

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permission.html

SUPPORTING INFORMATION

Experimental

4,

1. To a solution of a tetra(bromomethyl)cavitand^{2a, 11} (1.0 g, 1.04 mmol) and diethyl iminodiacetate (1.6 g, 8.3 mmol) in freshly distilled THF (150 mL) was added potassium carbonate (3.0 g, 0.0217 mol) and the mixture heated under reflux (12 h). Upon cooling to room temperature it was filtered and the solution evaporated (under reduced pressure) to a viscous yellow oil. The addition of diethyl ether afforded a brown solid which was removed by filtration through a celite pad and discarded. Upon standing, white crystals of 1 were deposited (0.82 g, 56%). Crystals suitable for X-ray diffraction were grown by vapor diffusion of diethyl ether into a solution of 1 in chloroform, mp 159-162 °C. IR (KBr mull) cm⁻¹: 2977s, (CO) 1742vs, 1468s, 1192s, 979s, 585w. ¹H NMR (200 MHz, CDCl₃) δ 7.20 (s, 4 H, C₆H), 5.80 (d, 4 H, J = 7.2, outer OCH_2O , 4.98 (q, 4 H, J = 7.4, CHCH₂), 4.13 (m, 12 H, inner OCH₂O overlapped with ester CH₂CH₃), 3.71 (s, 8 H, benzyl CH₂), 3.49 (s, 16 H, CH₂CO₂R), 1.73 (d, 12 H, J=7.2, CHCH₃), 1.14 (t, 12 H, J = 7.2, ester CH₂CH₃). MS (FAB) *m/e*: 1396 (M⁺, 100 %). Anal. Calcd for C₇₂H₉₂N₄O₂₄·0.5CHCl₃: C, 59.70; H, 6.40; N, 3.84. Found: C, 59.70; H, 6.17; N, 3.57.

Supporting Information

 $Ba_4L\cdot 24H_2O$ **2**. A solution of 1 (0.40g, 0.29 mmol) in THF (75 cm3) was treated with a suspension of barium hydroxide octahydrate (0.81g, 2.6 mmol) in water (50 mL). The mixture was heated and stirred (14 h, 80 (C), cooled to room temperature and the precipitate thus formed was removed by filtration, washed with acetone and ether and left to dry, to yield **2** as a white powder (0.60 g, 96%). IR (KBr mull) cm⁻¹: 3400br, 1578vs, 1408, 974. ¹H NMR (500 MHz, D₂O/trifluoroacetic acid) δ 7.71 (s, 4 H, C₆H), 5.83 (d, 4 H, J = 7.0, outer OCH₂O), 4.36 (s, 8 H, benzyl CH₂), 4.21 (d, 4H, J = 7.0, inner OCH₂O), 4.04 (s,16 H, CH₂CO₂H), 1.79 (d, 12 H, J=7.0, CHCH₃). Anal. Calcd for C₅₆H₅₂Ba₄N₄O₂₄·24H₂O: C, 31.33; H, 4.70; N, 2.61. Found: C, 31.24; H, 4.07; N, 2.37.

 $[Co_4L_2][Ba_{2.66}Co_{1.33}]$ ·42H₂O 3, Compound 2 (0.100g, 0.0465 mmol) was stirred in 1M hydrochloric acid (10 mL) until a clear solution was obtained. Water (10 mL), cobalt(II) chloride hexahydrate (80 mg, 0.336 mmol) and magnesium acetate (50 mg, 0.234 mmol) were added to the stirred pale orange/pink solution. Potassium carbonate was added until the solution became pink (pH 5), upon which it was filtered and layered with isopropyl alcohol. After two days pink prismatic crystals of 3 formed (0.054g, 61%). IR (KBr mull) cm⁻¹: 3436br, 1618s, 1387m, 1107m, 978m. Anal. Calcd for C₁₁₂H₁₀₄Co_{5.33}Ba_{2.66}N₈O₄₆·42H₂O: C, 35.71; H, 5.03; N, 2.97. Found: C, 35.65; H, 4.86; N, 2.92. The octaanionic complex 3 was crystallized as a mixed barium and cobalt salt. Analysis of crystals of 3 by ICP showed the only metal ions to be present were cobalt and barium in the molar ratio of two to one. The sodium salt of 3 can be obtained by disolving 2 in 1 M HCl, adding Na₂SO₄, removing the BaSO₄ precipitate, adding CoCl₂ and raising the solution pH with 1 M NaOH solution. The role of the magnesium or calcium acetate in the crystallization process is currently unknown. Experimental Details for the Structure Determination of III

