J. Am. Chem. Soc., 1998, 120(26), 6615-6616, DOI:10.1021/ja980520i

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

SUPPORTING INFORMATION

Chiral Lewis Acid Catalysis in Conjugate Additions of \boldsymbol{O}-Benzylhydroxylamine to Unsaturated Amides. Enantioselective Synthesis of β-Amino Acid Precursors.

Mukund P. Sibi,* John J. Shay, Mei Liu, and Craig P. Jasperse
Department of Chemistry, North Dakota State University
Fargo, North Dakota 58105

Experimental Procedures. Methylene chloride, acetonitrile, and triethylamine were distilled from calcium hydride. Tetrahydrofuran, toluene, and benzene were distilled from benzophenone/ketyl prior to use. Methanol was distilled from $\mathrm{Mg} / \mathrm{I}_{2}$. Magnesium bromide-etherate was either purchased from Aldrich chemicals or freshly prepared from magnesium and dibromoethane (Pohmakotr, M.; Geiss, K.-H.; Seebach, D. Chem. Ber. 1979, 112, 1420). Thin layer chromatographic analyses were performed on silica gel Whatmann-60F glass plates and components were visualized by illumination with UV light or by staining with phosphomolybdic acid. Flash chromatography were performed using E. Merck silica gel 60 (230-400 mesh). Melting points were determined using a Thomas Hoover capillary melting point apparatus or Fisher-Johns melting point apparatus. All glassware was oven/and or flame dried, assembled hot, and cooled under a stream of dry nitrogen or argon before use. Reactions with air sensitive materials were carried out by standard syringe techniques.
${ }^{1} \mathrm{H}$ NMR were recorded on a JEOL GSX-400 (400 MHz), JEOL GSX-270 (270 MHz) spectrometers. Chemical shifts are reported in parts per million (ppm) down field from TMS, using residual $\mathrm{CHCl}_{3}(7.27 \mathrm{ppm})$ as an internal standard. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublets of doublets, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad), integration and coupling constant(s). ${ }^{13} \mathrm{C}$ NMR were recorded on a JEOL-GSX-400 (100 MHz) and JEOL GSX-270 (65 MHz) spectrometers using broad band proton decoupling. Chemical shifts are reported in parts per million (ppm) down field from TMS, using the middle resonance of CDCl_{3} (77.0 ppm) as an internal standard. HPLC analyses were carried out on either an ISCO system comprising of a 2360 pump, 2350 gradient programmer and a V^{4} variable wavelength UV detector connected to a Hewlett-Packard 3396 II integrator or a Waters M-45 pump connected to an ISCO 228 Absorbance Detector with a type 6 optical unit and a HewlettPackard 3396-II integrator. Rotations were recorded on a JASCO-DIP-370 instrument.

Elemental analyses were performed in house on a Perkin Elmer Series II CHNS/O Analyzer 2400.

Starting α, β-unsaturated pyrazole amide 1. The synthesis of pyrazole crotonate (1) has been described in the literature (Kashima, C.; Harada, H.; Kita, I.; Fukuchi, I.; Hosomi, A. Synthesis 1994, 61).

Preparation of Bisoxazoline Ligand 2: Under $\mathrm{N}_{2}, 2.5$ equivalents of amino indanol was added to a rapidly stirred suspension of ethyl 3-amino-3-ethoxyprop-2-enimidate (Hall, J.; Lehn, J-M.; DeCian, A.; Fischer, J. Helv. Chim. Acta 1991, 74, 1) in dry DMF (1g/10 mL) at $0^{\circ} \mathrm{C}$. The white suspension was almost completely solubilized before new solid began to precipitate. The ice-bath was removed and the mixture was stirred at rt for 3 days. Most of DMF was removed under vacuum at rt . The residue was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine and dried over MgSO_{4}. The product was purified by recrystallization from ethanol, and used in the next step.
Preparation of Spirobisoxazoline Ligand: Under N_{2}, to a solution of dihydrobisoxazoline (0.2 M) in THF, was added 3 equivalents of $\mathrm{NaH}(60 \%)$ in portions at $0^{\circ} \mathrm{C}$. After complete addition, the mixture was stirred for 30 minutes at $0{ }^{\circ} \mathrm{C}$. A solution of $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Br}$ (1.2 equivalents) in THF was then added dropwise at $0^{\circ} \mathrm{C}$ over 10 minutes and the mixture was then heated to $50^{\circ} \mathrm{C}$ and the reaction was completed within $0.5-2 \mathrm{~h}$. The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extracts were combined, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The product was purified by chromatography on silica gel ($2 \% \mathrm{MeOH} / \mathrm{EtOAc}$) followed by recrystallization using EtOAc/hexane.

