peak   |
| 4  | 30  | 0.000E+00  | /.190E+03              | 8 005E+05              | 5.257E+05   | 4.573E+05 | 3.747E+05 | 997         | 0\absent peak   |
| 4  | 31  | 0.000E+00  | 4.044ETUJ              | 0.095E+05              | 2 261E+05   | 6.813E+05 | 4.570E+05 | 997         | 0\absent peak   |
| 4  | 32  | 0.000E+00  | 0.982ETU3              | 9.391E+05              | 2.2012+05   | 8.429E+05 | 3.197E+05 | 997         | 0\absent peak   |
| 4  | 33  | 0.000E+00  | 1.09/E+03              | 9.050E+05              | 9 980F+05   | 5.508E+05 | 6.491E+05 | <b>99</b> 7 | 0\absent peak   |
| 4  | 34  | 0.000E+00  | 1.040ET04              | 0.225E+10              | 0.209E+10   | 0.191E+10 | 0.173E+10 | 0           | 0\diagonal peak |
| 5  | 5   | 2.7598+09  | 0.229ETIU<br>0.072E±04 | 0.225E+10              | 9 387E+05   | 8.464E+05 | 8.215E+05 | 997         | 0\absent peak   |
| 5  | 6   | 0.000E+00  | 0.0/JETU4<br>1 567E±05 | 3 / 10 E + 05          | 8 377E+05   | 8.463E+05 | 7.074E+05 | 997         | 0\absent peak   |
| 5  | 7   | 0.0001+00  | 4.302ETU3              | 23658+07               | 2 530E+07   | 2.700E+07 | 2.895E+07 | 999         | 0\good peak     |
| 5  | 8   | 0.000E+00  | 1.920ETU/<br>4.610E+05 | 2.505E+07              | 6 520E+05   | 5.340E+05 | 1.120E+06 | 997         | 0\noisy peak    |
| 5  | U U | 0.0008.400 | 4.0102703              | 7.3700 03              | 0.5200.05   |           |           |             | ,               |

| 5       | 10   | 0.000E+00                               | 3.840E+05  | 2.110E+05       | 6.600E+05 | 7.720E+05 | 6.450E+05 | 997         | 0\noisy peak      |
|---------|------|-----------------------------------------|------------|-----------------|-----------|-----------|-----------|-------------|-------------------|
| 5 5     | 10   | 0.000E+00                               | 4 377E+05  | 2.658E+05       | 1.833E+05 | 4.537E+05 | 5.216E+05 | 997         | 0\absent peak     |
| 5       | 12   | 0.000E+00                               | 5 950E+04  | 9.348E+05       | 5.986E+05 | 7.008E+05 | 7.370E+05 | 997         | 0\absent peak     |
| 5       | 12   | 0.000E+00                               | 2.637E+05  | 9 491E+05       | 4.714E+05 | 7.156E+05 | 4.996E+05 | 997         | 0\absent peak     |
| 5       | 13   | 0.0000000000000000000000000000000000000 | 1.810E+05  | 3.539E+05       | 6.581E+05 | 4.567E+05 | 9.106E+05 | 997         | 0\absent peak     |
| 5.<br>5 | 14   | 0.00012+00                              | 2.055E+07  | 2.825E+07       | 3.295E+07 | 3.450E+07 | 4.000E+07 | 999         | 0\good peak       |
| 5       | 15   | 0.000E+00                               | 4 552E+05  | 3.345E+05       | 1.512E+05 | 8.764E+05 | 2.925E+05 | 997         | 0\absent peak     |
| 5 -     | 10   | 0.000E+00                               | 8 811E+05  | 1.493E+04       | 3.062E+05 | 2.261E+05 | 4.756E+05 | <b>99</b> 7 | 0\absent peak     |
| 5       | 19   | 0.000E+00                               | 3 770E+05  | 4.828E+05       | 1.650E+05 | 5.292E+05 | 2.805E+05 | <b>99</b> 7 | 0\absent peak     |
| 5       | 10   | 0.000E+00                               | 2.061E+05  | 9 830E+05       | 6.883E+05 | 4.700E+05 | 9.733E+05 | 997         | 0\absent peak     |
| 5       | 20   | 0.000E+00                               | 3 297E+04  | 9 886E+05       | 6.052E+05 | 6.741E+05 | 7.444E+05 | 997         | 0\absent peak     |
| 5       | 20   | 0.000E+00                               | 3.565E+06  | 5 000E+06       | 5.745E+06 | 7.390E+06 | 7.315E+06 | 999         | 0\good peak       |
| 5       | 21   | 0.000E+00                               | 8 606E+05  | 6 209E+05       | 5.645E+05 | 7.895E+05 | 6.125E+04 | <b>99</b> 7 | 0\absent peak     |
