J. Am. Chem. Soc., 1998, 120(35), 9114-9115, DOI:10.1021/ja981171v

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

The Use of X-Ray Co-Crystal Structures and Molecular Modeling to Design
 Potent and Selective, Non-Peptide Inhibitors of Cathepsin K

Renee L. DesJarlais ${ }^{A^{*} \perp}$, Dennis S. Yamashita ${ }^{B^{*}}$, Hye-Ja Oh ${ }^{B}$, Irene N. Uzinskas ${ }^{B}$, Karl F. Erhard ${ }^{\text {B }}$, Andrew C. Allen ${ }^{\text {C }}$, R. Curtis Haltiwanger ${ }^{\text {A }}$, Baoguang Zhao ${ }^{\text {D }}$, Ward W. Smith ${ }^{\text {D }}$, Sherin S. Abdel-Meguid ${ }^{\mathrm{D}}$, Karla D'Alessio ${ }^{\mathrm{E}}$, Cheryl A. Janson ${ }^{\mathrm{E}}$, Michael S. McQueney ${ }^{\mathrm{E}}$, Thaddeus A. Tomaszek ${ }^{F}$, Mark A. Levy ${ }^{F}$, Daniel F. Veber ${ }^{\text {B }}$

Departments of Physical and Structural Chemistry ${ }^{A}$, Medicinal Chemistry ${ }^{\mathbf{B}}$, Analytical Chemistry ${ }^{\mathrm{C}}$, Structural Biology ${ }^{\mathrm{D}}$, Protein Biochemistry ${ }^{\mathrm{E}}$ and Molecular Recognition ${ }^{\mathrm{F}}$ SmithKline Beecham Pharmaceuticals, King of Prussia Pennsylvania 19406

* Corresponding authors
\perp Current address: 3-Dimensional Pharmaceuticals, Inc., 665 Stockton Drive, Suite 104, Exton, PA 19341

Supporting Information:

Cathepsin K/Inhibitor X-Ray Crystallography

Protein was prepared as described previously. ${ }^{1}$ Crystals of mature activated cathepsin K complexed with 9 grew in about six days using vapor diffusion at 20° C from a solution of 18% PEG $8000,0.06 \mathrm{M}$ sodium acetate at pH 4.5 containing $0.12 \mathrm{M} \mathrm{Li}_{2} \mathrm{SO}_{4}$. Crystals of the complex are tetragonal, space group P_{3}, with cell constants of $\mathrm{a}=71.5$ Ångstroms, and $\mathrm{c}=55.1$ Ångstroms. The structure was determined by molecular replacement using X-PLOR. ${ }^{2}$ The starting model consisted of the protein atoms from the crystal structure of cathepsin K in complex with the cysteine protease inhibitor E64. ${ }^{1}$ The structure was refined at 2.3 Ångstroms resolution with a final R_{c} of 0.240 .

References:
(1) Zhao, B., Janson, C.A.; Amegadzie, B.Y.; D'Alessio, K.; Griffin, C.; Hanning, C.R.; Jones, C.; Kurdyla, J.; McQueney, M.; Qiu, X.; Smith, W.W.; AbdelMeguid, S.S. Nat. Struct. Biol. 1997, 4, 109-111. (j) McGrath, M.E.;
Klaus, J.L.; Barnes, M.G.; Bromme, D. Nat. Struct. Biol. 1997, 4, 105-109
(2) Brunger, A. T., Kuriyan, J., Karplus, M. Science 1987, 235, 458-460.

Synthesis

The Cbz-Leu mimetic, 2-(3-biphenyl)-4-methylvaleric acid, was prepared as shown in Scheme 1. 3-Bromophenylacetic acid was esterifed and coupled with phenylboronic acid by the method of Suzuki. Hydrolysis of the ester to the 3biphenylacetic acid, and alkylation of the dianion with 2-methylpropenylbromide, followed by hydrogenation of the olefin gave 2-(3-biphenyl)-4-methylvaleric acid as a racemate. Enantiomerically pure (R)-2-(3-biphenyl)-4-methylvaleric acid could be obtained by fractional recrystallization from $\mathrm{EtOH} / \mathrm{EtOAc}$ as a (S)-p-bromo- α-methyl benzyl amine salt. Inhibitor 6 was prepared by coupling 2-(3-biphenyl)-4-methylvaleric acid to 3-amino-1-(4-phenoxyphenylsulfonyl)-aminopropan-2-ol, followed by a Jones oxidation of the alcohol to the ketone. The enantiomers of 6 were separated by preparative chiral HPLC. 2-(4-Biphenyl)-4-methylvaleric acid was prepared analogously by alkylation and hydrogenation starting with the commerially available 4-biphenyl acetic acid.