\{3aS-[2(3'aR*, 8'aS*), 3a $\alpha, 8 \mathrm{a} \alpha]\}-2,2$ '-(cyclopropylidene)-bis\{3a, 8a-dihydro-8H-indeno[1,2-d]-oxazole\} (2): mp. 163-164 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane); $\mathrm{R}_{\mathrm{f}} 0.20$ (90:10-ethyl acetate: MeOH) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H})$, $5.50(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-5.24(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{dd}, \mathrm{J}=18.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, \mathrm{~J}=17.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.37-1.22(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9,141.9,139.8,128.4$, $127.4,125.7,125.2,83.4,76.5,39.7,18.4,15.9 ;[\alpha] D^{20}-349.28^{\circ}\left(\mathrm{c}=1.185, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
Preparation of $\mathbf{H}_{\mathbf{2}} \mathbf{N O B n}$: O -Benzylhydroxylamine hydrochloride was washed with 1 M NaOH then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to afford the desired oil.

Representative experimental procedure for stoichiometric Lewis acid-mediated addition. (Table 1, entry 5): Under N_{2}, to a flask containing $\mathrm{MgBr}_{2} . \mathrm{Et}_{2} \mathrm{O}$ (0.1 mmol) and bisoxazoline $2(0.1 \mathrm{mmol})$ was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. Pyrazole crotonate $1(0.1$ mmol) (in $1 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added and the mixture was allowed to stir for 30 min . The reaction was cooled to $-60{ }^{\circ} \mathrm{C}$ then $\mathrm{H}_{2} \mathrm{NOBn}\left(0.11 \mathrm{mmol}\right.$) (in $1.1 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added. The reaction was monitored by TLC and when judged complete was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted $3 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give an oil. The product was purified by preparative TLC or silica gel chromatography. The enantiomeric purity was determined by HPLC.

Substoichiometric Chiral Lewis Acid-mediated addition (Table 3, entry 2): Under N_{2}, to a flask containing $\mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}(0.15 \mathrm{mmol})$ and bisoxazoline $2(0.15 \mathrm{mmol})$ was added $20 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$. Pyrazole pentenoate $6 \mathbf{a}\left(0.5 \mathrm{mmol}\right.$) (in $5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added and stirred for 30 min . The reaction was cooled to $-60^{\circ} \mathrm{C}$ the $\mathrm{H}_{2} \mathrm{NOBn}(0.55 \mathrm{mmol})$ (in $5.5 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$) was added. The reaction was monitored by TLC and when judged complete was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted $3 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give an oil. The product was purified by preparative TLC or silica gel chromatography. The enantiomeric purity was determined by HPLC. Note: If the reactions are incomplete, it is important to fully quench the Lewis acid and care should be taken to remove solvents at low temperature during workup. This will ensure that addition at higher temperature does not occur leading to lowered selectivity.

Stoichiometric kinetic resolution (Table 2, entry 1) : Under N_{2}, to a flask containing $\mathrm{MgBr}_{2} . \mathrm{Et}_{2} \mathrm{O}(0.1 \mathrm{mmol})$ and bisoxazoline $2(0.1 \mathrm{mmol})$ was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. Racemic 3 (0.1 mmol) (in $0.9 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added and the mixture was allowed to stir for 30 min . The reaction was cooled to $-60^{\circ} \mathrm{C}$ then the appropriate amount of 0.1 M
$\mathrm{H}_{2} \mathrm{NOBn}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. After 3 h the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The products were purified by preparative TLC (50% EtOAc/hexanes).

Compound 3: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~m}, 5 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{bs}, 1 \mathrm{H})$, $4.68(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=16.9$ and 7.5 Hz$), 3.32(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=16.9$ and $5.1 \mathrm{~Hz}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,151.9,144.1,137.9,128.4,128.3,127.8,111.2,76.7,53.0,39.5,18.4,14.7,13.9$; TLC Rf 0.32 (30\% EtOAc/70\% hexanes); HPLC [(Column: Chiralcel OJ ($0.46 \mathrm{~cm} \times 25$ cm) (from Daicel Chemical Ind., Ltd.)]: 254 nm ; solvent: hexane:i- $\mathrm{PrOH}=90: 10$, flow rate $=1 \mathrm{~mL} / \mathrm{min}$. Rt 8 min (R -isomer); Rt 12 min (S -isomer)]; Analysis Calc'd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 66.88; H, 7.37; N, 14.62; found: C, $67.10 ; \mathrm{H}, 7.13 ; \mathrm{N}, 14.51$.

