J. Am. Chem. Soc., 1998, 120(34), 8692-8701, DOI:10.1021/ja9807892

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

New Strategies in Carbonylation Chemistry:

The Synthesis of δ-Lactones from Saturated Alcohols and CO

Shinji Tsunoi, ${ }^{\dagger}$ Ilhyong Ryu,* Tohru Okuda, Minoru Tanaka, ${ }^{\dagger}$ Mitsuo Komatsu, and Noboru Sonoda ${ }^{\ddagger}$

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
${ }^{\dagger}$ Research Center for Environmental Preservation, Osaka University, Suita, Osaka 565-0871, Japan

Supporting Information

The structure assignments was obtained on the basis of a combination of DEPT, and ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ COSY experiments. The separation of cis/trans isomers was performed by preparative HPLC (GPC columns (JAIGEL 1 H and 2 H) using CHCl_{3} as an eluent). Alcohols, 1g, 10, and 1p, were prepared by the hydrogenation of the corresponding aromatic alcohols, 2-phenyl-1propanol, 1-phenyl-2-propanol, and trans-2-phenyl-1-cyclohexanol with 5\% Rh/C.

General Procedure for Hydrogenation of Aromatic Alcohol. A mixture of trans-2-phenyl-1-cyclohexanol ($881 \mathrm{mg}, 5 \mathrm{mmol}$) and $5 \% \mathrm{Rh} / \mathrm{C}(515 \mathrm{mg}, 0.25 \mathrm{mmol}$) and anhydrous THF (10 mL , freshly distilled from sodium benzophenone ketyl) were stirred at room temperature with bubbling of hydrogen for 15 h . The reaction mixture was filtered and concentrated. The residue was chromatographed to give trans-2-cyclohexyl-1-cyclohexanol $\mathbf{1 p}\left(902 \mathrm{mg}, 99 \%\right.$ yield) as a white crystal: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 0.92-1.43$ (complex $\mathrm{m}, 10 \mathrm{H}$), 1.42 (br s, 2H), 1.60-1.80 (complex m, 8 H), $1.98(\mathrm{~m}, 1 \mathrm{H}), 3.43$ (dt-like, $1 \mathrm{H}, \mathrm{J} \sim 10.0$, $4.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 68 \mathrm{MHz}\right) \delta 24.97,25.32,25.95,26.91$ (two superimposed lines), $27.17,27.31,31.53,36.33,37.10,50.69,71.15$.

Procedure for Control Experiments (Tables 1 and 4). A mixture of 1-octanol (1a) (2,6-dimethyl-4-heptanol (1q) for Table 4), LTA and benzene were placed in a stainless steel autoclave lined with a round bottomed glass tube. The autoclave was sealed, purged twice
with 10 atm of carbon monoxide, and then pressurized with CO , and was heated, with stirring. After one day (three days for 1q), excess CO was purged at room temperature, then the reaction mixture was poured into 0.4 N aqueous hydrogen chloride. The aqueous layer was extracted with ether ($3 \times 20 \mathrm{~mL}$) and the combined ether extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, then filtered. The filtrate was analyzed by GC. Yields of $\mathbf{2 a}$ and $\mathbf{3 a}(\mathbf{2 q}$ and $\mathbf{1 q}$ for Table 4) were quantified using an internal standard (cyclohexyl acetate) and the separated samples to calibrate the response of the detector.