Scheme 1

Experimental Section

3-Bromophenyl methyl acetate
3-Bromophenyl acetic acid ($25.5 \mathrm{~g}, 118.6 \mathrm{mmol}$) was dissolved in MeOH (250 ml). Then, concentrated sulfuric acid (1.5 ml) was added and the reaction mixtrue was refluxed for
1.5 h . The reaction mixture was then cooled to RT , concentrated in vacuo, and the residue was redissolved in $\mathrm{Et}_{2} \mathrm{O}$, extracted with water (2x), then brine, and the combined organic extracts were dried with magnesium sulfate, filtered, concentrated in vacuo and used in the next reaction without further purification ($27.0 \mathrm{~g}, 99 \%$): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta, \mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right): 7.45-7.20(\mathrm{~m}, 4 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H})$.

3-Biphenyl methyl acetate
3-Bromophenyl methyl acetate ($27.0 \mathrm{~g}, 118 \mathrm{mmol}$) was dissolved in toluene (300 ml). Then, phenyl boronic acid ($17.35 \mathrm{~g}, 142 \mathrm{mmol}$) was added, followed by aqueous sodium carbonate ($2 \mathrm{M}, 237 \mathrm{ml}, 474 \mathrm{mmol}$), then tetrakis(triphenylphosphine) palladium ($4.15 \mathrm{~g}, 3.6$ mmol) was added, and the reaction mixture was refluxed overnight. The reaction was cooled to RT, saturated aqueous ammonium chloride was added, then the mixture was extracted with EtOAc (2 x). The combined organics were dried with magnesium sulfate, filtered, concentrated, and chromatographed (silica gel, $4 \% \mathrm{EtOAc}$: hexanes) to provide the desired product (23.5 g , 88%): ${ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{CDCl}_{3}, 360 \mathrm{MHz}$) $7.60-7.25(\mathrm{~m}, 9 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}) ; \mathrm{MS}(\mathrm{ES}) 263$ $\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

3-Biphenyl acetic acid
3-Biphenyl methyl acetate ($10.36 \mathrm{~g}, 45.84 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(240 \mathrm{ml})$ and water (35 ml), then LiOH-hydrate ($3.85 \mathrm{~g}, 92 \mathrm{mmol}$) was added, and the reaction was stirred at RT for 2 h . The reaction was diluted with water, acidified with 6 N hydrochloric acid (8 ml), then was extracted with EtOAc (2x). The combined organics were extracted with $\mathrm{H}_{2} \mathrm{O}$, then brine, then dried with magnesium sulfate, filtered, and concentrated to give the desired product as a white solid ($9.03 \mathrm{~g}, 93 \%$): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta, \mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right): 7.57-7.24(\mathrm{~m}, 9 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H})$.

2-(3-Biphenyl)-4-methyl-pent-4-enoic acid
$\mathrm{n}-\mathrm{BuLi}(32.6 \mathrm{ml}, 1.6 \mathrm{M}$ in hexanes, 52 mmol$)$ was added dropwise to a solution of diisopropyl amine ($7.4 \mathrm{ml}, 53 \mathrm{mmol}$) in THF $(60 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The reaction was stirred for 15 minutes, then was cooled to $-78^{\circ} \mathrm{C}$. 3-Biphenyl acetic acid ($5.0 \mathrm{~g}, 23.5 \mathrm{mmol}$) was dissolved in THF (20 ml) and was added dropwise to the LDA solution. The reaction was warmed to $0^{\circ} \mathrm{C}$, stirred 40 minutes, then cooled to $-78^{\circ} \mathrm{C}$. Isobutenyl bromide ($3.55 \mathrm{ml}, 35.2 \mathrm{mmol}$) was added rapidly, and the reaction was stirred for 1 h . Water (20 ml) was then added, then the THF was removed in vacuo. The reaction was acidified with 6 N hydrochloric acid (10 ml), then was extracted with EtOAc (2 x). The combined organics were dried with magnesium sulfate, filtered, concentrated, chromatographed twice (silica gel, $5 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$, then silica gel, $3 \% \mathrm{MeOH}$: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the desired product ($5.47 \mathrm{~g}, 88 \%$): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta, \mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right): 7.57-7.24$ (m, 9H) , 4.76 (d, J= $9.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.88 (dd, J= $6.6 \mathrm{~Hz}, 8.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.87 (dd, J= $9.0 \mathrm{~Hz}, 14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50(\mathrm{dd}, \mathrm{J}=6.5 \mathrm{~Hz}, 14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H})$.