Amidolysis Product 4: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.27$ (bs, 1 H), 7.37-7.23 (m, 10 H), $5.41(\mathrm{bs}, 1 \mathrm{H}), 4.86(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{dd}, 2 \mathrm{H}, J=11.5,15.3 \mathrm{~Hz}), 3.32,(\mathrm{~m}, 1 \mathrm{H}), 2.32-$ $2.20(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.3,137.4$, 135.7, 129.2, 128.8, 128.7, 128.6, 128.5, 128.1, 78.0, 76.4, 52.9, 37.8, 17.9; TLC Rf 0.14 ($50 \% \mathrm{EtOAc} / 50 \%$ hexanes)HPLC [(Column: Chiralcel AD ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$) (from Daicel Chemical Ind., Ltd.) [254 nm ; solvent: hexane:i- $\mathrm{PrOH}=95: 5$, flow rate $=1$ $\mathrm{mL} / \mathrm{min}$. Rt 31 min S isomer; Rt 35 min R -isomer] Analysis Calc'd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$: C , 68.77; H, 7.05; N, 8.91; found: C, 68.54; H, 6.98; N, 8.68.

Pyrazole Addition Product 5: mp 91-93 ${ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.86$ (s, $1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.8$ and 17.2 Hz$), 3.41(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.6$ and 17.2 Hz), $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.7$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,152.0,147.3,143.8,138.4,111.1,104.5$, 49.1, 42.3, 21.3, 14.4, 13.82, 13.78, 11.0; TLC Rf 0.25 (30% EtOAc/70\% hexanes); Analysis Calc'd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 64.59, \mathrm{H}, 7.74 ; \mathrm{N}, 21.52$; found: C, $64.79 ; \mathrm{H}, 7.63$; N, 21.67.

Determination of absolute stereochemistry of (3) by conversion to a known compound. A modified procedure of Falborg and Jorgensen (Falborg, L.; Jorgensen, K. A. J. Chem. Soc., Perkin Trans. I 1996, 2823) was used

Methyl 3-benzyloxyaminobutanoate (8): To a solution of 3 (0.35 mmol) ($84 \% \mathrm{ee}$) dissolved in 3.5 mL MeOH was added catalytic $\mathrm{NaOMe}(\sim 10 \mathrm{mg})$ and stirred at rt for 1 h . The reaction was quenched with solid $\mathrm{NH}_{4} \mathrm{Cl}$ and subsequently filtered. The product was purified by SiO_{2} chromatography to yield $70.9 \mathrm{mg}(90 \%)$ of the desired product: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09(\mathrm{bs}, 1 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 5 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H})$, $3.47(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=23.1$ and 10.5 Hz$), 2.35(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=23.1$ and 8.6 Hz$), 1.11$ (d, $3 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}$).

Methyl 3-(N-benzoyl-N-benzyloxyamino)butanoate (9): To a solution of methyl ester 8 (84% ee) (0.3176 mmol) in 3 mL THF and pyridine (0.62 mmol) was added benzoyl chloride (0.52 mmol) dropwise and stirred for 30 min . Then another portion of pyridine (0.62 mmol) and benzoyl chloride (0.52 mmol) were added and the reaction stirred for 45 min. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The product was purified by SiO_{2} chromatography to yield $90.2 \mathrm{mg}(91 \%)$ of the desired product: ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.17(\mathrm{~m}, 8 \mathrm{H}), 4.79-4.67(\mathrm{~m}, 3 \mathrm{H})$, $3.64(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.7$ and 8.3 Hz$), 2.49(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.7$ and 6.0 Hz$) 1.31(\mathrm{~d}$, $3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}$).