Tetrahydro-3-butyl-2H-pyran-2-one (2a): According to the general procedure, the title compound 2a was obtained in 51% yield: a slightly yellow liquid; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right)$ $\delta 0.91(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.25-1.61(\mathrm{~m}, 6 \mathrm{H}), 1.84-1.90(\mathrm{~m}, 3 \mathrm{H}), 2.00-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.51$ $(\mathrm{m}, 1 \mathrm{H}, \alpha-\mathrm{CH}), 4.25-4.32(\mathrm{td}-\mathrm{like}, 2 \mathrm{H}, \mathrm{J} \sim 5.9,2.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 68 \mathrm{MHz}\right) \delta 13.86$ (q), 21.95 (t), 22.56 (t), 24.54 (t), 28.95 (t), 30.89 (t), 39.50 (d), 68.26 (t), 174.68 (s$) ;$ IR(neat) $1732 \mathrm{~cm}^{-1}$; EIMS (relative intensity) m/z $157\left(\mathrm{M}^{+}+1,2\right), 127$ (2), 113 (26), 100 (100), 85 (4), 73 (5), 55 (20), 41 (14); HREIMS calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}$ 156.1150, found 156.1155. This compound is already known and the properties (${ }^{1} \mathrm{H}$ NMR and IR) were consistent with those previously reported. ${ }^{1}$ The less polar fraction furnished a mixture of octyl acetate and 2butyltetrahydrofuran (3a). Further purification of the mixture by preparative HPLC gave pure 3a: a colorless liquid; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 0.90(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.20-1.60$ (complex m, 7 H), 1.75-2.00 (complex $\mathrm{m}, 3 \mathrm{H}$), 3.66-3.90 (complex m, 3 H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $68 \mathrm{MHz}) \delta 13.86,22.64,25.55,28.43,31.23,35.29,67.37,79.25 . ;$ HREIMS calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}$ $\mathrm{m} / \mathrm{z} 128.1201$, found 128.1195 . This compound is already known. ${ }^{2}$

Tetrahydro-3-propyl-2H-pyran-2-one (2b): a slightly yellow liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $270 \mathrm{MHz}) \delta 0.91(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.33-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.95(\mathrm{~m}, 3 \mathrm{H}), 2.04-2.16(\mathrm{~m}, 1 \mathrm{H})$, $2.44-2.50(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{td}, 2 \mathrm{H}, J=2.0,5.9 \mathrm{~Hz}){ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 68 \mathrm{MHz}\right) \delta 13.91(\mathrm{q})$, 19.96 (t), 21.95 (t$), 24.53$ (t$), 33.32$ (t$), 39.27$ (d), 68.28 (t$), 174.68$ (s$)$; \mathbb{R} (neat) $1734 \mathrm{~cm}^{-1}$; EIMS (relative intensity) m/z $143\left(\mathrm{M}^{+}+1,1\right), 113$ (20), 100 (100), 95 (5), 84 (5), 73 (4), 69 (5),
(1) Paterson, I. Tetrahedron 1988, 44, 4207.
(2) Kharrat, A.; Gardrat, C.; Maillard, B. Can. J. Chem. 1984, 62, 2385.

55 (23), 41 (15); HREIMS calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}$ 142.0993, found 142.1018. This compound is already known. ${ }^{3}$
cis- and trans-Octahydro-1H-2-benzopyran-1-one (2f). Obtained as a cis/trans-isomer mixture in a $44 / 56$ ratio: a colorless liquid; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 1.05-2.30(\mathrm{~m}$, cis 11 H and trans 12 H), 2.72 (t -like, cis $1 \mathrm{H}, J=4.9 \mathrm{~Hz}, \alpha-\mathrm{CH}$), 4.22-4.42 (m , cis 2 H and trans 2 H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 68 \mathrm{MHz}\right) \delta 22.39(\mathrm{t}, \mathrm{cis}), 24.50(\mathrm{t}, \mathrm{cis}), 25.26(\mathrm{t}$, trans), $25.66(\mathrm{t}, \mathrm{cis}$ or trans), 25.72 (t, cis or trans), 26.68 (t , trans), 28.15 (t, cis), 29.59 (t, trans), $31.15(\mathrm{t}, \mathrm{cis}), 31.82$ (d, cis, $\beta-\mathrm{CH}$), 33.45 (t, trans), 36.25 (d, trans, $\beta-\mathrm{CH}$), 40.10 (d, cis, $\alpha-\mathrm{CH}$), 45.14 (d, trans, $\alpha-\mathrm{CH}$), 66.59 (t , cis), 67.71 (t, trans), 173.71 (s, trans), 174.27 (s, cis); IR(neat) $1737 \mathrm{~cm}^{-1}$; EIMS (relative intensity) $\mathrm{m} / \mathrm{z} 154\left(\mathrm{M}^{+}, 77\right), 126$ (33), 99 (91), 81 (84), 67 (100), 54 (30), 41 (29); HREIMS calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}$ 154.0994, found 154.0990. These compounds are already known and the properties (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) were consistent with those previously reported. ${ }^{4}$