| 5       | 22   | 0.000E+00                               | 4 209E+05  | 3 754E+05       | 9.905E+05 | 8.793E+05 | 9.494E+05 | 997         | 0\absent peak     |
| 5       | 23   | 0.00000+00                              | 6.626E+05  | 3 426E+05       | 5.040E+05 | 7.089E+05 | 4.383E+04 | 997         | 0\absent peak     |
| 5       | 24   | 0.000E+00                               | 2 218E+04  | 5.724E+05       | 6.459E+04 | 7.814E+05 | 7.655E+05 | 997         | 0\absent peak     |
| 5       | 25   | 0.000E+00                               | 9 161E+05  | 7.331E+05       | 3.323E+05 | 8.045E+04 | 6.809E+05 | 997         | 0\absent peak     |
| 5       | 20   | 0.000E+00                               | 9.272E+05  | 8 318E+05       | 3.568E+05 | 9.041E+05 | 9.001E+05 | 997         | 0\absent peak     |
| 5       | 21   | 0.000E+00                               | 2 118E+05  | 5 661E+04       | 2.925E+05 | 7.995E+05 | 9.954E+05 | 997         | 0\absent peak     |
| 5       | 20   | 0.000E+00                               | 1 534E+07  | 2.048E+07       | 2.530E+07 | 2.785E+07 | 3.120E+07 | 999         | 0\good peak       |
| 5       | 29   | 0.000E+00                               | 1.01E+07   | 1.515E+07       | 1.940E+07 | 2.310E+07 | 2.510E+07 | 999         | 0\good peak       |
| 5       | 21   | 0.000E+00                               | 1.307E+05  | 3.667E+05       | 8.289E+05 | 1.672E+05 | 3.666E+05 | 997         | 0\absent peak     |
| 5       | 20   | 0.000E+00                               | 4 611E+05  | 2.044E+05       | 2.462E+05 | 4.302E+05 | 3.796E+05 | <b>99</b> 7 | 0\absent peak     |
| 5       | 32   | 0.000E+00                               | 2 984E+05  | 7.285E+05       | 5.219E+05 | 8.549E+05 | 4.206E+05 | 997         | 0\absent peak     |
| 5       | 33   | 0.000E+00                               | 6 376E+04  | 7.018E+05       | 3.815E+05 | 7.490E+05 | 1.668E+05 | <b>99</b> 7 | 0\absent peak     |
| 5       | 6    | 2.681E+09                               | 0.220E+10  | 0.214E+10       | 0.199E+10 | 0.181E+10 | 0.162E+10 | 0           | 0\diagonal peak   |
| 6       | 7    | 0.000E+00                               | 9 190E+07  | 1.020E+08       | 9.400E+07 | 8.810E+07 | 7.940E+07 | 999         | 0\good peak       |
| 6       | 8    | 0.000E+00                               | 8.932E+05  | 6.344E+05       | 4.816E+05 | 8.800E+04 | 1.861E+05 | <b>99</b> 7 | 0\absent peak     |
| 6       | 0    | 0.000E+00                               | 7 367E+05  | 7.090E+05       | 2.651E+05 | 6.901E+05 | 4.442E+05 | <b>99</b> 7 | 0\absent peak     |
| 6       | 10   | 0.000E+00                               | 6.142E+04  | 7.330E+04       | 8.389E+04 | 3.230E+05 | 1.859E+05 | <b>99</b> 7 | 0\absent peak     |
| 6       | 11   | 0.000E+00                               | 7.188E+05  | 3.955E+05       | 7.630E+05 | 8.109E+05 | 6.737E+04 | 997         | 0\absent peak     |
| 6       | 12   | 0.000E+00                               | 7.443E+05  | 8.059E+05       | 8.969E+05 | 1.011E+05 | 6.695E+05 | 997         | 0\absent peak     |
| 6       | 12   | 0.000E+00                               | 1.324E+05  | 3.501E+05       | 6.963E+05 | 4.391E+05 | 5.293E+05 | <b>99</b> 7 | 0\absent peak     |
| 6       | 14   | 0.000E+00                               | 5 598E+05  | 2.278E+05       | 3.284E+05 | 1.133E+05 | 9.882E+05 | 997         | 0\absent peak     |
| 6       | 15   | 0.000E+00                               | 4 216E+05  | 2.477E+05       | 7.830E+05 | 4.202E+05 | 1.570E+05 | 997         | 0\absent peak     |
| 6       | 16   | 0.000E+00                               | 5.396E+05  | 4.433E+04       | 9.896E+05 | 4.264E+05 | 9.822E+05 | 997         | 0\absent peak     |
