

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Copyright © 1998 American Chemical Society

Synthesis and Characterization of Compounds 1-4

General Procedures. All operations with compounds 2-4 were performed in a nitrogen-filled glovebox (Vacuum Atmospheres with an MO-40 purifier). (tmeda)PdMe₂ was prepared as previously reported.^{14a} All solvents were reagent grade or better. Pentane, diethyl ether, and THF were distilled over sodium/benzophenone ketyl. All solvents were degassed and stored under high-purity nitrogen after distillation. All deuterated solvents (Aldrich) were stored under high-purity nitrogen on molecular sieves (3 Å).

¹H, ³¹P, and ¹³C NMR spectra were recorded using a Bruker DPX250 spectrometer. ¹H and ¹³C chemical shifts are reported in ppm downfield from TMS and referenced to the residual solvent h_1 (7.24 ppm chloroform-d, 2.04 ppm acetone- d_6 , 7.15 ppm benzene- d_6) and all-d solvent peaks (77.00 ppm chloroform, 29.8 ppm acetone, 128.00 ppm benzene), respectively. ³¹P chemical shifts are reported in ppm downfield from H₃PO₄ and referenced to an external 85% phosphoric acid sample. All measurements were performed at 21°C.

Synthesis of 1. A DMF (35 mL) solution of 2,6-di-t-butyl-4-methylphenol (5.2 g, 0.023 mol) and 1,1,1,3,3,3-hexamethyldisilazane (15 mL, 0.071 mol) was refluxed under argon atmosphere for 20 hours. The solution turned blue as reflux started. Upon concentration by distillation under reduced pressure, a white precipitate was formed, which was collected on a sinter, washed with DMF and dried under vacuum, giving pure phenyl silyl ether (3.2 g, 47%), as identified by ¹H-NMR.

¹H NMR (CDCl₃) : δ = 0.38 (s, 9H, SiMe₃), 1.38 (s, 18H, *t*-Bu), 2.24 (s, 3H, CH₃), 7.02 (s, 2H, Ar-H).

To a CCl₄ solution (30 mL) of the phenyl silyl ether (500 mg, 1.7 mmol), Nbromosuccinimide (400 mg, 2.2 mmol) and azobisisobutyronitrile (10 mg) were added. The mixture was irradiated at close range with a 100-W lamp, which initiated reflux. After 20-30 min. the mixture was cooled and the floating imine was filtered out. The solvent was removed on a rotary evaporator and the residue was extracted with hexane. When the dilute hexane solution (10 mL) was cooled at 4°C for 6 hours, by-products precipitated. From the concentrated supernatant (ca. 4 mL) 1 crystallized (310 mg, 49%).

¹H NMR (CDCl₃) : $\delta = 0.41$ (s, 9H, SiMe₃), 1.40 (s, 18H, *t*-Bu), 4.49 (s, 2H, CH₂Br), 7.26 (s, 2H, Ar-H). ¹³C {¹H} NMR (CDCl₃) : $\delta = 3.97$ (SiMe₃), 31.12 (*t*-Bu), 35.13 (*t*-Bu), 35.27 (CH₂Br), 126.81 (Ar-H), 129.09 (Ar-C), 141.15 (Ar-C), 153.41 (Ar-O). The assignment was confirmed by a DEPT experiment.

Synthesis of 2. A cold acetone solution of 1 (57 mg, 0.154 mmol) was added to a cold acetone solution of (tmeda)PdMe₂ (36 mg, 0.143 mmol). After standing for 15 min. at -30°C, the solvent was evaporated *in vacuo*, the residue was washed with pentane and 2 was extracted by diethyl ether. Evaporation of the solvent gave pure 2 (67 mg, 79%).

¹H NMR (d₆-acetone) : $\delta = 0.37$ (s, 9H, SiMe₃), 1.39 (s, 18H, *t*-Bu), 2.43 (s, 6H, NMe₂), 2.49 (s, 6H, NMe₂), 2.79 (t, 2H, J_{HH}=5.5Hz, NCH₂CH₂N), 2.84 (s, 2H, CH₂Pd), 7.55 (s, 2H, Ar-H). A second triplet ($\delta = 2.50$) is obscured by the methyl signal. The ¹H NMR of this complex in CDCl₃ is similar to the reported spectrum of bromo(PhCH₂)(tmeda)palladium.^{14b} ¹³C{¹H} NMR (d₆-acetone) : $\delta = 3.70$ (SiMe₃), 14.84 (CH₂Pd), 32.00 (*t*-Bu), 35.49 (*t*-Bu), 48.65 (NMe₂), 49.66 (NMe₂), 57.82 (NCH₂CH₂N), 63.79 (NCH₂CH₂N), 127.87 (Ar-H), 140.11 (Ar-C), 140.32 (Ar-C), 149.72 (Ar-O). The assignment was confirmed by a DEPT experiment.