Single crystal data for **3** were collected using a Siemens R3m/V automated diffractometer with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Lattice parameters were calculated using a least-squares procedure involving 38 (9.95°< 20 < 31.78°) carefully centered reflections. The crystals of **3** lost solvent rapidly, so the crystal used for data collection was sealed in a quartz capillary and emersed in its mother liquor. Crystal data and experimental conditions are listed in the supporting data. An empirical absorption connection based on Ψ scans was applied to the data with minimum and maximum transmissions of 0.238 and 0.265. (Estimated range of transmission factors is between 0.55 and 0.75.)

A partial structure was obtained using direct methods and the structure was completed using Fourier methods. A difference map of the structure contained a large peak near **3** with a smaller peak about 1.5Å from the large peak. The stoichiometry of the compound required that an additional divalent cation must be included in the asymmetric unit . Because Ba^{2+} and Co^{2+} were used in the synthesis of **3** the larger peak was selected as the position of a partial Ba^{2+} and the smaller peak was assumed to be a partial Co^{2+} . Stoichiometry required that the sum of the population parameters of the disordered cations be 1.0 and imposing this restriction during the final cycles of refinements, the final occupancy factors of the Ba^{2+} and Co^{2+} were 0.63 and 0.37 respectively. The resulting ratio total of Co^{2+} to Ba^{2+} was 1.37/0.63 or 2.2 which agreed well with the ICP data which indicated that the Co/Ba ratio was 2. The Ba^{2+} is coordinated to two oxygen atoms of the ligand and seven water molecules. It was

4

possible to find only one ligand (O58) for the Co^{2+} in the difference maps because of the small scattering of the partial oxygen atoms (0.37) and the presence of the many oxygen atoms bound to Ba^{2+} . The positional parameters of the oxygen bound to Co2 (O58) were not refined but the oxygen was refined isotropically. It was possible to find one half of a methanol molecule and four additional water molecules in the difference maps. All non-hydrogen atoms with the exception of six of the water oxygen atoms were refined anisotropically. Several of those water molecules appeared to be disordered but only the disorder of O56 could be resolved. Positions for the hydrogen atoms bonded to the carbon atoms of **3** were calculated. The large R value can partially be attributed to the disorder of the counter cations and the inability to resolve the coordination of the Co^{2+} from that of the Ba^{2+} . The structure of **3** was refined to the appropriate structure with reasonable bond lengths and angles.

Table 1. Crystal data and structure refinement for III.

Identification code	col	
Empirical formula	C114 H104 Ba2.52 Co5.48 N8 081.16	
Formula weight	3553.56	
Temperature	293(2) K	
Wavelength	0.71073 A	
Crystal system	tetragonal	
Space group	I4(1)/a	
Unit cell dimensions	a = 20.129(4) A alpha = 90 deg. b = 20.129(4) A beta = 90 deg. c = 54.399(18) A gamma = 90 deg.	
Volume	22041(10) A^3	
Z	4	
Density (calculated)	1.071 Mg/m^3	
Absorption coefficient	0.916 mm ⁻¹	
F(000)	7129	
Crystal size	0.6 x 0.6 x 0.4 mm	
Theta range for data collection	2.02 to 23.06 deg.	
Index ranges	0<=h<=22, 0<=k<=22, -59<=1<=0	
Reflections collected	7867	
Independent reflections	7447 [R(int) = 0.0957]	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	7394 / 0 / 501	
Goodness-of-fit on F^2	1.031	
Final R indices [I>2sigma(I)]	R1 = 0.1113, WR2 = 0.2869	
R indices (all data)	R1 = 0.2340, WR2 = 0.4226	
Largest diff. peak and hole	0.765 and -0.527 e.A^-3	