| 6       | 17   | 0.000E+00                               | 1 995E+07  | 2.820E+07       | 3.595E+07 | 3.975E+07 | 4.255E+07 | 999         | 0\good peak       |
| 0<br>4  | 17   | 0.0001.00                               | 6 926E+05  | 8.451E+05       | 2.895E+05 | 6.731E+05 | 2.155E+05 | 0           | 0\unresolved peak |
| 6       | 10   | 0.000E+00                               | 6.032E+05  | 9.329E+05       | 3.110E+05 | 7.101E+05 | 1.923E+05 | <b>99</b> 7 | 0\absent peak     |
| ()      | 17 . | 0.00000.00                              | 0.00000.00 | ··· - · - · · · |           |           |           |             |                   |

| 6          | 20       | 0.0005+00   | 5 661E+04                | 2 974E+05              | 2.414E+05 | 9.918E+04 | 5.681E+04 | 997             | 0\absent peak   |
|------------|----------|-------------|--------------------------|------------------------|-----------|-----------|-----------|-----------------|-----------------|
| 0          | 20       | 0.000E+00   | 5.001E+04                | 8 776E+05              | 1 841E+05 | 7.553E+05 | 2.171E+05 | 997             | 0\absent peak   |
| 0          | 21       |             | 2 255E+06                | 6 385E+06              | 8 295E+06 | 1.019E+07 | 1.214E+07 | 999             | 0\good peak     |
| 0          | 22       | 0.000E+00   | 5.383E+05                | 2 771E+05              | 8 609E+05 | 9.885E+05 | 7.810E+05 | 997             | 0\absent peak   |
| 0          | 23       | 0.000E+00   | 8 553E+05                | 7 349E+05              | 9 804E+05 | 2.698E+05 | 6.410E+05 | 997             | 0\absent peak   |
| 6          | 24       |             | 4.080E+05                | 9 090E+05              | 8 380E+06 | 9.760E+06 | 1.105E+07 | 999             | 0\good peak     |
| 6          | 25       | 0.000E+00   | 4.080E+00                | 8 553E+05              | 6.628E+05 | 3.554E+05 | 9.138E+05 | 997             | 0\absent peak   |
| 6          | 20       | 0.000E+00   | 0.440E+04                | 4 597E+05              | 2 632E+05 | 2.100E+05 | 1.100E+04 | 997             | 0\absent peak   |
| 6          | 27       | 0.000E+00   | 4.739E+05                | 4.215E+06              | 5 865E+06 | 5.240E+06 | 5.255E+06 | 997             | 0\noisy peak    |
| 6          | 28       | 0.000E+00   | 2.2001-00                | 3.657E+05              | 8.047E+05 | 1.527E+05 | 3.011E+05 | 997             | 0\absent peak   |
| 6          | 29       | 0.00000000  | 2,2050+05                | 1.011E+05              | 9.051E+03 | 2.082E+05 | 9.328E+05 | 997             | 0\absent peak   |
| 6          | 30       | 0.000E+00   | J.210E+0J                | 1.645E+05              | 1.010E+05 | 4 933E+05 | 2.193E+05 | 997             | 0\absent peak   |
| 6.         | 31       | 0.000E+00   | 4.340E+03                | 8 968E+05              | 1.766E+05 | 3.946E+05 | 9.870E+05 | 997             | 0\absent peak   |
| 6          | 32       |             | 5 026E±05                | 1 847E+04              | 6 335E+05 | 7 280E+05 | 6.191E+05 | 997             | 0\absent peak   |
| 6          | 33       | 0.000E+00   | 5.920E+05                | 1.047E+05              | 5.565E+05 | 5.410E+04 | 2.562E+05 | 997             | 0\absent peak   |
| 6          | 34       | 0.000E+00   | 7.434E+03 .<br>0.177E±10 | 4.297E+000             | 0.155E+10 | 0 139E+10 | 0.122E+10 | 0               | 0\diagonal peak |
| 7          | 7        | 2.238E+09   | 0.177E+10<br>2.550E+03   | 3 001E+05              | 2 669E+04 | 5.131E+05 | 3.230E+05 | 997             | 0\absent peak   |
