J. Am. Chem. Soc., 1998, 120(13), 3243-3244, DOI:10.1021/ja9739260

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

Experimental Section

General

Solvents were dried by standard procedures. IR spectra were recorded on a Bio-Rad FTS-40 spectrophotometer. The NMR spectra were recorded on Bruker AC-E200, Bruker ACE-300, or a Varian Unity 400 plus spectrometer. For the ${ }^{31} \mathrm{P}$ NMR spectra, the spectrometer frequency at $81.015,121.496$, or 161.897 MHz was employed, respectively, and chemical shifts are given in $\mathrm{ppm}(\delta)$ relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ in CDCl_{3}. Values upfield of the standard are defined as negative. Mass spectrometric analyses were collected on a JEOL SX-102A spectrometer. Elemental analyses were done on a Perkin-Elmer 2400 CHN analyzer.

Synthesis and Characterization

$\left\{\mathrm{Pt}(\mathbf{P P h} 3)_{2}\left[\eta^{3} \mathbf{C H}_{2} \mathbf{C}\left(2\right.\right.\right.$-pyrrolyl) $\left.\left.\mathrm{CH}_{2}\right]\right\}\left(\mathrm{BF}_{4}\right)$ (2a). A two-necked round-bottomed flask was charged with $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{3}\right)\right]\left(\mathrm{BF}_{4}\right)(51 \mathrm{mg}$, 0.059 mmol) and dry $\mathrm{CDCl}_{3}(1 \mathrm{~mL})$. Pyrrole ($4 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) was injected into solution at $25^{\circ} \mathrm{C}$. The reaction solution was stirred in nitrogen atmosphere for 20 h . The conversion to 2 a was over 90% based on the NMR data. ${ }^{31}{ }^{1} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.5 \mathrm{MHz}\right) \delta 18.1\left(J_{\mathrm{P}-\mathrm{Pt}}=3757 \mathrm{~Hz}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.68\left(2 \mathrm{H}, \mathrm{dd}, J_{\mathrm{H}-\mathrm{H}}=3.0 \mathrm{~Hz}, J_{\mathrm{H}-\mathrm{P}}=7.0 \mathrm{~Hz}, J_{\mathrm{H}-\mathrm{Pt}}=45\right.$ Hz , anti-H), $3.74\left(2 \mathrm{H}, \mathrm{br}\right.$, syn-H), $6.0\left(1 \mathrm{H}, \mathrm{br}, 3-\mathrm{H}_{\mathrm{py}}\right), 6.2\left(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{H}_{\mathrm{py}}\right)$, 7.1-7.7 $(31 \mathrm{H}, \mathrm{m}$, phenyl H \& 5- Hpy$), 9.95(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $200 \mathrm{MHz}) \delta 58.6\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=3.8,35.9 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{Pt}}=106 \mathrm{~Hz}, \mathrm{C}_{\mathrm{t}}\right), 110.5\left(J_{\mathrm{C}-\mathrm{Pt}}=\right.$ $\left.12.1 \mathrm{~Hz}, 4-\mathrm{C}_{\mathrm{py}}\right), 112.2\left(J_{\mathrm{C}-\mathrm{Pt}}=23.8 \mathrm{~Hz}, 3-\mathrm{C}_{\mathrm{py}}\right), 125.6\left(\mathrm{~s}, J_{\mathrm{C}-\mathrm{Pt}}=16 \mathrm{~Hz}, 5-\right.$ $\left.\mathrm{C}_{\mathrm{py}}\right), 126.0\left(J_{\mathrm{C}-\mathrm{Pt}}=38 \mathrm{~Hz}, \mathrm{C}_{\mathrm{c}}\right), 128.2\left(\mathrm{~s}, 2-\mathrm{C}_{\mathrm{py}}\right), 128.6-133.6$ (phenyl C).
$\left\{\mathbf{P t}(\mathbf{P P h} 3)_{2}\left[\eta^{\mathbf{3}} \mathbf{C H}_{2} \mathbf{C}\left(\mathbf{2}-\mathbf{N}\right.\right.\right.$-methylpyrrolyl) $\left.\left.\mathbf{C H}_{2}\right]\right\}\left(\mathbf{B F}_{4}\right)(\mathbf{2 b})$.
$\left[\mathrm{Pt}-\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{3}\right)\right]\left(\mathrm{BF}_{4}\right)$ was prepared in situ with equimolar amount of trans $-\mathrm{Pt}(\mathrm{Br})\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{1}-\mathrm{CHCCH}_{2}\right)(302 \mathrm{mg}, 0.358 \mathrm{mmol})$ and $\mathrm{AgBF}_{4}(70$ $\mathrm{mg}, 0.358 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$. After filtering off AgBr precipitate,