6

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (A² $x \ 10^3$) for III. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
Co(1)	1475(1)	9129(1)	1246(1)	47(1)
0(1)	1403(5)	14510(5)	6.52(2)	53(3)
0(2)	317(5)	14934(5)	649(2)	43(3)
0(3)	1772(5)	11186(5)	720(2)	52(3)
0(4)	2196(5)	12274(5)	721(2)	51(3)
0(5)	3659(7)	12192(7)	916(3)	90(5)
0(6)	3511(5)	12958(5)	1205(2)	56(3)
0(7)	3932(6)	14533(6)	1004(3)	67(3)
0(8)	3815(8)	15174(9)	680(4)	128(7)
0(9)	1055(7)	7948(6)	654(2)	80(4)
0(10)	1511(6)	8353(5)	997(2)	55(3)
0(11)	2915(7)	10213(7)	914(3)	84(4)
O(12)	22/4(6)	9773(6)	1201(2)	65(3)
$N(\perp)$	2867(6)	13785(6)	893(2)	45(3)
$\mathbb{N}(\mathbb{Z})$	1250(0)	9598(5)	891(2)	42(3)
C(1)	650(9)	14212(7)	-63(3)	57(5)
C(2)	1122(7)	12715(7)	210(3)	39(4)
C(3)	1125(7)	13059(9)	2.24 (2) 2.19 (2)	39(4)
C(4)	1549(7)	12569(7)	240(3)	40(4)
C(5)	1941(7)	12303(7)	507(5)	40(4)
C(0)	1814(7)	13375(7)	594(3)	43(4)
C(8)	1443(7)	13853(7)	556(3)	42(4)
C(0)	835(8)	14664(8)	792(3)	50(4)
C(11)	1657(9)	11861(9)	-14(3)	64 (5)
C(12)	1612(8)	11879(8)	262(3)	48(4)
C(13)	1101(7)	11408(6)	369(3)	40(4)
C(14)	501(7)	11303(7)	245(3)	40(4)
C(15)	6(8)	10851(7)	338(3)	44(4)
C(16)	143(8)	10536(7)	553(3)	46(4)
C(17)	753 (8)	10621(7)	678(3)	41(4)
C(18)	1195(7)	11083(6)	594 (3)	38(4)
C(19)	1817 (9)	11790(7)	853 (3)	54 (5)
C(21)	2183(7)	13559 (8)	926(3)	51(4)
C(22)	3287 (8)	13255(8)	737 (3)	50(4)
C(23)	3491(9)	12754(9)	983(4)	60(5)
C(24)	2966(8)	14410(8)	754(3)	56(5)
C(25)	3605(10)	14720(10)	812(4)	73(6)
C(31)	898(8)	10241(7)	918(3)	53(4)
C(32)	861(9)	9098(7)	748(3)	53(4)
C(33)	1171(8)	8420(9)	810(4)	54(4)
C(34)	1917(9)	9703(8)	789(3)	57(5)
C(35)	2394(8)	9920(9)	984(4)	62 (5)
Ba	1707(1)	6948(1)	973(1)	64(1)
Co(2)	1914(3)	7227(3)	1214(1)	44(2)
0(51)	1336(8)	5846(7)	1255(3)	46(4)
0(52)	360(8)	6911(10)	1031(4)	78(7)
0(53)	2/91(10)	6094(10)	1072(5)	91(8)
$\cup(54)$	1335(60)	7330(17)	1450(13)	5//(90)
0(55)	2641(22)	7272(19)	632(7)	190(16)

© 1998 American Chemical Society J. Am. Chem. Soc. V120 Page/111 Fox Supplemental Page 8

				8
0(56)	1781(28)	6039(28)	594(10)	120(18)
0(56A)	847(16)	6299(16)	579(6)	50(9)
0(57)	2602(20)	7525(20)	1270(7)	174(14)
0(58)	1765	6867	859	214(59)
0(59)	0	7500	366(4)	157(12)
0(60)	0	2500	734(6)	168(12)
0(61)	6592(18)	3818(18)	536(6)	264(15)
0(62)	3038 (23)	6004 (23)	388(8)	350(22)
C(63)	-28 (20)	3468(14)	1155(6)	50(9)
0(64)	649 (21)	3226(15)	1141(5)	114(14)

related atom.)	
Co(l)-O(10)	2.068(11)
Co(l)-N(2)	2.192(13)