Synthesis of 3. A THF solution of dppe (35 mg, 0.088 mmol) was added to a THF solution of 2 (52 mg, 0.088 mmol) at -30°C. After 30 min. the solvent was removed *in*

vacuo, the residue was washed with pentane and **3** was extracted by diethyl ether. Evaporation of the solvent gave pure **3** (70 mg, 91%).

³¹P{¹H} NMR (C₆D₆) : δ = 30.12 (d, J_{PP}=40.6Hz), 52.90 (d, J_{PP}=40.6Hz). ¹H NMR (C₆D₆) : δ = 0.40 (s, 9H, SiMe₃), 1.45 (s, 18H, *t*-Bu), 1.50 (m overlapping with signal of *t*-Bu, 2H, PCH₂CH₂P), 1.91 (dtd, J_{PH}=27.0Hz, J_{HH}=8.4Hz, J_{PH}=5.2Hz, 2H, PCH₂CH₂P), 3.94 (dd, J_{PH}=10.5Hz and 5.4Hz, 2H, CH₂Pd), 6.97-7.10 (m, 12H, dppe), 7.31-7.40 (m, 4H, dppe), 7.75 (d, J_{PH}=1.9Hz, 2H, Ar-H), 7.91-7.99 (m, 4H, dppe)

Synthesis of 4. To a THF solution of 3 (70 mg, 0.080 mmol), 1 equiv. of tetra-nbutylammonium fluoride trihydrate (25 mg, 0.080 mmol) was added. After staying at room temperature for 15 min., the solvent was removed *in vacuo*, the residue was washed with pentane and 4 was extracted by diethyl ether. Evaporation of the solvent gave pure 4 (53 mg, 91%)

³¹P{¹H} NMR (C₆D₆) : δ = 29.07 (d, J_{PP}=14.2Hz), 37.49 (d, J_{PP}=14.2Hz). ¹H NMR (C₆D₆) : δ = 1.61 (s, 18H, *t*-Bu), 1.83 (m, 2H, PCH₂CH₂P), 1.91 (m, 2H, PCH₂CH₂P), 3.40 (dd, J_{PH}=7.1Hz and 3.8Hz, 2H, exo CH₂), 6.93-7.55 (22H, Ar-H and QM-ring C-H). ¹³C{¹H} NMR (C₆D₆) : δ = 25.53 (dd, J_{PC}=26.1Hz and 16.3Hz, PCH₂CH₂P), 26.60 (dd, J_{PC}=26.5Hz and 16.8Hz, PCH₂CH₂P), 51.34 (d, 30.7Hz, exo CH₂), 82.28 (dd, J_{PC}=12.5Hz and 4.8Hz, *C*=CH₂), 125-142 (Ar and QM ring), 183.96 (br d, J_{PC}=3.7Hz, C=O). The assignment was confirmed by a DEPT and a C-H correlation experiment.

Elemental analysis: Found (Calc.) C 68.55 (68.10); H 7.05 (6.41)

Displacement and Trapping of BHT-QM. A C₆D₆ solution of dibenzylidene acetone (3 mg, 0.013 mmol) was added to a C₆D₆ solution of 4 (7 mg, 0.010 mmol) at room temperature. Based on $^{31}P{^{1}H}$ NMR integration, ca. 90% conversion of 4 to the known^{18d} (dppe)Pd(DBA) was observed within 10 min. Concomitant formation of free BHT-QM was detected by ¹H NMR spectroscopy. Excess of MeOH was added and the volatiles were removed *in vacuo*. Extraction by pentane gave 5, which was identified by GC-MS analysis and ¹H NMR spectroscopy. Yields are quantitative based on ¹H NMR integration.