Tetrahydro-6-methyl-3-(1-methylethyl)-2H-pyran-2-one (2m). Obtained as a cis/transisomer mixture in a $52 / 48$ ratio. These isomers were separated by preparative HPLC. cis-2m: a slightly yellow liquid; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 0.92\left(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of 2-propyl), 0.97 (d, $3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}$ of 2-propyl), 1.35 (d, $3 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHO}$), 1.43-1.70(m, 2H), 1.80-2.00(m, 2H), $2.38(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{CH}), 2.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$ of 2-propyl), $4.36(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 68 \mathrm{MHz}\right) \delta 17.94\left(\mathrm{q}, \mathrm{CH}_{3}\right.$ of 2-propyl), $19.78\left(\mathrm{q}, \mathrm{CH}_{3}\right.$ of 2-propyl), 20.11 (t), 22.07 (q, $\mathrm{CH}_{3} \mathrm{CHO}$), 29.02 (d, CH of 2-propyl), 30.56 (t), 46.35 (d, $\alpha-\mathrm{CH}$), $77.29(\mathrm{~d}, \delta-\mathrm{CH}), 173.25(\mathrm{~s}) ; \operatorname{IR}$ (neat) $1728 \mathrm{~cm}^{-1}$; EIMS (relative intensity) $\mathrm{m} / \mathrm{z} 156$ $\left(\mathrm{M}^{+}, 4\right), 141(17), 114$ (100), 101 (21), 84 (27), 73 (55), 55 (39); HREIMS calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}$ $\mathrm{m} / \mathrm{z} 156.1150$, found 156.1142 . This compound is already known and the properties (${ }^{1} \mathrm{H}$ NMR) were consistent with those previously reported. ${ }^{5}$ trans-2m: a slightly yellow liquid; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 0.94\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of 2-propyl), $1.01\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of
(3) Kurata, K.; Tanaka, S.; Takahashi, K. Chem. Pharm. Bull. 1976, 24, 538.
(4) Fujiwara, Y.; Okamoto, M. Chem. Pharm. Bull. 1989, 37, 1458.
(5) Bachi, M. D.; Bosch, E. J. Org. Chem. 1992, 57, 4696.

2-propyl), 1.34 (d, $3 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHO}$), $1.50-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~m}, 2 \mathrm{H}$, CH of 2-propyl and $\alpha-\mathrm{CH}$), $4.45(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{CH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 68 \mathrm{MHz}\right) \delta 18.25\left(\mathrm{q}, \mathrm{CH}_{3}\right.$ of 2-propyl), 18.51 (t), 20.57 (q, CH_{3} of 2-propyl), 21.03 (q, $\mathrm{CH}_{3} \mathrm{CHO}$), 27.95 (d, CH of 2-propyl), 28.70 (t), 43.93 (d, $\alpha-\mathrm{CH}$), 74.04 (d, $\delta-\mathrm{CH}$), 174.61 (s); IR(neat) $1724 \mathrm{~cm}^{-1}$; EIMS (relative intensity) $\mathrm{m} / \mathrm{z} 156\left(\mathrm{M}^{+}, 7\right), 141(22), 114$ (100), 101 (23), 84 (27), 73 (55), 55 (46); HREIMS calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}$ 156.1150, found 156.1148 . This compound is already known and the properties (${ }^{1} \mathrm{H}$ NMR and MS) were consistent with those previously reported. ${ }^{5}$