Co(1)-O(7A) O(2)-C(9) O(3)-C(18) O(4)-C(6) O(5)-C(23) O(6)-Co(1A) O(7)-Co(1A) O(9)-C(33)	2.095(12) 1.41(2) 1.36(2) 1.38(2) 1.24(2) 2.084(11) 2.095(12) 1.29(2)
O(10) = C(33) O(11) = C(35)	1.24(2) 1.26(2)
N(1) = C(21) N(1) = C(24)	1.46(2)
N(2) - C(31)	1.48(2) 1.49(2)
N(2) - C(34)	1.46(2)
C(2) - C(3)	1.51(2)
C(3) - C(4)	1.41(2)
C(4) - C(5) C(5) - C(12)	1.39(2)
C(7) - C(8)	1.51(2) 1.40(2)
C(11) - C(12)	1.50(2)
C(13) - C(14)	1.40(2)
C(14) - C(15)	1.44(2)
C(15) - C(2A)	1.51(2)
C(16) = O(2A) C(17) = C(31)	1.42(2)
C(24) - C(25)	1.54(2) 1 46(2)
C(34) - C(35)	1.50(2)
Ba-0(51)	2.800(13)
Ba-0(52)	2.73(2)
Ba-0(54)	2.81(10)
Ba-0(56)	2.76(6)
DG=O(JOH)	3.05(3)

Co(1) - O(12)	2.080(13)
Co(1) - O(6A)	2.084(11)
$O(2) = C(16\lambda)$	2.245(13)
O(3) - C(10A)	$\pm .42(2)$
O(4) - C(19)	1 43(2)
O(6) - C(23)	1.28(2)
O(7) - C(25)	1.29(2)
0(8)-C(25)	1.23(2)
0(9)-Ea	2.964(12)
0(10)-Ba	2.858(9)
O(12) - C(35)	1.24(2)
N(1) - C(22) N(1) - Co(11)	1.48(2)
N(2) = CO(1A) N(2) = C(32)	2.245(3)
C(1) - C(2)	1.50(2)
C(2) - C(15A)	1.51(2)
C(3)-C(8)	1.39(2)
C(5)-C(6)	1.40(2)
C(6) - C(7)	1.37(2)
C(7) - C(21)	1.55(2)
C(12) - C(13)	1.52(2)
C(15) = C(18) C(15) = C(16)	1.40(2) 1.36(2)
C(16) - C(17)	1.30(2)
C(17) - C(18)	1.37(2)
C(22) - C(23)	1.53(2)
C(32)-C(33)	1.54(2)
C(63) - O(64)	1.45(5)
Co(2) - O(58)	2.083(7)
Ba-0(53) Ba-0(55)	2.83(2)
Ba=0(55) Ba=0(57)	2.12(4)
54 0(577	2.00(4)