2-(3-Biphenyl)-4-methyl-valeric acid

2-(3-Biphenyl)-4-methyl-pent-4-enoic acid ($5.2 \mathrm{~g}, 19.6 \mathrm{mmol}$) was dissolved in EtOAc $(40 \mathrm{ml})$ and $\mathrm{EtOH}(60 \mathrm{ml})$. Then, $10 \% \mathrm{Pd} / \mathrm{C}(0.8 \mathrm{~g})$ was added and the reaction was shaken in a Parr hydrogenator at 40 psi for 2 h . The reaction was filtered, concentrated in vacuo, then chromatographed (silica gel, $5 \% \mathrm{MeOH}$: methylene chloride) to give the desired product (1.66 g , 93%): ${ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{CDCl}_{3}, 360 \mathrm{MHz}$): $7.58-7.33(\mathrm{~m}, 9 \mathrm{H}), 3.72(\mathrm{dd}, \mathrm{J}=7.8 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.03-1.95 (m, 1H), 1.76-1.70 (m, 1H), 1.54-1.50 (m, 1H), $0.91(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H})$.

3-Amino-1-N-(4-phenoxy-phenyl-sulfonyl)-amino-propan-2-ol
4-Phenoxybenzene sulfonyl chloride ($1.9 \mathrm{~g}, 7 \mathrm{mmol}$) was added to a mixture of $1,3-$ diaminoalcohol ($1.9 \mathrm{~g}, 21 \mathrm{mmol}$) in DMF (15 ml) and was stirred overnight. DMF was removed in vacuo, then the resulting residue was chromatographed (silica gel, 5:94:1 $\mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, TFA to 8:91:1 $\mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, TFA) to yield the desired product as a TFA salt ($2.3 \mathrm{~g}, 75 \%$): MS(ES) $323.3\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

1-N-(2-(3-Biphenyl)-4-methyl-valeryl)-amino-3-N-(4-phenoxy-phenyl-sulfonyl)-amino-propan-2ol

N -methyl-morpholine ($0.25 \mathrm{ml}, 2.3 \mathrm{mmol}$), then $\mathrm{HBTU}(0.22 \mathrm{~g}, 0.58 \mathrm{mmol})$ was added to a solution of 3-amino-1-N-(4-phenoxy-phenyl-sulfonyl)-amino-propan-2-ol ($0.24 \mathrm{~g}, 0.56$ mmol) and 2-(3-biphenyl)-4-methyl-valeric acid ($0.15 \mathrm{~g}, 0.56 \mathrm{mmol}$) in DMF (3 ml) and was stirred overnight. The reaction mixture was diluted with water, then extracted with EtOAc (2x). The combined organics were dried with magnesium sulfate, filtered, concentrated, chromatographed twice (silica gel, $45: 55$ EtOAc: hexanes) to give the desired product (0.19 g , 59%): ${ }^{1} \mathrm{H}$ NMR $\left(\delta, \mathrm{CDCl}_{3}, 360 \mathrm{Mhz}\right): 7.70-6.92(\mathrm{~m} .18 \mathrm{H}), 6.0(2 \mathrm{br} . \mathrm{d}, 1 \mathrm{H}), 5.20(2 \mathrm{br} . \mathrm{d}, 1 \mathrm{H})$, 3.76 (dd, $8.2 \mathrm{~Hz}, 8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.33$ (dd, J=5.8 Hz, $5.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.80(\mathrm{dd}, \mathrm{J}=5.8 \mathrm{~Hz}, 5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.99-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.40(\mathrm{~m}, 1 \mathrm{H}), 0.88(2 \mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 6 \mathrm{H})$.

1-N-(2-(3-Biphenyl)-4-methyl-valeryl)-amino-3-N-(4-phenoxy-phenyl-sulfonyl)-amino-propan-2one (6)

Jones reagent (1.5 M) was added to a solution of 1-N-(2-(3-biphenyl)-4-methyl-valeryl)-amino-3-N-(4-phenoxy-phenyl-sulfonyl)-amino-propan-2-ol ($0.19 \mathrm{~g}, 0.33 \mathrm{mmol}$) in acetone (5 $\mathrm{ml})$ until the yellow color persisted, and the reaction mixture was stirred overnight. Isopropanol $(0.5 \mathrm{ml})$ was added to quench the excess Jones reagent. The reaction mixture was concentrated in vacuo, then the residue was redissolved in EtOAc and was extracted with $\mathrm{H}_{2} \mathrm{O}$, then brine. The combined organics were dried with magnesium sulfate, filtered, concentrated, chromatographed twice (silica gel, 45:55 EtOAc: hexanes) to give the desired product ($0.19 \mathrm{~g}, 52 \%$): ${ }^{1} \mathrm{H}$ NMR (δ, $\mathrm{CDCl}_{3}, 360 \mathrm{Mhz}$): $7.70-6.96(\mathrm{~m} .18 \mathrm{H}), 6.0(\mathrm{br} . \mathrm{t}, 1 \mathrm{H}), 5.20(\mathrm{t}, 5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ (dd, $5.2 \mathrm{~Hz}, 8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 3.83(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{dd}, \mathrm{J}=7.0 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.70$ $(\mathrm{m}, 1 \mathrm{H}), 1.47-1.42(\mathrm{~m}, 1 \mathrm{H}), 0.88(2 \mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 6 \mathrm{H})$.