Tetrahydro-3,6-dimethyl-2H-pyran-2-one (2n). Obtained as a cis/trans-isomer mixture in a $55 / 45$ ratio. These isomers were separated by preparative HPLC. cis-(2S, $\mathbf{5 R}$)-2n: a crystal; mp. 51-51.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 1.22(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, 2-\mathrm{Me}), 1.36$ (d, $3 \mathrm{H}, J=6.4 \mathrm{~Hz}, 5-\mathrm{Me}$), $1.40-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.80-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.64(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{CH})$, 4.43-4.51 (m, 1H, $\left.\delta-\mathrm{CH}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 68 \mathrm{MHz}\right) \delta 16.11(\mathrm{q}, 2-\mathrm{Me}), 21.00(\mathrm{q}, 5-\mathrm{Me})$, $25.53(\mathrm{t}), 28.32(\mathrm{t}), 32.88(\mathrm{~d}, \alpha-\mathrm{CH}), 74.34(\mathrm{~d}, \delta-\mathrm{CH}), 176.16(\mathrm{~s}) ; \operatorname{IR}\left(\mathrm{CDCl}_{3}\right) 1732 \mathrm{~cm}^{-1}$; EIMS (relative intensity) $\mathrm{m} / \mathrm{z} 128\left(\mathrm{M}^{+}, 5\right), 113$ (4), 84 (43), 69 (20), 56 (100), 42 (50); HREIMS calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}$ 128.0837, found 128.0824. This compound is already known and the properties (mp., ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, IR , and MS) were consistent with those previously reported. ${ }^{6}$ Optical yield was estimated by GC (column: Chiraldex G-TA $0.25 \mathrm{~mm} \times 20 \mathrm{~m}$). trans-(2R, 5R)-2n: a crystal; mp. $52-53{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 1.30(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $2-\mathrm{Me}), 1.37(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}, 5-\mathrm{Me}), 1.46-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.87-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.48(\mathrm{~m}$, $1 \mathrm{H}, \alpha-\mathrm{CH}), 4.40-4.48(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{CH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 68 \mathrm{MHz}\right) \delta 17.23(\mathrm{q}, 2-\mathrm{Me}), 22.03(\mathrm{q}$, $5-\mathrm{Me}), 28.43(\mathrm{t}), 30.89(\mathrm{t}), 35.65(\mathrm{~d}, \alpha-\mathrm{CH}), 78.10(\mathrm{~d}, \delta-\mathrm{CH}), 174.29(\mathrm{~s}) ; \operatorname{IR}\left(\mathrm{CDCl}_{3}\right) 1720$ cm^{-1}; EIMS (relative intensity) $\mathrm{m} / \mathrm{z} 128\left(\mathrm{M}^{+}, 3\right), 113$ (4), 84 (45), 69 (28), 56 (100), 2 (65); HREIMS calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}$ 128.0837, found 128.0828. This compound is already known and the properties (mp., ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, IR, and MS) were consistent with those previously reported. ${ }^{6}$
(6) (a) Wheeler, J. W.; Evans, S. L.; Blum, M. S.; Velthius, H. H. V.; de Camargo, J. M. F. Tetrahedron Lett. 1976, 4029. (b) Pirkle, W. H.; Adams, P. E. J. Org. Chem. 1979, 44, 2169. (c) Mori, K.; Senda, S. Tetrahedron 1985, 41, 541. (d) Bäckvall, J.-E.; Byström, S. E.; Nyström, J. E. Tetrahedron 1985, 41, 5761.

Octahydro-3-methyl-1H-2-benzopyran-1-one (20). Obtained as a mixture of four diastereomers in a $22 / 26 / 24 / 28$ ratio ($600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR): ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 68 \mathrm{MHz}\right.$) δ $20.88,20.97,22.08,22.30,22.36,22.50,24.10,25.02,25.06,25.17,25.22,25.46,25.92,26.49$ (two superimposed lines), 26.75, 28.23, 31.24, 32.75 (two superimposed lines), $32.84,34.13$, $34.25,35.85,35.96,36.10,37.00,38.30,38.69,41.37,42.79,45.95,72.36,73.76,73.93$, $77.06,172.96,173.31,174.91,175.16$. These compounds are already known and the properties (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) were consistent with those previously reported. ${ }^{3}$
cis- and trans-Tetrahydro-4-methyl-6-(2-methylpropyl)-2H-pyran-2-one (2q). Obtained as a cis/trans-isomer mixture in a $59 / 41$ ratio: a colorless liquid; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $270 \mathrm{MHz}) \delta 0.93(\mathrm{t}, \mathrm{cis} 6 \mathrm{H}$ and trans $6 \mathrm{H}, J=6.3 \mathrm{~Hz}), 1.02(\mathrm{~d}$, cis $3 \mathrm{H}, J=5.9 \mathrm{~Hz}), 1.09(\mathrm{~d}$, trans $3 \mathrm{H}, J=6.4 \mathrm{~Hz}$), $1.15-2.23$ (complex m , cis 7 H and trans 7 H), $2.32-2.73(\mathrm{~m}$, cis 1 H and trans $1 \mathrm{H}, \alpha-\mathrm{CHH}), 4.29-4.39(\mathrm{~m}$, cis $1 \mathrm{H}, \delta-\mathrm{CH}), 4.42-4.52(\mathrm{~m}$, trans $1 \mathrm{H}, \delta-\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 68 \mathrm{MHz}\right) \delta 21.43$ (q, trans), 21.64 (q, cis), 22.02 (q , cis and trans), 22.93 ($\mathrm{q}, \operatorname{trans}$), 22.97 (q, cis), 23.80 (d, trans), 23.90 (d, trans), 24.18 (d, cis), 26.71 (d, cis), 35.45 (t, trans), 37.47 (t , trans), 37.55 (t, cis), 38.04 (t, cis), 44.59 (t, trans), 45.23 (t, cis), 75.50 (d, trans), 78.82 (d, cis), 171.51 (s, cis), 172.47 (s , trans); IR(neat) $1732 \mathrm{~cm}^{-1}$; EIMS (relative intensity) $\mathrm{m} / \mathrm{z} 170\left(\mathrm{M}^{+}, 2\right), 152(6), 128(5), 113(100), 85(17), 69(33), 56(25), 43(11)$; HREIMS calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}$ 170.1307, found 170.1313. The cis isomer is already known and the properties (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and MS) were consistent with those previously reported. ${ }^{7}$