BHT-QM: ¹H NMR (C₆D₆) : $\delta = 1.37$ (s, 18H, *t*-Bu), 5.20 (s, 2H, CH₂), 6.77 (s, 2H, C-H).^{8b}

5: ¹H NMR (C₆D₆) : δ = 1.37 (s, 18H, *t*-Bu), 3.21 (s, 3H, OMe), 4.33 (s, 2H, CH₂O), 4.94 (s, 1H, OH), 7.31 (s, 2H, Ar-H).

GC-MS (EI): M⁺= 250, (M⁺ - CH₃)= 235, (M⁺ - OCH₃)= 219.²⁰

THE WEIZMANN INSTITUTE OF SCIENCE FACULTY OF CHEMISTRY

CHEMICAL SERVICES

UNIT OF CRYSTALLOGRAPHY

From: Dr. Linda Shimon

To : Prof. David Milstein

X-ray crystal structure analysis 22001119 C41H46OP2Pd

CRYSTAL DATA: C41H46OP2Pd, orange, prisma, 0.3 x 0.3 x 0.3 mm³, Monoclinic, P2(1)/n (No. 14), a=9.553(2), b=28.122(6). c=13.774(3)Å, β =107.52(3)°, from 25 reflections, T=110K, V=3528.7(13)Å³, Z=4, Fw=723.12, Dc=1.4361Mg/m³, μ =0.648mm⁻¹.

Data collection and treatment: Rigaku AFC5R four-circle diffractometer, MoK α , graphite monochromator (λ =0.71073Å), 14156 reflections collected, 1.45° $\leq \Theta \leq 27.50^{\circ}$, -12 $\leq h \leq 7$, 0 $\leq k \leq 36$, -17 $\leq l \leq 17$, ω scan method, scan width=1.4°, scan speed 12°/min, typical half-height peak width=0.25°, 3 standards collected 72 times each, with an 4% change in intensity, 8109 independent reflections (R-int=0.0560).

Solution and refinement: Structure solved by direct methods (SHELXS-96). Full-matrix least-squares refinement based on F² (SHELXL-93). Idealized hydrogens were placed and refined in a riding mode 412 parameters with 0 restraints, final $R_1=0.0290$ (based on F²) for data with I>2sigmaI and , $R_1=0.0336$ for all data based on all 8104 reflections, goodness-of-fit on F²=1.061, 'argest electron density=0.972 e/Å⁻³

,

Table 1. Crystal data and struct	ure refinement for 4
Identification code	4 ; m120
Empirical formula	C41 H46 O P2 Pd
Formula weight	723.12
Temperature	110 K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P2(1)/n
Unit cell dimensions	a = 9.553(2) A alpha = 90 deg. b = 28.122(6) A beta = 107.52(3) deg. c = 13.774(3) A gamma = 90 deg.
Volume	3528.7(13) A ³
Z	4
Density (calculated)	1.361 Mg/m ³
Absorption coefficient	0.648 mm ⁻¹
F(000)	1504
Crystal size	0.3 x 0.3 x 0.3 mm
Theta range for data collection	1.45 to 27.50 deg.
Index ranges	-12<=h<=7, -4<=k<=36, -17<=l<=17
Reflections collected	14156
Independent reflections	8109 [R(int) = 0.0560]
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	8104 / 0 / 412
Goodness-of-fit on F ²	1.061
Final R indices [I>2sigma(I)]	R1 = 0.0290, wR2 = 0.0723
R indices (all data)	R1 = 0.0336, wR2 = 0.0768
Largest diff. peak and hole	0.972 and -0.698 e.A^-3

1

۰.

1998 American Chemical Society J. Am. Chem. Soc. V120 Page/119 Kabin Supplemental Page /

۶

.