The enantiomers were separated by chiral preparative HPLC (Daicel Chiralcel OD column ($21.2 \times 250 \mathrm{~mm}$), 20% ethanol in hexane, $10 \mathrm{~mL} / \mathrm{min}$, UV detection @ 280 nm).
(R)-2-(3-Biphenyl)-4-methyl-valeric acid
(+/-)-2-(3-biphenyl)-4-methyl-valeric acid ($16.6 \mathrm{~g}, 62 \mathrm{mmol}$) was dissolved in EtOH (100 ml) and EtOAc (200 ml). (S)-p-Bromo- α-methyl benzyl amine ($12.31 \mathrm{~g}, 62 \mathrm{mmol}$) was added and the solution was heated to 65 degrees C until the solid was completely in solution. The solution was cooled in a refrigerator and white crystals formed overnight. The crystals were collected then were dried in vacuo. Four recrystallizations from a 1:2 EtOAc/ EtOH yielded crystalline white solid ($3.05 \mathrm{~g}, 21 \%$ recovery). Chiral HPLC indicated an enantiomeric ratio of $99.3 \%(\mathrm{R})$ and $0.7 \%(\mathrm{~S})$. The solid was then dissolved in EtOAc, extracted with 1 N aqueous HCl to form the free carboxylic acid, and the combined organics were dried with magnesium sulfate, filtered, concentrated in vacuo and was used in the next reaction without further purification.

1-N-(Cbz-L-leucinyl)-amino-3-N-(4-phenoxy-phenyl-sulfonyl)-amino-propan-2-one (3): ${ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{CDCl}_{3}, 360 \mathrm{MHz}$): $7.76(\mathrm{~d}, 8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.00(\mathrm{~m}, 12 \mathrm{H}), 6.65$ (br.s, 1H), 5.33 (br.t, 1H), 5.1 (br.s, 3H), 4.2 (br.s, 1H), 4.1 (br.s., 2H), 3.86 (d, J=5.2 Hz, 2H), 1.66-1.63 (m, 2H), 1.55$1.45(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{dd}, \mathrm{J}=6.5 \mathrm{~Hz}, 5.7 \mathrm{~Hz}, 6 \mathrm{H})$.

1-N-(Cbz-L-leucinyl)-amino-3-N-((R,S)-2-(4-biphenyl)-4-methyl-valeryl)-amino-propan-2-one (4): ${ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{CDCl}_{3}, 360 \mathrm{MHz}$): $7.57-7.24(\mathrm{~m} .14 \mathrm{H}), 6.55(\mathrm{br} . \mathrm{d}, 1 \mathrm{H}), 6.10$ (br.t, 1 H), 5.09 (s, 2H), $5.05(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.17-4.05(\mathrm{~m}, 5 \mathrm{H}), 3.55(\mathrm{dd}, \mathrm{J}=5.2 \mathrm{~Hz}, 8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H})$, $1.80-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.40(\mathrm{~m}, 4 \mathrm{H}), 0.91-0.89(2 \mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 12 \mathrm{H})$.

1-N-(2-(4-Biphenyl)-4-methyl-valeryl)-amino-3-N-(4-phenoxy-phenyl-sulfonyl)-amino-propan-2one (5): ${ }^{1} \mathrm{H}$ NMR $\left(\delta, \mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right): 7.74-6.97(\mathrm{~m} .18 \mathrm{H}), 6.0(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 5.20(\mathrm{t}, 5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.03(\mathrm{dd}, 5.2 \mathrm{~Hz}, 8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{dd}, \mathrm{J}=7.0 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-$ $1.93(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.42(\mathrm{~m}, 1 \mathrm{H}), 0.89(2 \mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 6 \mathrm{H})$.

1-N-(2-(3-Biphenyl)-acetyl)-amino-3-N-(4-phenoxy-phenyl-sulfonyl)-amino-propan-2-one (7): ${ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{CDCl}_{3}, 360 \mathrm{MHz}$): 7.74-6.97 (m. 18H), 6.03 (br.s, 1H), $5.24(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.07$ (d, 5.2 $\mathrm{Hz}, 2 \mathrm{H}), 3.85(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H})$.

1-N-(2-(4-Biphenyl)-acetyl)-amino-3-N-(4-phenoxy-phenyl-sulfonyl)-amino-propan-2-one (8): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 360 \mathrm{MHz}\right): 7.65-6.89(\mathrm{~m} .18 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~s}$, 2 H).