Tetrahydro-4-methyl-2H-pyran-2-one (2r): a slightly yellow liquid; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz}) \delta 1.07(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.45-1.60(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{CH}), 1.93(\mathrm{ddq}, 1 \mathrm{H}, J=14.1,1.5$, $4.0 \mathrm{~Hz}, \gamma-\mathrm{CHH}$), 2.06-2.17 (m, 2H, $\alpha-\mathrm{CHHCO}$ and $\gamma-\mathrm{CHH}$), 2.68 (dddd, $1 \mathrm{H}, J=22.1,10.2$, $1.4,4.0 \mathrm{~Hz}, \alpha-\mathrm{CH} H), 4.27$ (ddd, $1 \mathrm{H}, J=3.8,10.7,11.4 \mathrm{~Hz}$), $4.42(\mathrm{ddd}, 1 \mathrm{H}, J=4.0,4.9,11.4$ Hz); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 68 \mathrm{MHz}\right) \delta 21.41(\mathrm{q}), 26.55(\mathrm{~d}, \beta-\mathrm{CH}), 30.61\left(\mathrm{t}, \gamma-\mathrm{CH}_{2}\right), 38.20(\mathrm{t}$, $\left.\alpha-\mathrm{CH}_{2}\right), 68.52(\mathrm{t}), 171.19(\mathrm{~s}) ; \operatorname{IR}($ neat $) 1728 \mathrm{~cm}^{-1}$; EIMS (relative intensity) $\mathrm{m} / \mathrm{z} 114\left(\mathrm{M}^{+}, 43\right)$,
(7) (a) Pittet, A. O.; Klaiber, E. M. J. Agric. Food. Chem. 1975, 23, 1189. (b) Bardili, B.; Marschall-Weyerstahl, H.; Weyerstahl, P. Liebigs Ann. Chem. 1985, 275.