Table 2. Atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters (A² \times 10³) for m120. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
Pd(1)	8816(1)	1131(1)	458(1)	14(1)
P(2)	6874(1)	1291(1)	-960(1)	17(1)
P(3)	9277(1)	1939(1)	543(1)	17(1)
0(5)	13648(2)	1079(1)	3856(1)	28(1)
C(16)	6796(2)	1947(1)	-1140(2)	23(1)
C(17)	8308(2)	2178(1)	-729(1)	22(1)
C(211)	4964(2)	1172(1)	-1031(1)	17(1)
C(212)	4081(2)	848(1)	-1713(1)	21(1)
C(213)	2620(2)	782(1)	-1746(2)	28(1)
C(214)	2030(2)	1034(1)	-1106(2)	30(1)
C(215)	2906(3)	1350(1)	-405(2)	29(1)
C(216)	4363(2)	1413(1)	-364(2)	24(1)
C(217)	7062(2)	1048(1)	-2139(1)	18(1)
C(218)	8078(2)	685(1)	-2087(1)	20(1)
C(219)	8217(2)	476(1)	-2971(2)	24(1)
C(220)	7332(2)	628(1)	-3912(2)	26(1)
C(221)	6313(2)	988(1)	-3979(2)	28(1)
C(222)	6186(2)	1199(1)	-3099(2)	26(1)
C(311)	11056(2)	2233(1)	864(1)	20(1)
C(312)	12167(2)	2051(1)	1683(2)	25(1)
C(313)	13550(2)	2261(1)	1977(2)	31(1)
C(314)	13832(2)	2653(1)	1453(2)	37(1)
C(315)	12737(3)	2837(1)	643(2)	38(1)
C(316)	11351(2)	2629(1)	346(2)	30(1)
C(317)	8458(2)	2226(1)	1432(1)	19(1)
C(318)	7970(2)	1942(1)	2091(2)	25(1)
C(319)	7486(2)	2145(1)	2854(2)	28(1)
C(320)	7479(2)	2634(1)	2958(2)	27(1)
C(321)	7925(2)	2921(1)	2287(2)	25(1)
C(322)	8421(2)	2721(1)	1531(2)	22(1)
C(1)	8862(2)	405(1)	786(1)	19(1)
C(2)	10098(2)	602(1)	1554(1)	16(1)
C(3)	11572(2)	570(1)	1485(1)	16(1)
C(4)	12787(2)	681(1)	2269(1)	17(1)
C(5)	12589(2)	896(1)	3195(1)	19(1)
C(6)	11111(2)	885(1)	3321(1)	19(1)
C(7)	9948(2)	749(1)	2521(1)	18(1)
C(8)	14354(2)	583(1)	2229(1)	20(1)
C(9)	15228(2)	1049(1)	2291(2)	26(1)
C(10)	14342(2)	323(1)	1248(2)	23(1)
C(11)	15159(2)	263(1)	3135(2)	25(1)
C(12)	10916(2)	1040(1)	4338(2)	27(1)
C(13)	9339(3)	969(1)	4361(2)	33(1)
C(14)	11921(3)	741(1)	5212(2)	45(1)
CUEN	11307/31	1671(1)	4514(2)	41/11

©1998 American Chemical Society J. Am. Chem. Soc. V120 Page7119 Rabin Supplemental Page 8

3

38.97(6) 109.57(5) 148.53(5) 163.52(5) 124.72(5) 86.73(2) 104.38(9) 105.37(9) 100.07(9) 114.48(6) 123.11(6) 107.30(6) 101.13(8) 103.32(9) 106.36(9) 127.52(6) 110.75(6) 106.06(6) 112.06(13) 110.25(13)

118.4(2) 123.14(15) 118.46(14)

120.3(2)

120.6(2)

119.8(2)

119.8(2)

121.1(2)

118.5(2) 118.89(14) 122.5(2)

120.8(2)

119.8(2)

120.3(2)

119.9(2)

120.8(2)

119.1(2) 117.17(15) 123.74(15) 120.2(2)

120.2(2) 120.0(2)

120.2(2) 120.4(2)

118.9(2)

120.8(2)

. .

,

118.64(14) 122.2(2)

•

.