Methyl 3-benzoylaminobutanoate (10): To a solution of methylester 9 (84\%ee) (0.236 mmol) in 2 mL THF was added a 0.1 M THF solution of $\mathrm{SmI}_{2}(9.6 \mathrm{~mL}, 0.96 \mathrm{mmol}$) [prepared by mixing samarium (1.2 mmol) and $\mathrm{I}_{2}(1.0 \mathrm{mmol})$ in 10 mL of THF in an ultrasonic bath for 3 h] until a blue color persisted. After 5 min , the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and to it was added 5% sodium thiosulfate solution. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organics washed with 1 M HCl , brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. The product was purified by SiO_{2} chromatography to yield 20.8 mg (40\%) of the desired product: ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.50-$ $7.33(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{bs}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=16.0$ and 5.3 Hz$)$, $2.59(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=16.0$ and 4.7 Hz$), 1.31(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9) ;[\alpha]^{25}{ }_{\mathrm{D}}=35.7^{\circ}$ (c $\left.1.04, \mathrm{CHCl}_{3}\right)\{$ lit $[\alpha]^{25} \mathrm{D}=-40.8^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)(S)$ enantiomer (Amoroso, R.; Cardillo, G.; Sabatino, P.; Tomasini, C.; Trere, A. J. Org. Chem. 1993, 58, 5615) ; [lit $[\alpha]^{25}{ }_{\mathrm{D}}=-42^{\circ}$ (c.77, CHCl_{3}) (S) enantiomer (Estermann, H.; Seebach, D. Helv Chim Acta 1988, 71, 1824)]. The sign of the rotation for the final compound indicates that it has the R configuration. The ee calculates to 85% for $\mathbf{1 0}$ consistent with the 84% ee for $\mathbf{3}$.

Preparation of starting materials for Table 3: Substrate 6a:

Preparation of E-2-pentenoyl chloride: Under N_{2}, to a 100 mL flask containing 4 mL (40 mmol) trans-2-pentenoic acid, was added $7 \mathrm{~mL}(80 \mathrm{mmol})$ oxalyl chloride. Reaction was initiated by one drop of DMF. The reaction mixture was kept stirring for $20 \min$ at 0 ${ }^{\circ} \mathrm{C}$, then slowly warmed up to room temperature. The excess oxalyl chloride was removed under vacuum and the product was used without further purification.
Preparation of 6a: Under N_{2}, to a 250 mL flask containing $1.7 \mathrm{~g}(18.2 \mathrm{mmol})$ of $3,5-$ dimethyl pyrazole in $1.8 \mathrm{~mL}(22 \mathrm{mmol})$ pyridine and $40 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ was added E-2-pentenoyl chloride (20 mmol in $5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and stirred for 3 hours. The reaction was quenched with $40 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ and extracted with $3 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried with MgSO_{4} and concentrated to afford an oil. The product was purified by silica gel chromatography ($10 \% \mathrm{EtOAc} / \mathrm{Hexanes}$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.16(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.20$ $(\mathrm{s}, 3 \mathrm{H}), 1.08(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,153.0,151.8$, $144.4,120.3,111.3,26.0,14.7,13.9,12.4$; TLC Rf 0.50 in 10% EtOAc/hexanes; Analysis Calc'd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 67.39 ; \mathrm{H}, 7.92$; $\mathrm{N}, 15.72$; found: C, $67.20 ; \mathrm{H}, 7.57$; N, 15.62.

Substrate 6b

The desired starting material was prepared using the following reaction sequence.

6d
Key: (a) $\mathrm{PCC} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 60 \%$, (Upadhya, T. T.; Sudalai, A. Tetrahedron: Asymmetry 1997, 8, 3685) (b) Diethylphospanoacetic acid, 2.1 eqs n -BuLi, $-78^{\circ} \mathrm{C}, 68 \%$; (c) oxalyl chloride, quantitative; (d) 3,5-dimethylpyrazole, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 93 \%$.

6b: The compound was purified by silica gel column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.15(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 2.56(2,3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$, 2.21 (appt t, 2H, J=6.7 Hz), 1.73-1.61 (m, 5H), 1.51-1.43 (m, 1H), 1.27-1.10 (m, 3H), $1.00-0.86(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2,151.9,150.9,144.5,121.9$, $111.3,40.7,37.6,33.3,26.4,26.3,14.8,13.9$; TLC Rf 0.58 in 20% EtOAc/hexanes;

Analysis Calc'd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 73.13 ; \mathrm{H}, 9.00 ; \mathrm{N}, 11.37$; found: $\mathrm{C}, 73.45 ; \mathrm{H}, 9.07$; N, 11.46.

Substrate 6c:

Compound 6c was prepared according to the methodology described for $\mathbf{6 b}$ using commercially available phenylacetaldehyde. The compound was purified by silica gel column chromatography using 15% ether/hexane. The product was recrystallized from hexane.