84 (12), 70 (40), 56 (70), 55 (98), 42 (100); HREIMS calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}$ 114.0681, found 114.0695. This compound is already known and the properties (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} N \mathrm{NR}$) were consistent with those previously reported. ${ }^{8}$
cis- and trans-Tetrahydro-4,6-dimethyl-2H-pyran-2-one (2s). Obtained as a cis/transisomer mixture in a $56 / 44$ ratio: a slightly yellow liquid; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.03$ (d, cis $3 \mathrm{H}, J=6.4 \mathrm{~Hz}$), 1.10 (d, trans $3 \mathrm{H}, J=6.7 \mathrm{~Hz}$), 1.21 (dt, cis $1 \mathrm{H}, J=13.8,11.5 \mathrm{~Hz}$, $\gamma \mathrm{CHH}$), $1.37(\mathrm{~d}$, cis $3 \mathrm{H}, J=6.3 \mathrm{~Hz}$), $1.38(\mathrm{~d}$, trans $3 \mathrm{H}, J=6.3 \mathrm{~Hz}$), $1.62(\mathrm{ddd}$, trans $1 \mathrm{H}, J=$ $4.2,6.1,14.1 \mathrm{~Hz}, \gamma-\mathrm{CHH}$), 1.76 (ddd, trans $1 \mathrm{H}, J=6.4,8.5,14.2 \mathrm{~Hz}, \gamma-\mathrm{CHH}), 1.93(\mathrm{dm}, \mathrm{cis}$ $1 \mathrm{H}, J_{\text {doublee }}=13.8 \mathrm{~Hz}, \gamma-\mathrm{CHH}$), $2.02(\mathrm{dd}, \mathrm{cis} 1 \mathrm{H}, J=16.8,10.7 \mathrm{~Hz}, \alpha-\mathrm{CHH}$), $2.05(\mathrm{~m}, \mathrm{cis} 1 \mathrm{H}$, $\beta-\mathrm{CH}$), 2.15 (dd, trans $1 \mathrm{H}, J=16.2,8.9 \mathrm{~Hz}, \alpha-\mathrm{CHH}$), 2.20 (m, trans $1 \mathrm{H}, \beta-\mathrm{CH}$), 2.58 (dd, trans $1 \mathrm{H}, J=16.2,5.5 \mathrm{~Hz}, \alpha-\mathrm{CHH}$), 2.67 (ddd, cis $1 \mathrm{H}, J=16.8,4.8,2.0 \mathrm{~Hz}, \alpha-\mathrm{CHH}$), 4.42 (ddq, cis $1 \mathrm{H}, J=12.6,2.9,6.3 \mathrm{~Hz}, \delta-\mathrm{CH}), 4.58$ (ddq, trans $1 \mathrm{H}, J=8.8,4.4,6.3 \mathrm{~Hz}, \delta-\mathrm{CH}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 68 \mathrm{MHz}\right) \delta 21.17$ ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{CHCO}$ trans), $21.20\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CHCO} \mathrm{cis}\right), 21.44\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CHO}\right.$ trans), 21.69 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{CHO}$ cis), 23.55 ($\mathrm{d}, \beta-\mathrm{CH}$ trans), 26.61 ($\mathrm{d}, \beta-\mathrm{CH}$ cis), 36.43 (t, trans), 37.15 (t, trans), 37.61 (t, $\alpha-\mathrm{CH}_{2}$ cis), 38.65 (t, $\gamma-\mathrm{CH}_{2}$ cis), 73.47 (d, trans), 76.85 (d, cis), 171.41 (s, cis), 172.27 (s, trans); IR (neat) $1732 \mathrm{~cm}^{-1}$; for cis isomer: EIMS (relative intensity) $\mathrm{m} / \mathrm{z} 128\left(\mathrm{M}^{+}, 11\right), 113(20), 84(56), 69(45), 56$ (100); for trans isomer: EIMS (relative intensity) $\mathrm{m} / \mathrm{z} 128\left(\mathrm{M}^{+}, 12\right), 113(16), 84(58), 69(42), 56(100)$; for cis isomer: HREIMS calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z} \mathrm{128.0838} ,\mathrm{found} \mathrm{128.0843;} \mathrm{for} \mathrm{trans} \mathrm{isomer:} \mathrm{HREIMS} \mathrm{calcd} \mathrm{for} \mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{2}$ m / z 128.0838, found 128.0812 . This compound is already known and the properties $\left({ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR) were consistent with those previously reported. ${ }^{9}$