| 7          | 8        |             | 2.330E+03                | 9.0712+05<br>9.148E+05 | 5.098E+05 | 7.232E+04 | 4.133E+05 | 997             | 0\absent peak   |
| 7          | 9        | 0.000E+00   | 1.4110+05                | 1 260E+07              | 1.620E+07 | 1.760E+07 | 2.120E+07 | 999             | 0\good peak     |
| 4          | 10       | 0.000E+00   | 6 8205+05                | 8 556E+05              | 4 395E+04 | 3.010E+05 | 8.900E+05 | 997             | 0\absent peak   |
| 7          | 11       |             | 0.029E+05                | 1 820E+07              | 2 175E+07 | 2.350E+07 | 2.545E+07 | 999             | 0\good peak     |
| 1          | 12       | 0.000E+00   | 8 670E+05                | 4 741E+02              | 2.656E+05 | 4.252E+05 | 2.662E+05 | <b>99</b> 7     | 0\absent peak   |
| /          | 13       | ~ 0.000E+00 | 3.087F+04                | 9 220E+05              | 4 827E+05 | 4.359E+05 | 5.908E+04 | 997             | 0\absent peak   |
| 1          | 14       | 0.00000+00  | 7 010E+05                | 2 265E+05              | 7 484E+05 | 9.097E+05 | 1.072E+05 | 997             | 0\absent peak   |
| 4          | 15       | 0.000E+00   | 1.002E+05                | 3 344E+05              | 3.401E+05 | 8.844E+05 | 3.871E+05 | 997             | 0\absent peak   |
| 4          | 10       | 0.00000100  | 3.026E+04                | 7.095E+05              | 8.579E+04 | 1.998E+05 | 8.229E+05 | 997             | 0\absent peak   |
| 4          | 1/       | 0.000E+00   | 4 590E+07                | 6 075E+07              | 7.740E+07 | 8.235E+07 | 9.365E+07 | 999             | 0\good peak     |
| 7          | 10       | 0.000E+00   | 5 319E+05                | 7.006E+05              | 4.055E+05 | 2.437E+05 | 5.111E+05 | <b>99</b> 7     | 0\absent peak   |
| 7          | 20       | 0.000E+00   | 8 737E+05                | 7.201E+05              | 5.335E+05 | 4.411E+05 | 9.857E+05 | 997             | 0\absent peak   |
| 4          | 20       | 0.000E+00   | 1.685E+05                | 4.541E+05              | 9.667E+05 | 3.977E+05 | 3.077E+05 | 997             | 0\absent peak   |
| 4          | 21       | 0.0001-00   | -2 600E+06               | 1.010E+06              | 6.510E+06 | 1.610E+06 | 5.310E+06 | <b>9</b> 97     | 0\noisy peak    |
| 7          | 22       | 0.000E+00   | 6 683E+05                | 1.848E+05              | 7.361E+05 | 9.717E+05 | 8.970E+05 | 997             | 0∖absent peak   |
| 4          | 23       | 0.000E+00   | 8 173E+04                | 6 184E+05              | 7.559E+05 | 4.780E+05 | 7.712E+05 | 997             | 0\absent peak   |
| ' <u>'</u> | 24       | 0.000E+00   | 6 492E+04                | 7.934E+05              | 3.765E+05 | 2.810E+05 | 2.251E+05 | 997             | 0\absent peak   |
| '''        | 25       | 0.000E+00   | 2 118E+05                | 1 812E+04              | 4.249E+05 | 2.819E+05 | 5.428E+05 | <del>9</del> 97 | 0\absent peak   |
| '''        | 20       | 0.000E+00   | 2.110E+05<br>8.492E+05   | 2.626E+05              | 7.968E+05 | 2.704E+04 | 8.501E+05 | 997             | 0\absent peak   |
| <i>'</i>   | 21       | 0.000E+00   | 0 773E+06                | 0.122E+07              | 0.995E+06 | 0.181E+07 | 0.200E+07 | 997             | 0\noisy peak    |
| '          | 20<br>20 | 0.0001-00   | 4 965E+06                | 6.630E+06              | 7.440E+06 | 8.660E+06 | 9.300E+06 | <del>999</del>  | 0\good peak     |
| 7          | 29       | 0.00001-00  | 3 218F+05                | 1.011E+05              | 9.051E+03 | 2.082E+05 | 9.328E+05 | 997             | 0\absent peak   |
| 1          |          | 0.0001.00   | 5.2101.05                |                        |           |           |           |                 |                 |