•

Table 4. Bond angles (°) for I atom.)	II. ("A" denotes a symmetry related
Table 4. Bond angles (°) for I: atom.) O(10) -Co(1) -O(12) 111.5(5) O(12) -Co(1) -N(2) 77.5(5) O(12) -Co(1) -O(6A) 149.3(5) O(10) -Co(1) -O(7A) 89.9(5) N(2) -Co(1) -O(7A) 155.7(5) O(10) -Co(1) -N(1A) 156.9(4) N(2) -Co(1) -N(1A) 122.8(4) O(7A) -Co(1) -N(1A) 122.8(4) O(7A) -Co(1) -N(1A) 122.8(4) O(7A) -Co(1) -N(1A) 16.5(5) C(9) -O(2) -C(16A) 115.3(11) C(6) -O(4) -C(19) 116.5(12) C(25) -O(7) -Co(1A) 114.0(10) Co(1) -O(10) -C(33) 116.0(10) C(33) -O(10) -Ba 98.5(10) C(21) -N(1) -C(22) 111.3(12) C(22) -N(1) -C(24) 109.7(13) C(22) -N(1) -C(24) 109.7(13) C(22) -N(1) -C(31) 112.8(9) C(31) -N(2) -C(32) 112.1(12) C(31) -N(2) -C(34) 110.6(11) C(1) -C(2) -C(34) 110.6(11) C(1) -C(2) -C(34) 110.6(11) C(1) -C(2) -C(34) 105.3(16) C(2) -C(3) -C(8) 121.3(13) C(3) -C(4) -C(5) 123.9(15) C(4) -C(5) -C(12) 121.3(14) O(4) -C(6) -C(5) 119.2(13) C(5) -C(6) -C(7) 122.7(14) C(6) -C(7) -C(21) 121.0(14) O(1) -C(8) -C(3) 113.8(12) C(3) -C(4) -C(5) 123.7(14) C(3) -C(4) -C(5) 123.7(14) C(3) -C(4) -C(5) 123.7(14) C(4) -C(6) -C(7) 122.7(14) C(6) -C(7) -C(21) 121.0(14) O(1) -C(8) -C(3) 113.8(13) C(3) -C(4) -C(3) 113.5(13) C(3) -C(4) -C(3) 113.5(13) C(3) -C(4) -C(3) 113.2(7) C(3) -C(4) -C(3) 113.5(13) C(3) -C(4) -C(3) 113.2(7) C(3) -C(4) -C(3) 113.5(13) C(3) -C(4) -C(3) 113.2(7) C(3) -C(4) -C(3) 113.2(7) C(3) -C(4) -C(3) 113.2(7) C(3) -C(4) -C(3) 113.2(7) C(3) -C(4) -C(3) 113.5(13) C(3) -C(4) -C(3) 113.2(7) C(3) -C(4) -C(3) 113.	II. ("A" denotes a symmetry related O(10) -Co(1) -N(2) 75.3(6) O(10) -Co(1) -O(6A) 90.9(5) N(2) -Co(1) -O(6A) 88.5(5) O(12) -Co(1) -O(7A) 89.9(5) O(6A) -Co(1) -O(7A) 111.8(5) O(12) -Co(1) -N(1A) 87.4(5) O(6A) -Co(1) -N(1A) 77.4(5) C(8) -O(1) -C(9) 116.7(11) C(18) -O(3) -C(19) 116.0(11) C(23) -O(6) -Co(1A) 115.6(11) C(33) -O(9) -Ba 92.1(10) Co(1) -O(10) -Ba 141.5(5) Co(1) -O(12) -C(35) 114.3(11) C(21) -N(1) -C(24) 117.0(12) C(24) -N(1) -Co(1A) 103.9(9) Co(1) -N(2) -C(32) 106.0(9) Co(1) -N(2) -C(34) 102.5(9) C(32) -N(2) -C(34) 112.3(12) C(1) -C(2) -C(15A) 114.7(13) C(2) -C(3) -C(4) 122.5(14) C(4) -C(3) -C(8) 115.7(13) C(4) -C(5) -C(6) 116.8(14) C(6) -C(5) -C(12) 122.0(13) O(4) -C(6) -C(7) 118.0(14) C(6) -C(7) -C(21) 120.9(13) O(1) -C(8) -C(7) 118.8(12)
$\begin{array}{c} C(3) - C(8) - C(7) & 122.7 & 13 \\ C(5) - C(12) - C(11) & 114.1(13) \\ C(11) - C(12) - C(13) & 114.2(14) \end{array}$	$\begin{array}{c} O(1) - C(9) - O(2) & 112.7(13) \\ C(5) - C(12) - C(13) & 111.9(12) \\ C(12) - C(13) - C(14) & 110.4(14) \end{array}$
$\begin{array}{c} C(12) - C(13) - C(18) & 122.5(13) \\ C(13) - C(14) - C(15) & 121.4(14) \\ C(14) - C(15) - C(2A) & 121.2(13) \\ C(15) - C(16) - C(17) & 122.3(15) \\ \end{array}$	C(12) - C(13) - C(14) - 119.4(14) C(14) - C(13) - C(18) - 118.0(13) C(14) - C(15) - C(16) - 117.2(15) C(16) - C(15) - C(2A) - 121.3(14) C(15) - C(16) - O(2A) - 119.6(14)
$\begin{array}{c} C(17) - C(16) - O(2A) & 118.0(14) \\ C(16) - C(17) - C(31) & 120.8(14) \\ O(3) - C(18) - C(13) & 118.9(13) \\ C(13) - C(18) - C(17) & 121.5(14) \\ N(1) - C(21) - C(7) & 114.9(13) \\ O(5) - C(23) - O(6) & 124.5(18) \end{array}$	$\begin{array}{c} C(16) - C(17) - C(18) & 119.1(14) \\ C(18) - C(17) - C(31) & 119.9(14) \\ O(3) - C(18) - C(17) & 119.3(14) \\ O(3) - C(19) - O(4) & 111.2(13) \\ N(1) - C(22) - C(23) & 111.0(13) \\ O(5) - C(23) - C(22) & 118.1(17) \end{array}$