1-N-(2-(3-Biphenyl)-4-methyl-valeryl)-amino-3-N-(2-pyridyl-phenyl-sulfonyl)-amino-propan-2one (9): ${ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{CDCl}_{3}, 360 \mathrm{MHz}$): $8.54(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.39$ (m, 10 H), 6.0 (br.s, 1H), 5.5 (br.s, 1H), 4.16 (d, J= $5.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.10$ (dd, J=5.1 Hz, 10.9 Hz , 2 H), $3.55(\mathrm{dd}, \mathrm{J}=7.25 \mathrm{~Hz}, 8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.0-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.43(\mathrm{~m}, 1 \mathrm{H})$, 0.89 (d, J=6.6 Hz, 6H).

X-ray structure of the p-bromo-phenethylene salt of 2-(3-biphenyl)-4-methyl-valeric acid.

Figure 1. A view of the crystal structure.

Figure 2. A stereo view showing the hydrogen bonding interactions.

Table 1. Crystal data and structure refinement.
Table 2. Atomic coordinates and equivalent isotropic displacement parameters.
Table 3. Selected bond lengths and angles.

Table 4. Torsion angles.

Table 5. Anisotropic displacement parameters.
Table 6. Hydrogen coordinates and isotropic displacement parameters.

Figure 1. A view of the crystal structure showing the numbering scheme employed. Anisotropic displacement ellipsoids for non-hydrogen atoms are shown at the 50% probability level. Hydrogen atoms are displayed with an arbitrarily small radius.

Figure 2. A stereo view showing the hydrogen bonding interactions as dotted lines. All three ammonium hydrogens form interactions with the carboxylate oxygens in adjacent molecules. O1 is an acceptor from two donors, while O 2 is involved with only one. Metrical details of the hydrogen bonding interactions are:

Atom Names	$\mathrm{X} \ldots . \mathrm{Y}, \AA$	$\mathrm{X}-\mathrm{H}, \AA$	$\mathrm{H} . . . \mathrm{Y}, \AA$	$\mathrm{X}-\mathrm{H} . . \mathrm{Y} .{ }^{\circ}$
N1-H1A \cdots O2	$2.837(8)$	$0.859(4)$	$2.022(5)$	$158(5)$
N1-H1B \cdots O1	$2.811(8)$	$0.860(4)$	$1.981(5)$	$162(5)$
N1-H1C \cdots O1	$2.775(8)$	$0.855(4)$	$1.953(5)$	$161(5)$

Table 1. Crystal data and structure refinement.

Empirical formula	$\left[\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NBr}\right]^{+}\left[\mathrm{C}_{18} \mathrm{H}_{190} \mathrm{O}_{2}\right]^{-}$
Formula weight	468.42
Temperature	$293(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal size	$0.8 \times 0.06 \times 0.04 \mathrm{~mm}$
Density (calculated)	$1.269 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.697 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	488
θ range for data collection 1	2.58 to 22.70°
Index ranges	$-15 \leq h \leq 15,-6 \leq k \leq 7,-15 \leq l \leq 15$
Reflections collected	8964
Independent reflections	$3172\left(\mathrm{R}_{\text {int }}=0.108\right)$
Refinement method 2	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints $/$ parameters	$3171 / 10 / 284$
Final R indices:	
$\quad 2662$ data; $\mathrm{I}>2 \sigma(\mathrm{I})$	$\mathrm{R} 1=0.064, \mathrm{wR} 2=0.144$
\quad all data	$\mathrm{R} 1=0.080, \mathrm{wR} 2=0.161$
Absolute structure parameter 3	$-0.02(2)$
Extinction coefficient	$0.051(5)$
Largest diff. peak and hole	0.70 and $-0.57 \mathrm{e} \AA-3$

1. Data were collected on an Enraf Nonius FAST diffractometer using graphite monochomated molybdenum radiation and the MADNES data collection program.
2. The structure was solved, refined and displayed using the SHELXTL program package. Weights were assigned to the data as $w=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}^{2}\right)+(0.0553 \mathrm{P})^{2}+2.7238 \mathrm{P}\right]$ where $\mathrm{P}=\left[\mathrm{MAX}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}, 0\right)+2 \mathrm{~F}_{\mathrm{c}}^{2}\right] / 3$.
3. The absolute configuration was assigned on the basis of the known configuration (S) of the cation and was confirmed by the Hamilton R-factor ratio test and the least squares absolute structure parameter. The ratio of weighted R values, $0.218 / 0.161=1.35$ permits assignment with a confidence level greater than 99.9%. Consistent with this, the calculated absolute structure parameter is $-0.02(2)$. When the absolute structure parameter is refined, the value is $-0.02(2)$ for the reported configuration and $1.02(2)$ for the inverted model.