Tetrahydro-6-propyl-2 H -pyran-2-one (2u): a slightly yellow liquid; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz}) \delta 0.94\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.39-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.74(\mathrm{~m}$,
(8) (a) Theisen, P. D.; Heathcock, C. H. J. Org. Chem. 1993, 58, 142. (b) Konoike, T.; Araki, Y. J. Org. Chem. 1994, 59, 7849.
(9) (a) Carroll, F. I.; Mitchell, G. N.; Blackwell, J. T.; Sobti, A.; Meck, R. J. Org. Chem. 1974, 39, 3890. (b) Pirkle, W. H.; Adams, P. E. J. Org. Chem. 1980, 45, 4117.
$1 \mathrm{H}), 1.82-1.95(\mathrm{~m}, 3 \mathrm{H}), 2.45$ (ddd, $1 \mathrm{H}, J=7.1,8.8,17.6 \mathrm{~Hz}, \alpha-\mathrm{CHH}), 2.59$ (dddd, $1 \mathrm{H}, J=1.3$, $4.8,7.9,17.6 \mathrm{~Hz}, \alpha-\mathrm{CHH}), 4.30(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{CH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 68 \mathrm{MHz}\right) \delta 13.76\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, 18.10 (t), 18.42 (t), 27.72 (t), 29.39 (t), 37.82 (t), 80.27 (d), 171.96 (s); IR(neat) $1732 \mathrm{~cm}^{-1}$; EIMS (relative intensity) $\mathrm{m} / \mathrm{z} 143\left(\mathrm{M}^{+}+1,3\right), 124$ (4), 114 (12), 99 (100), 70 (33), 55 (22), 42 (28); HREIMS calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}$ 142.0994, found 142.0983. This compound is commercially available.
cis- and trans-Tetrahydro-3-methyl-6-propyl-2H-pyran-2-one (2x). Obtained as a cis/trans-isomer mixture in a $47 / 53$ ratio: an oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 0.94(\mathrm{t}, \mathrm{cis} 3 \mathrm{H}$ and trans $3 \mathrm{H}, J=6.8 \mathrm{~Hz}$), $1.22(\mathrm{~d}$, cis $3 \mathrm{H}, J=6.8 \mathrm{~Hz}$), $1.30(\mathrm{~d}$, trans $3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.35-1.76$ $(\mathrm{m}$, cis 6 H and trans 6 H$), 1.88-2.13(\mathrm{~m}$, cis 2 H and trans 2 H), 2.39-2.49 (m, trans 1 H), 2.56-2.66 (m, cis 1 H$), 4.25-4.33(\mathrm{~m}$, cis 1 H and trans 1 H$){ }^{13}{ }^{1} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 68 \mathrm{MHz}\right) \delta 13.77$ (q), 16.11 (q), $17.35(\mathrm{q}), 18.00(\mathrm{t}), 18.30(\mathrm{t}), 25.55(\mathrm{t}), 26.62(\mathrm{t}), 28.46(\mathrm{t}), 29.07(\mathrm{t}), 29.62(\mathrm{t})$, 33.10 (d), 36.04 (d), 37.35 (t), 38.33 (t), 77.83 (d), 81.52 (d), 174.41 (s), 176.35 (s); IR(neat) $1732 \mathrm{~cm}^{-1}$; EIMS (relative intensity) for cis isomer m/z $156\left(\mathrm{M}^{+}, 2\right), 113(100), 85$ (62), 70 (53), 56 (84), 42 (48); EIMS (relative intensity) for trans isomer $\mathrm{m} / \mathrm{z} 156\left(\mathrm{M}^{+}, 1\right), 113(100)$, 85 (58), 70 (54), 56 (66), 42 (49).; HREIMS for cis isomer calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z} 156.1150$, found 156.1175.; HREIMS for trans isomer calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z} 156.1150$, found 156.1159 .
cis- and trans-Tetrahydro-3-ethyl-6-propyl-2H-pyran-2-one (2y). Obtained as a cis/trans-isomer mixture in a $41 / 59$ ratio: an oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 0.94(\mathrm{t}, 3 \mathrm{H}, J=$ $7.3 \mathrm{~Hz}), 0.99(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.36-1.75(\mathrm{~m}, 7 \mathrm{H}), 1.81-2.15(\mathrm{~m}, 3 \mathrm{H}), 2.29-2.44(\mathrm{~m}, 1 \mathrm{H})$, 4.24-4.32 (m, 1 H); ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 68 \mathrm{MHz}\right) \delta 10.95(\mathrm{q}), 11.48(\mathrm{q}), 13.76$ (q, two superimposed lines), $17.99(\mathrm{t}), 18.28(\mathrm{t}), 22.83(\mathrm{t}), 23.77(\mathrm{t}), 24.77(\mathrm{t}), 24.85(\mathrm{t}), 26.64(\mathrm{t}), 28.78(\mathrm{t}), 37.33(\mathrm{t})$, 38.28 (t), 39.60 (d), 42.01 (d), 77.66 (d), 80.99 (d), 173.71 (s), 175.60 (s); IR(neat) $1727 \mathrm{~cm}^{-1}$.