6c: $\mathrm{mp} 34-36{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.21(\mathrm{~m}, 7 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 3,66$ $(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.1$, 152.0, 149.1, 144.5, 137.9, 128.83, 128.78, 126.7, 122.2, 111.5, 39.1, 14.8, 13.9; TLC Rf 0.56 in 20% EtOAc/hexanes; Analysis Calc'd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.97, \mathrm{H}, 6.71$; N , 11.66; found: C, 74.58; H, 6.78; N, 11.73.

Substrate 6d

Preparation of (E)-4-Methyl-2-pentenoic acid: Under N_{2}, to a 500 mL flask containing 200 mL THF and 25.2 mL of 2.5 M BuLi (62 mmol), was added dropwise 5.88 g (30 mmol) of diethylphosphonoacetic acid in 30 mL THF. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min then $3.3 \mathrm{~mL}(36 \mathrm{mmol})$ of isobutyraldehyde in 20 mL THF was added. The reaction mixture was stirred for another 15 min , then warmed up to room temperature. The resulting mixture was diluted with $150 \mathrm{~mL} 50 \%$ ether $/ 50 \%$ hexanes and acidified with 300 mL 1 M HCl solution. The organic layer was washed $2 \times 100 \mathrm{~mL} 0.01 \mathrm{M} \mathrm{HCl}$ solution and then concentrated to afford an oil. This oil was diluted in $50 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with excess 1 M NaOH solution. The aqueous layer was acidified with 1 M HCl solution and then extracted with $2 \mathrm{x} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried
with MgSO_{4} and concentrated to afford an oil. The carboxylic acid was converted to $\mathbf{6 d}$ following the reaction sequence described for $\mathbf{6 b}$.

Substrate 6d: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16-7.07(\mathrm{~m}, 2 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 2.49-2.44$ $(\mathrm{m}, 4 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=0.81 \mathrm{~Hz}), 0.99(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=0.81 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.3,157.4,151.5,144.2,118.5,111.1,31.6,21.3,14.6,13.7$; TLC Rf 0.47 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; Analysis Calc'd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 68.72 ; \mathrm{H}, 8.39 ; \mathrm{N}, 14.57$; found: C , $68.69 ; \mathrm{H}, 8.26 ; \mathrm{N}, 14.34$. The product was purified by silica gel chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent.

The cinnamate (6e) has been reported in the literature (Besida, J.; Brown, R. F. C.; Colamanet, S.; Leach, D. N. Aust. J. Chem. 1982, 35, 1373)

Conjugate Addition Products for Table 3:

Compound 7a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~m}, 5 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H})$, $4.65(\mathrm{~s}, 2 \mathrm{H}), 3.42-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H})$, $1.54(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.5) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.1,151.9,144.1$, $138.0,128.4,128.3,127.7,111.2,76.5,58.9,37.5,25.2,14.7,13.9,10.7$. TLC Rf 0.62 ($30 \% \mathrm{EtOAc} / 70 \%$ hexanes); HPLC [(Column: Chiralcel OJ ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$)(from Daicel Chemical Ind., Ltd.)]: 254 nm ; solvent: hexane:i- $\mathrm{PrOH}=98: 2$, flow rate $=1$ $\mathrm{mL} / \mathrm{min}$. Rt 8 min (major) ; Rt 11 min (minor)]. Analysis Calc'd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$: C , 67.75; H, 7.69; N, 13.94; found: C, 67.99; H, 7.63; N, 14.05.

Compound 7b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{~s}$, $1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.1$ and 16.6 Hz$), 3.12(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.3$ and 16.6 Hz$), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.53-1.12(\mathrm{~m}, 6 \mathrm{H}), 0.94-0.88$ ($\mathrm{m}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.1,151.8,144.0,138.0,128.4,128.3,127.7$,
$111.1,76.5,54.9,40.1,38.4,34.5,33.6,33.5,26.7,26.39,26.36,14.7,13.9$; TLC Rf 0.44 (30% EtOAc/70\% hexanes); HPLC [(Column: Chiralcel OD ($0.46 \mathrm{~cm} \times 25$ cm)(from Daicel Chemical Ind., Ltd.)] [254 nm; solvent: hexane:i-PrOH=99:1, flow rate $=0.25 \mathrm{~mL} / \mathrm{min}$. Rt 33 min (major); Rt 45 min (major)]; Analysis Calc'd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, $71.51, \mathrm{H}, 8.46 ; \mathrm{N}, 11.37$; found: $\mathrm{C}, 71.41 ; \mathrm{H}, 8.51 ; \mathrm{N}, 11.50$.