Table 2. Atomic coordinates [x 104] and equivalent isotropic displacement parameters [$\AA^{\AA} \mathbf{2} \times \mathbf{1 0}^{\mathbf{3}}$].
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

		x/a	y / b	z / c
		$\mathrm{U}(\mathrm{eq})$		
Br1	$3513(1)$	$1885(2)$	$5361(1)$	$80(1)$
O1	$6131(3)$	$-10446(8)$	$10376(4)$	$43(1)$
O2	$7121(4)$	$-7600(8)$	$10775(4)$	$45(1)$
N1	$5781(5)$	$-4451(9)$	$9631(5)$	$40(2)$
C1	$8136(5)$	$-10606(11)$	$9493(5)$	$40(2)$
C2	$8245(6)$	$-11796(12)$	$10358(6)$	$42(2)$
C3	$8646(6)$	$-13805(12)$	$10442(6)$	$49(2)$
C4	$8963(7)$	$-14551(14)$	$9700(7)$	$66(2)$
C5	$8841(6)$	$-13389(14)$	$8851(6)$	$53(2)$
C6	$8422(5)$	$-11374(11)$	$8730(6)$	$40(2)$
C7	$8286(5)$	$-10112(12)$	$7816(5)$	$43(2)$
C8	$7610(9)$	$-8512(20)$	$7500(7)$	$99(4)$
C9	$7466(11)$	$-7363(17)$	$6627(9)$	$108(5)$
C10	$7976(7)$	$-7782(19)$	$6046(6)$	$70(3)$
C11	$8663(11)$	$-9302(22)$	$6360(8)$	$116(5)$
C12	$8837(9)$	$-10412(21)$	$7233(7)$	$107(5)$
C13	$7934(5)$	$-10980(11)$	$11185(5)$	$38(2)$
C14	$6993(5)$	$-9533(11)$	$10747(5)$	$35(2)$
C15	$8809(5)$	$-9923(13)$	$12050(5)$	$46(2)$
C16	$8598(7)$	$-9519(18)$	$13009(6)$	$73(3)$
C17	$8496(15)$	$-11442(30)$	$13510(9)$	$191(11)$
C18	$9395(9)$	$-8094(31)$	$13753(7)$	$111(4)$
C19	$5842(5)$	$-4738(12)$	$8622(5)$	$43(2)$
C20	$5410(8)$	$-6914(12)$	$8222(7)$	$64(3)$
C21	$4183(6)$	$-209(12)$	$6329(5)$	$52(2)$
C22	$5104(8)$	$-1011(13)$	$6373(6)$	$62(2)$
C23	$5636(7)$	$-2406(13)$	$7123(7)$	$63(3)$
C24	$5271(5)$	$-3061(15)$	$7859(4)$	$42(2)$
C25	$4341(6)$	$-2278(11)$	$7778(6)$	$44(2)$
C26	$3803(7)$	$-861(13)$	$7020(6)$	$53(2)$

Table 3. Selected bond lengths [\AA] and angles [${ }^{0}$].

Br1-C21	$1.908(8)$	O1-C14	$1.280(8)$
O2-C14	$1.263(9)$	N1-C19	$1.501(9)$
C1-C6	$1.406(10)$	C1-C2	$1.418(10)$
C2-C3	$1.409(11)$	C2-C13	$1.522(10)$
C3-C4	$1.401(11)$	C4-C5	$1.386(12)$
C5-C6	$1.418(12)$	C6-C7	$1.494(10)$
C7-C8	$1.367(13)$	C7-C12	$1.377(12)$
C8-C9	$1.403(14)$	C9-C10	$1.339(13)$
C10-C11	$1.34(2)$	C11-C12	$1.381(14)$
C13-C15	$1.533(10)$	C13-C14	$1.555(10)$
C15-C16	$1.548(11)$	C16-C17	$1.47(2)$
C16-C18	$1.53(2)$	C19-C24	$1.530(11)$
C19-C20	$1.555(11)$	C21-C26	$1.375(11)$
C21-C22	$1.397(12)$	C22-C23	$1.381(12)$
C23-C24	$1.420(10)$	C24-C25	$1.387(10)$
C25-C26	$1.400(11)$		
C6-C1-C2	$121.9(7)$	C3-C2-C1	$118.4(7)$
C3-C2-C13	$119.3(7)$	C1-C2-C13	$122.2(7)$
C4-C3-C2	$119.9(7)$	C5-C4-C3	$121.3(8)$
C4-C5-C6	$120.4(7)$	C1-C6-C5	$118.1(7)$
C1-C6-C7	$121.1(6)$	C5-C6-C7	$120.8(6)$
C8-C7-C12	$114.0(8)$	C8-C7-C6	$122.4(7)$
C12-C7-C6	$123.6(7)$	C7-C8-C9	$122.2(9)$
C10-C9-C8	$121.9(10)$	C11-C10-C9	$116.7(9)$
C10-C11-C12	$122.2(10)$	C7-C12-C11	$122.7(10)$
C2-C13-C15	$112.9(6)$	C2-C13-C14	$111.6(5)$
C15-C13-C14	$111.0(6)$	O2-C14-O1	$125.1(7)$
O2-C14-C13	$119.5(6)$	O1-C14-C13	$115.4(6)$
C13-C15-C16	$114.3(6)$	C17-C16-C18	$111.1(9)$
C17-C16-C15	$112.7(10)$	C18-C16-C15	$111.7(8)$
N1-C19-C24	$112.7(6)$	N1-C19-C20	$107.6(6)$
C24-C19-C20	$110.9(6)$	C26-C21-C22	$119.5(8)$
C26-C21-Br1	$121.1(7)$	C22-C21-Br1	$119.3(6)$
C23-C22-C21	$119.8(7)$	C22-C23-C24	$121.7(8)$
C25-C24-C23	$117.0(8)$	C25-C24-C19	$122.8(6)$
C23-C24-C19	$119.8(7)$	C24-C25-C26	$121.3(7)$
C21-C26-C25	$120.7(8)$		