Pd(1) = C(1)	2.088(2)	
Pd(1) = C(2)	2.208(2)	
Pa(1) - P(2)	2.2976(10)	C(1) - Pd(1) - C(2)
PQ(1) - P(3)	2.3120(7)	C(1) - Pd(1) - P(2)
P(2) - C(217)	1.819(2)	C(2) - Pd(1) - P(2)
P(Z) - C(Z11)	1.829(2)	C(1) - Pd(1) - P(3)
P(2) - C(15)	1.861(2)	C(2) - Pd(1) - P(3)
P(3) - C(311)	1.821(2)	P(2) - Pd(1) - P(3)
P(3) - C(317)	1.828(2)	C(217)-P(2)-C(211)
P(3) - C(17)	1.844(2)	C(217)-P(2)-C(16)
0(5)-C(5)	1.251(2)	C(211) - P(2) - C(16)
C(16) - C(17)	1.528(3)	C(217) - P(2) - Pd(1)
C(211) - C(212)	1.395(3)	C(211) - P(2) - Pd(1)
C(211) - C(216)	1.397(3)	C(16) - P(2) - Pd(1)
C(212)-C(213)	1.395(3)	C(311) - P(3) - C(317)
C(213) - C(214)	1.377(3)	C(311) - P(3) - C(17)
C(214)-C(215)	1.392(3)	C(317) - P(3) - C(17)
C(215)-C(216)	1.388(3)	C(311) - P(3) - Pd(1)
C(217)-C(218)	1.396(3)	C(317) - P(3) - Pd(1)
C(217)-C(222)	1.401(3)	C(17) - P(1) - Pd(1)
C(218)-C(219)	1.393(3)	C(17) - C(16) - P(2)
C(219)-C(220)	1.385(3)	C(16) - C(17) - P(3)
C(220)-C(221)	1.390(3)	C(212) - C(211) - C(216)
C(221)-C(222)	1.386(3)	C(212) - C(211) - B(2)
C(311)-C(312)	1.394(3)	C(216) - C(211) - P(2)
C(311)-C(316)	1.396(3)	C(213) = C(212) = C(211)
C(312)-C(313)	1.393(3)	C(214) - C(212) - C(212)
C(313) - C(314)	1,387(4)	C(213) - C(213) - C(212)
C(314) - C(315)	1,380(4)	C(215) - C(215) - C(215)
C(315)-C(316)	1.391(3)	
C(317) - C(318)	1.390(3)	C(213) - C(213) - C(211)
C(317)-C(322)	1.399(3)	C(218) - C(217) - C(222)
C(318)-C(319)	1.391(3)	
C(319)-C(320)	1.385(3)	C(212) - C(217) - P(2)
C(320) - C(321)	1.387(3)	C(213) - C(213) - C(217)
C(321) - C(322)	1.388(3)	C(220) - C(213) - C(213)
C(1) - C(2)	1,437(2)	C(223) = C(220) = C(221)
C(2) - C(7)	1.441(2)	C(222) - C(221) - C(220)
C(2) - C(3)	1.443(3)	C(221) = C(222) = C(217)
C(3) - C(4)	1,362(2)	C(312) = C(311) = C(316)
C(4) - C(5)	1 474(3)	C(312) = C(311) = P(3)
C(4)-C(8)	1,539(3)	C(318) - C(311) - P(3)
C(5) - C(6)	1 474 (3)	C(313) - C(312) - C(311)
C(6) - C(7)	1 364(3)	C(314) - C(313) - C(312)
C(6) - C(12)	1 530(3)	C(313) - C(314) - C(313)
C(8) - C(10)	1 533(3)	C(314) - C(115) - C(316)
C(8)-C(9)	1 541(3)	C(313) -C(316) -C(311)
C(8) - C(11)	1 547(3)	C(318) - C(317) - C(322)
C(12) = C(13)	1 530(3)	C(318)-C(317)-P(3)
C(12) = C(15)	1 836(3)	C(322)-C(317)-P(3)
C(17) = C(14)	1 544/3/	C(319) - C(318) - C(317)
~~~~~	7-344(3)	

Table 3. Bond lengths  $\{\lambda\}$  and angles [deg] for mi20.

,

•

4

*

. .

,

C(320)-C(319)-C(318)	119.8(2)
C(319)-C(320)-C(321)	119.9(2)