Compound 7c: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.22(\mathrm{~m}, 10 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~s}$, 1 H), $4.70(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.8$ and 16.6 Hz), 3.19 (dd, $1 \mathrm{H}, \mathrm{J}=4.8$ and 16.6 Hz), $3.04(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.5$ and 13.7 Hz), $2.85(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.7$ and 13.7 Hz), 2.51 ($\mathrm{s}, 3 \mathrm{H}$), $2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,151.9,144.1,138.5,137.9$, 129.6, 128.6, 128.5, 128.4, 127.8, 126.6, 111.2, 76.6, 59.0, 38.4, 37.5, 14.7, 14.0; TLC Rf 0.54 ($30 \% \mathrm{EtOAc} / 70 \%$ hexanes); HPLC [(Column: Chiralcel OD ($0.46 \mathrm{~cm} \times 25$ $\mathrm{cm})($ from Daicel Chemical Ind., Ltd.)] 254 nm ; solvent: hexane: $\mathrm{i}-\mathrm{PrOH}=98: 2$, flow rate $=$ $1 \mathrm{~mL} / \mathrm{min}$. Rt 9 min (major); Rt 13 min (minor)] Analysis Calc'd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 72.70, H, 6.93; N, 11.56; found: C, 72.34; H, 6.90; N, 11.43.

Compound 7d: $\mathrm{mp} 30-32{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.93$ (s , $2 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.39-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.8$ and 3.0 Hz$), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.22$ $(\mathrm{s}, 3 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.96$ (overlapping doublets, 6 H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 173.5,151.8,144.1,138.0,128.4,128.3,127.7,111.2,76.2,62.7,34.8,29.3$, 19.4, 18.5, 14.7, 13.9. TLC Rf 0.69 (30% EtOAc/70\% hexanes); HPLC [(Column: Chiralcel OJ ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$)(from Daicel Chemical Ind., Ltd.)] [254 nm ; solvent: hexane:i- $\mathrm{PrOH}=96: 4$, flow rate $=0.15 \mathrm{~mL} / \mathrm{min}$. Rt 40 min (major) ; Rt 45 min (minor)] Analysis Calc'd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 68.54; H, 7.99; N, 13.32; found: C, 68.87; H, 7.78; N, 13.41.

Compound 7e: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.19(\mathrm{~m}, 10 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}$, $1 \mathrm{H}), 4.69(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.1$ and 8.3 Hz), 4.56 (dd, $2 \mathrm{H}, \mathrm{J}=11.4,16.0$), 3.67 (dd, $1 \mathrm{H}, \mathrm{J}=8.3$ and 16.9 Hz$), 3.47(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.1$ and 16.9 Hz$), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0,152.1,144.1,140.6,137.7,128.5,128.3,127.9,127.84$, $127.76,111.3,111.2,76.7,61.5,39.7,14.6,13.9$; TLC Rf 0.57 ($30 \% \mathrm{EtOAc} / 70 \%$ hexanes); HPLC [(Column: Chiralcel OJ ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$)(from Daicel Chemical Ind., Ltd.)] [254 nm; solvent: hexane:i-PrOH=90:10, flow rate $=1 \mathrm{~mL} / \mathrm{min}$. Rt 18 min (major); Rt 27 min (minor)]. Analysis Calc'd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 72.18; H, 6.63; N, 12.03; found: C, 72.12; H, 6.71; N, 12.15.

Control Experiments:

Experiment 1:

Following the general procedure outlined for stoichiometric Lewis acid, subjecting racemic 3 to the reaction conditions gave 98% recovered 3 with $<1 \%$ ee.

Experiment 2:

Following the general procedure outlined for stoichiometric Lewis acid, subjecting 3 (S isomer, $50 \% e e$) to the reaction conditions gave 90% recovery of 3 with 48% ee with the (S)-configuration.

(S)-Isomer 50% ee

90\% recovery
(S)-isomer 48\%ee

Experiment 3: Crossover Experiment

An experiment using racemic 3 and oxazolidinone 11 in the presence of the chiral Lewis acid showed no crossover product 12 .

A control for the crossover experiment using 11 and the standard reaction conditions gave 12.

11

$\mathrm{H}_{2} \mathrm{NOBn}$

12
82\% chemical Yield 28\% ee