Table 4. Torsion angles [${ }^{0}$].

C6-C1-C2-C3	$-0.3(10)$	C6-C1-C2-C13	$-179.8(7)$
C1-C2-C3-C4	$2.4(11)$	C13-C2-C3-C4	$-178.2(8)$
C2-C3-C4-C5	$-3.4(13)$	C3-C4-C5-C6	$2.2(13)$
C2-C1-C6-C5	$-0.8(11)$	C2-C1-C6-C7	$178.9(6)$
C4-C5-C6-C1	$-0.1(11)$	C4-C5-C6-C7	$-179.8(7)$
C1-C6-C7-C8	$-21.5(12)$	C5-C6-C7-C8	$158.2(9)$
C1-C6-C7-C12	$156.9(10)$	C5-C6-C7-C12	$-23.3(13)$
C12-C7-C8-C9	$3(2)$	C6-C7-C8-C9	$-178.4(11)$
C7-C8-C9-C10	$1(2)$	C8-C9-C10-C11	$-3(2)$
C9-C10-C11-C12	$1(2)$	C8-C7-C12-C11	$-5(2)$
C6-C7-C12-C11	$176.5(12)$	C10-C11-C12-C7	$3(2)$
C3-C2-C13-C15	$88.4(8)$	C1-C2-C13-C15	$-92.2(8)$
C3-C2-C13-C14	$-145.8(6)$	C1-C2-C13-C14	$33.6(9)$
C2-C13-C14-O2	$-97.4(8)$	C15-C13-C14-O2	$29.5(9)$
C2-C13-C14-O1	$82.6(7)$	C15-C13-C14-O1	$-150.6(6)$
C2-C13-C15-C16	$-166.9(7)$	C14-C13-C15-C16	$67.0(9)$
C13-C15-C16-C17	$65.6(12)$	C13-C15-C16-C18	$-168.5(10)$
C26-C21-C22-C23	$-1.6(12)$	Br1-C21-C22-C23	$174.8(6)$
C21-C22-C23-C24	$0.1(13)$	C22-C23-C24-C25	$1.6(12)$
C22-C23-C24-C19	$175.1(7)$	N1-C19-C24-C25	$-39.6(9)$
C20-C19-C24-C25	$81.1(9)$	N1-C19-C24-C23	$147.3(7)$
C20-C19-C24-C23	$-92.0(9)$	C23-C24-C25-C26	$-1.7(11)$
C19-C24-C25-C26	$-175.0(7)$	C22-C21-C26-C25	$1.5(11)$
Br1-C21-C26-C25	$-174.9(6)$	C24-C25-C26-C21	$0.2(11)$

Table 5. Anisotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$.
The anisotropic displacement factor exponent takes the form:
$-2 \pi^{2}\left[\left(\mathrm{ha}^{*}\right)^{2} \mathrm{U}_{11}+\ldots+2 \mathrm{hka}^{*} \mathrm{~b}^{*} \mathrm{U}_{12}\right]$