C(322) - C(321) - C(320)	120.4(2)
C(321) - C(322) - C(317)	120.1(2)
C(2) - C(1) - Pd(1)	75.06(10)
C(1) - C(2) - C(7)	120.1(2)
C(1) - C(2) - C(3)	122.0(2)
C(7) - C(2) - C(3)	116.7(2)
C(1) - C(2) - Pd(1)	65.97(10)
C(7) - C(2) - Pd(1)	104.45(12)
C(3) - C(2) - Pd(1)	110.38(12)
C(4) - C(3) - C(2)	123.3(2)
C(3)-C(4)-C(5)	118.6(2)
C(3)-C(4)-C(8)	122.5(2)
C(5)-C(4)-C(8)	118.9(2)
0(5)-C(5)-C(6)	121.0(2)
O(5)-C(5)-C(4)	120.9(2)
C(6) - C(5) - C(4)	118.1(2)
C(7)-C(6)-C(5)	119.1(2)
C(7) - C(6) - C(12)	121.8(2)
C(5)-C(6)-C(12)	119.1(2)
C(6) - C(7) - C(2)	123.0(2)
C(10) - C(8) - C(4)	111.5(2)
C(10) - C(8) - C(9)	108.3(2)
C(4)-C(8)-C(9)	111.3(2)
C(10) - C(8) - C(11)	107.8(2)
C(4) - C(8) - C(11)	109.1(2)
C(9) - C(8) - C(11)	108.7(2)
C(13) - C(12) - C(6)	111.9(2)
C(13)-C(12)-C(15)	107.8(2)
C(6)-C(12)-C(15)	109.6(2)
C(13) - C(12) - C(14)	107.3(2)
C(6) - C(12) - C(14)	109.9(2)
C(15) - C(12) - C(14)	110.3(2)

.

Symmetry transformations used to generate equivalent atoms:

,

•

Table 4. Anisotropic displacement parameters ( $A^2 \times 10^3$ ) for ml20. The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 Ull + ... + 2 h k a* b* Ul2 ]

٠

.

	Ull	U22	<b>U3</b> 3	U23	<b>U13</b>	U12
Pd(1)	16(1)	13(1)	12(1)	0(1)	0(1)	0(1)
P(2)	17(1)	15(1)	14(1)	1(1)	-1(1)	1(1)
P(3)	19(1)	14(1)	16(1)	0(1)	1(1)	-1(1)
0(5)	21(1)	40(1)	19(1)	-7(1)	-1(1)	-5(1)
C(16)	24(1)	15(1)	24(1)	3(1)	-2(1)	1(1)
C(17)	25(1)	17(1)	20(1)	2(1)	1(1)	-1(1)
C(211)	16(1)	18(1)	15(1)	5(1)	2(1)	1(1)
C(212)	23(1)	18(1)	20(1)	2(1)	2(1)	1(1)
C(213)	25(1)	29(1)	25(1)	6(1)	0(1)	-6(1)
C(214)	22(1)	37(1)	31(1)	11(1)	7(1)	1(1)
C(215)	35(1)	31(1)	26(1)	7(1)	14(1)	8(1)
C(216)	30(1)	21(1)	19(1)	1(1)	5(1)	3(1)
C(217)	18(1)	20(1)	15(1)	1(1)	2(1)	-2(1)
C(218)	18(1)	21(1)	18(1)	3(1)	2(1)	-2(1)
C(219)	25(1)	25(1)	24(1)	-1(1)	10(1)	-2(1)
C(220)	29(1)	33(1)	18(1)	-4(1)	9(1)	-8(1)
C(221)	28(1)	39(1)	15(1)	4(1)	2(1)	-3(1)
C(222)	23(1)	32(1)	18(1)	4(1)	1(1)	4(1)
C(311)	21(1)	18(1)	21(1)	-5(1)	7(1)	-3(1)
C(312)	25(1)	22(1)	26(1)	-4(1)	6(1)	0(1)
C(313)	23(1)	35(1)	31(1)	-7(1)	1(1)	0(1)
C(314)	23(1)	43(1)	43(1)	-8(1)	8(1)	-11(1)
C(315)	35(1)	40(1)	39(1)	6(1)	10(1)	-14(1)
C(316)	27(1)	30(1)	29(1)	4(1)	5(1)	-5(1)
C(317)	16(1)	17(1)	20(1)	-2(1)	1(1)	-1(1)
C(318)	28(1)	18(1)	32(1)	-2(1)	11(1)	-1(1)
C(319)	29(1)	25(1)	33(1)	0(1)	14(1)	-3(1)
C(320)	23(1)	28(1)	29(1)	-10(1)	7(1)	-1(1)
C(321)	21(1)	18(1)	32(1)	-7(1)	3(1)	-2(1)
C(322)	21/1)	18(1)	24(1)	-2(1)	1(1)	-2(1)