Synthesis of Tetrahydro-2-methyl-2-furanmethanol acetate (3z). According to the general procedure, after the standard workup, the ether extract was dried over MgSO_{4}. Yields of $3 z$ and recovered $1 z$ were quantified by GC using an internal standard (n-dodecane) and the
separated samples to calibrate the response of the detector. The spectroscopic data of $\mathbf{3 z}$ isolated by flash chromatography is listed below: a slightly yellow liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $270 \mathrm{MHz}) \delta 1.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}\right), 1.46-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.84(\mathrm{~m}, 1 \mathrm{H})$, $2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.16-2.28(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~d}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz}, \mathrm{OCHHC}), 3.49(\mathrm{td}, 1 \mathrm{H}, J=$ $10.4,2.7 \mathrm{~Hz}, \mathrm{OCHHCH} 2), 3.78\left(\mathrm{td}, 1 \mathrm{H}, J=4.4,10.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{OCH}_{2}\right), 4.02(\mathrm{dd}, 1 \mathrm{H}, J=11.9$, $2.0 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{C}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 68 \mathrm{MHz}\right) \delta 21.52\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}\right), 22.18\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CO}\right), 22.28$ (t), $33.77(\mathrm{t}), 67.82\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 73.62\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{C}\right), 77.93\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{C}\right), 170.42(\mathrm{~s}) ; \mathrm{IR}$ (neat) 1735 cm^{-1}; CIMS (relative intensity) m/z $159\left(\mathrm{M}^{+}+1,8\right), 99$ (100), 81 (4), 71 (4), 61 (11); HRCIMS calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~m} / \mathrm{z} 159.1035$, found 159.1028. This compound is already known. ${ }^{10}$

With Regard to cis/trans Assignments of 2,5-Disubstituted Lactones (2k, 21, 2w and 2m).

The cis/trans assignments of the obtained 2-methyl-5-hexanolide (2 n) were made rigorously by comparing the obtained spectral and physical data for $\mathbf{2 n}$ with those reported previously by plural groups. ${ }^{6}$ For cis and trans isomers of $\mathbf{2 n}$, there exist several significant differences in (i) GC elution orders (cis comes out faster than trans; with OV-1 column), (ii) v_{CO} in IR spectra (cis has a larger frequency number than trans), (iii) ${ }^{13} \mathrm{C}$ NMR chemical shifts of $\mathrm{C}=\mathrm{O}$ (cis has a larger δ value than trans), and (iv) ${ }^{13} \mathrm{C}$ NMR chemical shifts of $\alpha-\mathrm{C}$ and $\delta-\mathrm{C}$ (cis has a smaller δ value than trans) (Table, run 1 and 2). The cis/trans assignments of the other 2,5-disubstituted lactones, $\mathbf{2 k}, \mathbf{2 l}, \mathbf{2 w}$, and $\mathbf{2 m}$, were based on the observed similar propensity. The key data are summarized in Table.

[^0]Table. The Key Data for 2,5-Disubstituted δ-Lactones

run	δ-lactone		GC elution orders (OV-1)	$\begin{aligned} & \text { IR }\left(v_{\mathrm{cO}}\right) \\ & \mathrm{cm}^{-1} \end{aligned}$	${ }^{13} \mathrm{C}$ NMR chemical shift		
					$\mathrm{C}=0$	$\alpha-\mathrm{C}$	$\delta-C$
1		cis-2n	2	1732	176.16	32.88	74.34
2		trans-2n	1	1720	174.29	35.65	78.10
3		cis-2k	2	1736	175.81	37.95	77.75
4	\sim	rans-2k	1	1728	174.03	40.60	81.02
5	α	cis-21	2	1736	175.83	37.88	79.23
6		trans-21	1	1728	174.07	40.60	82.40
7	d	cis-2w	2	1736	175.62	37.67	74.22
8		trans-2w	1	1719	173.95	40.22	77.60
	α	cis-2m	2	1728	174.61	43.93	74.04
10	2	trans-2m	1	1724	173.25	46.35	77.29

[^0]: (10) Mihailović, M. L.; Marinković, D.; Konstantinović, S. Glas. Hem. Drus. Beograd 1981, 46, 397.