	U_{11}	U_{22}	U U3	U_{23}	U 13	U 12
Br1	$120(1)$	$65(1)$	$53(1)$	$11(1)$	$32(1)$	$2(1)$
O1	$33(3)$	$39(3)$	$58(3)$	$-10(2)$	$19(2)$	$-3(2)$
O2	$39(3)$	$41(4)$	$52(3)$	$2(2)$	$16(2)$	$-1(2)$
N1	$38(4)$	$35(4)$	$46(4)$	$-4(3)$	$16(3)$	$-3(3)$
C1	$42(4)$	$34(4)$	$47(4)$	$4(3)$	$20(3)$	$5(3)$
C2	$33(4)$	$39(5)$	$48(5)$	$-2(3)$	$10(3)$	$-3(3)$
C3	$50(5)$	$38(5)$	$66(5)$	$13(4)$	$29(4)$	$12(4)$
C4	$64(6)$	$44(5)$	$94(7)$	$7(5)$	$37(5)$	$17(4)$
C5	$52(4)$	$48(5)$	$72(5)$	$-7(5)$	$39(4)$	$9(4)$
C6	$36(4)$	$37(4)$	$53(4)$	$-2(3)$	$23(4)$	$2(3)$
C7	$38(4)$	$48(5)$	$48(4)$	$-11(4)$	$19(3)$	$0(4)$
C8	$159(10)$	$87(9)$	$93(7)$	$26(7)$	$96(7)$	$56(8)$
C9	$167(12)$	$91(9)$	$98(8)$	$48(7)$	$85(9)$	$74(8)$
C10	$81(6)$	$89(8)$	$50(4)$	$10(6)$	$36(4)$	$4(6)$
C11	$145(11)$	$151(12)$	$89(8)$	$57(8)$	$86(8)$	$78(9)$
C12	$132(10)$	$145(11)$	$69(6)$	$39(7)$	$67(7)$	$83(9)$
C13	$28(4)$	$43(4)$	$42(4)$	$10(3)$	$13(3)$	$-1(3)$
C14	$35(4)$	$39(5)$	$35(4)$	$-2(3)$	$20(3)$	$-2(3)$
C15	$34(4)$	$60(5)$	$41(4)$	$3(4)$	$12(3)$	$-8(4)$
C16	$58(5)$	$116(8)$	$42(4)$	$-8(5)$	$16(4)$	$-12(5)$
C17	$249(21)$	$263(23)$	$68(8)$	$9(10)$	$70(10)$	$-149(19)$
C18	$119(9)$	$155(11)$	$59(5)$	$-28(11)$	$34(6)$	$-59(12)$
C19	$36(4)$	$50(5)$	$46(4)$	$-13(4)$	$20(3)$	$-1(3)$
C20	$85(7)$	$36(5)$	$63(5)$	$-15(4)$	$20(5)$	$13(5)$
C21	$66(5)$	$50(5)$	$36(4)$	$-11(4)$	$17(4)$	$-14(4)$
C22	$97(7)$	$49(5)$	$52(5)$	$8(4)$	$43(5)$	$6(5)$
C23	$67(6)$	$68(6)$	$72(5)$	$-20(5)$	$47(5)$	$-2(4)$
C24	$48(4)$	$41(4)$	$42(3)$	$-7(4)$	$22(3)$	$-17(4)$
C25	$47(5)$	$39(4)$	$50(4)$	$1(3)$	$23(4)$	$-10(3)$
C26	$58(5)$	$44(5)$	$53(4)$	$4(4)$	$20(4)$	$-2(4)$

Table 6. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for X1671A1.

	x/a	y/b	z/c	$\mathrm{U}(\mathrm{eq})$
H1A	6089(40)	-5380(72)	10074(33)	30(20)
H1B	5172(36)	-4467(88)	9608(38)	102(39)
H1C	6030(39)	-3312(76)	9925(34)	63(23)
H1	7869(5)	-9281(11)	9429(5)	48
H3A	8701(6)	-14635(12)	10989(6)	59
H4A	9260(7)	-15851(14)	9779(7)	79
H5	9036(6)	-13934(14)	8357(6)	64
H8	7233(9)	-8174(20)	7876(7)	118
H9	7002(11)	-6279(17)	6446(9)	130
H10	7859(7)	-7052(19)	5453(6)	84
H11	9036(11)	-9622(22)	5978(8)	139
H12	9348(9)	-11404(21)	7435(7)	128
H13	7730(5)	-12176(11)	11478(5)	46
H15A	8954(5)	-8616(13)	$11806(5)$	55
H15B	9412(5)	-10778(13)	12235(5)	55
H16A	7944(7)	-8800(18)	12788(6)	88
H17A	7992(15)	$-12309(30)$	13028(9)	230
H17B	8294(15)	-11116(30)	14054(9)	230
H17C	9137(15)	-12152(30)	13774(9)	230
H18A	9446(9)	-6857(31)	13409(7)	134
H18B	10041(9)	-8783(31)	14018(7)	134
H18C	9199(9)	-7747(31)	14298(7)	134
H19A	6558(5)	-4699(12)	8721(5)	51
H20A	5779(8)	-7939(12)	8712(7)	77
H20B	5480(8)	-7178(12)	7596(7)	77
H20C	4704(8)	-6969(12)	8112(7)	77
H 22 A	5358(8)	-606(13)	5899(6)	74
H23A	6248(7)	-2929(13)	7146(7)	75
H25A	4070(6)	-2702(11)	8237(6)	53
H26A	3182(7)	-354(13)	6982(6)	63