C(1)	19(1)	15(1)	18(1)	1(1)	0(1)	0(1)
C(2)	20(1)	13(1)	13(1)	2(1)	0(1)	1(1)
C(7)	20(1)	14(1)	14(1)	1(1)	2(1)	2(1)
	18(1)	16(1)	15(1)	2(1)	3(1)	1(1)
	19(1)	21(1)	15(1)	2(1)	1(1)	-1(1)
	22(1)	19(1)	13(1)	1(1)	3(1)	0(1)
	19/1)	17/1)	17(1)	3(1)	4(1)	2(1)
	19(1)	20(1)	20(1)	1(1)	4(1)	1(1)
	22(1)	20(1)	20(1)	2(1)	7(1)	-4(1)
C())	21/11	24(1)	25/1)	1(1)	7(1)	3(1)
	44(1)	54(1) 77/1\	24(1)	6(1)	1/11	3(1)
C(12)	13(1) 27(1)	39/1\	2=(1)	-5(1)	5(1)	-3(1)
C(12)	21(1) 77(1)	30(1) 49(1)	22/1)	-3(1)	14(1)	-4(1)
	22(1)	40(1) 70/3	44(1)	-0(4/ 6/1)	5/11	
C(14)	33(L) 41/1)	10(4)	13(1)	-26/11	15/11	-12/11
G(13)	**(*)	40(1)	1 - 1 - 1	-24(2)	20(2)	

6

,

Table 5. Hydrogen coordinates (  $\times$  10⁴) and isotropic displacement parameters (A²  $\times$  10³) for m120.

٠

.

		· · · · · · · · · · · · · · · · · · ·		
	×	У	Z	U(eq)
H(16A)	6396(2)	2019(1)	-1860(2)	28
H(16B)	6142(2)	2082(1)	-794(2)	28
H(17A)	8199(2)	2519(1)	-686(1)	26
H(17B)	8879(2)	2115(1)	-1190(1)	26
H(212)	4469(2)	675(1)	-2147(1)	26
H(213)	2040(2)	566(1)	-2204(2)	34
H(214)	1049(2)	993(1)	-1143(2)	36
H(215)	2517(3)	1518(1)	35(2)	35
H(216)	4949(2)	1620(1)	114(2)	28
H(218)	8668(2)	581(1)	-1456(1)	24
H(219)	8902(2)	236(1)	-2928(2)	29
H(220)	7420(2)	487(1)	-4503(2)	31
H(221)	5718(2)	1088(1)	-4613(2)	34
H(222)	5511(2)	1443(1)	-3147(2)	31
H(312)	11983(2)	1787(1)	2035(2)	30
H(313)	14287(2)	2139(1)	2526(2)	37
H(314)	14758(2)	2792(1)	1549(2)	44
H(315)	12926(3)	3101(1)	294(2)	45
H(316)	10617(2)	2755(1)	-200(2)	35
H(318)	7967(2)	1613(1)	2021(2)	30
H(319)	7169(2)	1951(1)	3294(2)	34
H(320)	7175(2)	2770(1)	3476(2)	33
H(321)	7891(2)	3250(1)	2345(2)	30
H(322)	8730(2)	2916(1)	1089(2)	26
H(1A)	8066(2)	287(1)	1022(1)	22
H(10B)	9093(2)	195(1)	296(1)	22
H(3)	11700(2)	469(1)	875(1)	20
H(7)	9015(2)	751(1)	2602(1)	21
H(9C)	15381(17)	1191(3)	2948(5)	38
H(9D)	14688(9)	1264(3)	1772(9)	38
H(9E)	16160(8)	981(1)	2191(13)	38
H(10F)	15332(2)	260(5)	1254(6)	35
H(10G)	13866(16)	518(3)	671(2)	35
H(10H)	13819(16)	29(3)	1204(6)	35
H(11A)	15206(17)	422(3)	3761(2)	37
H(11B)	16136(7)	200(5)	3112(8)	37
H(11C)	14636(11)	-31(3)	3096(8)	37
H(13D)	9269(5)	1058(6)	5017(5)	50
H(13E)	9070(7)	641(2)	4233(14)	50
H(13F)	8688(3)	1163(5)	3846(9)	50
H(14G)	11808(20)	844(6)	5848(2)	67
H(14H)	12925(4)	781(7)	5225(11)	67
H(14I)	11657(17)	411(2)	5105(10)	67
H(15J)	11152(23)	1668(2)	5148(8)	61
H(15K)	10650(16)	1753(1)	3968(9)	61
H(15L)	12289(8)	1623(2)	4536(16)	61