Table 4. Bond angles (°) for III. (continued)

.

117.3(15) 120.7(10)	N(1) - 0
120.7(19)	0(7)-0
105 A(12)	N(2)-(
105.4(15) 115.9(16)	0(9)-(
110.0(10)	0(10)-
117 1(10)	0(11)-
45 1/3	0(12)-
$\frac{1}{36} 2(4)$	O(9) - E
33.4(5)	O(9) - E
69.5(5)	O(36) = O(3)
134 4(6)	O(9) - E
136.6(5)	O(31) = O(31)
69.5(7)	O(9) = 0
69(2)	O(51) = O(53) =
75.1(9)	O(33) = O(10) =
138.4(9)	O(10) = O(52) =
75.1(9)	O(52) = O(54) =
92.1(12)	O(34) = O(10) =
84.2(12)	O(52) -
72.4(13)	O(54) -
67.1(15)	O(9) - B
68.8(9)	0(51) - 1
127.5(10)	0(53)-
60(2)	0(55)-
	$\begin{array}{c} 117.3(15)\\ 120.7(19)\\ 119(2)\\ 105.4(13)\\ 115.8(16)\\ 110.8(15)\\ 117.1(19)\\ 45.1(3)\\ 136.2(4)\\ 83.4(5)\\ 69.5(5)\\ 134.4(6)\\ 136.6(5)\\ 69.5(7)\\ 69(2)\\ 75.1(9)\\ 138.4(9)\\ 75.1(9)\\ 138.4(9)\\ 75.1(9)\\ 92.1(12)\\ 84.2(12)\\ 72.4(13)\\ 67.1(15)\\ 68.8(9)\\ 127.5(10)\\ 60(2)\\ \end{array}$

.

N(1) - C(24) - C(25)	111.7(14)
O(7) - C(25) - C(24)	120.0(16)
N(2) = C(31) = C(17)	116.4(13)
O(10) = C(33) = O(10)	124.0(16)
O(11) = C(35) = O(12)	120.2(15)
O(12) = C(35) = C(24)	121.1(19)
O(9) - Ba - O(51)	127 0(4)
O(9) - Ba - O(52)	$\pm 37.8(4)$
O(56) - Ba - O(57)	134 A (14)
O(9) - Ba - O(53)	1/10 0(5)
O(51) - Ba - O(53)	67 7(5)
O(9) - Ba - O(54)	103.7(13)
O(51) - Ba - O(54)	68,8(8)
O(53)-Ba-O(54)	101.3(17)
O(10)-Ba-O(55)	83.7(9)
O(52)-Ba-O(55)	140.5(10)
O(54)-Ba-O(55)	138.6(19)
O(10)-Ba-O(56)	134.2(12)
O(52) - Ba - O(56)	97.0(13)
O(54) - Ba - O(56)	152.4(16)
O(5) - Ba - O(5/)	110.9(9)
O(53) = Ba = O(57)	101.9(9)
O(55) - Ba - O(57)	68.3(10)
0(33) - Ba - 0(37)	81.U(13)

.

 $\mathbf{\hat{x}}$