N -methylpyrrole ($30 \mu \mathrm{~L}$) was charged and the reaction was allowed to last for 3 h at $25^{\circ} \mathrm{C}$. Adding diethyl ether to the concentrated reaction solution gave the product in 81% yield. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.5 \mathrm{MHz}\right) \delta 18.2\left(J_{\mathrm{P}-\mathrm{Pt}}=\right.$ $3823 \mathrm{~Hz}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.18\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}-\mathrm{P}}=9.0 \mathrm{~Hz}, J_{\mathrm{H}-\mathrm{Pt}}=\right.$ 41.5 Hz , anti-H), $3.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.55(2 \mathrm{H}, \mathrm{br}$, syn -H$), 6.07\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{H}-}\right.$ $\left.\mathrm{H}=2.0,3.9 \mathrm{~Hz}, J_{\mathrm{H}-\mathrm{Pt}}=11 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{py}}\right), 6.19\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{H}-\mathrm{H}}=2.6,3.9 \mathrm{~Hz}, 3-\right.$ $\left.\mathrm{H}_{\mathrm{py}}\right), 6.78\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{H}-\mathrm{H}}=2.0,2.6 \mathrm{~Hz}, J_{\mathrm{H}-\mathrm{Pt}}=10.3 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{py}}\right), 7.1-7.7(30 \mathrm{H}$, m, pheny1 H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50.3 \mathrm{MHz}\right) \delta 36.3\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 63.1\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}\right.$ $\left.=3.3,34.5 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{Pt}}=100.4 \mathrm{~Hz}, \mathrm{C}_{\mathrm{t}}\right), 109.0\left(J_{\mathrm{C}-\mathrm{Pt}}=10.1 \mathrm{~Hz}, 4-\mathrm{C}_{\mathrm{py}}\right), 113.8$ $\left(J_{\mathrm{C}-\mathrm{Pt}}=28 \mathrm{~Hz}, 3-\mathrm{C}_{\mathrm{py}}\right), 127.5-133.8$ (phenyl C, C_{c}, and 2-C C_{py}). Anal. Calcd for $\mathrm{PtC}_{44} \mathrm{H}_{40} \mathrm{NP}_{2} \mathrm{BF}_{4}$: C, 57.03; $\mathrm{H}, 4.35$; N, 1.51. Found : C, 56.30; H, 4.21; N, 1.19.
$\left\{\mathbf{P t}(\mathbf{P P h} 3)_{2}\left[\eta^{\mathbf{3}} \mathbf{C H}_{2} \mathbf{C}\left(\mathbf{3}\right.\right.\right.$-indolyl) $\left.\left.\mathbf{C H}_{2}\right]\right\}\left(\mathbf{B F}_{4}\right)$ (3a). Refer to the preparation of 2b. Complex 1 was prepared from trans $-\mathrm{Pt}(\mathrm{Br})\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{1-}\right.$ CHCCH_{2}) ($300 \mathrm{mg}, 0.358 \mathrm{mmol}$) and $\mathrm{AgBF}_{4}(78 \mathrm{mg}, 0.401 \mathrm{mmol})$ and was allowed to react with indole ($420 \mathrm{mg}, 3.59 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ for 7 h . The isolated yield was $286 \mathrm{mg}(83 \%)$. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.5 \mathrm{MHz}\right) \delta 18.8$ $\left(J_{\mathrm{P}-\mathrm{Pt}}=3803 \mathrm{~Hz}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.85\left(2 \mathrm{H}, \mathrm{dd}, J_{\mathrm{H}-\mathrm{H}}=1.2 \mathrm{~Hz}\right.$, $J_{\mathrm{H}-\mathrm{P}}=9.4 \mathrm{~Hz}, \quad J_{\mathrm{H}-\mathrm{Pt}}=44.2 \mathrm{~Hz}$, anti-H$), 3.89(2 \mathrm{H}, \mathrm{br}$, syn -H$), 6.84-7.71$ (35 H , phenyl \& indolyl H), $10.50(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ $\delta 61.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=31.9 \mathrm{~Hz}, \mathrm{C}_{\mathrm{t}}\right), 110.7,113.5,119.0,121.1,122.8,124.2$, 129.0, 137.4 ($\mathrm{C}_{\text {indolyl }}$), $132\left(\mathrm{C}_{\mathrm{c}}\right.$), 128-134 (phenyl C); MS (FAB, m/z): 876 $\left(\mathrm{M}^{+}-\mathrm{BF}_{4}\right)$. Anal. Calcd for $\mathrm{PtC}_{47} \mathrm{H}_{40} \mathrm{NP}_{2} \mathrm{BF}_{4}$: C, 58.56; $\mathrm{H}, 4.19 ; \mathrm{N}, 1.45$. Found: C, 57.70; H, 4.28; N, 1.45.
$\left.\left\{\mathbf{P t}\left(\mathbf{P P h}_{3}\right)_{2}\left[\eta^{3} \mathbf{- C H}_{2} \mathbf{C}(\mathbf{2 - (3 - m e t h y l i n d o l y l})\right) \mathrm{CH}_{2}\right]\right\}\left(\mathbf{B F}_{4}\right)$ (3b). Refer to the preparation of 3a. Complex 1 prepared from trans $-\mathrm{Pt}(\mathrm{Br})\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{1-}\right.$ CHCCH_{2}) ($300 \mathrm{mg}, 0.358 \mathrm{mmol}$) and $\mathrm{AgBF}_{4}(78 \mathrm{mg}, 0.401 \mathrm{mmol})$ reacted with 3-methylindole ($920 \mathrm{mg}, 7.02 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~mL}\right.$) at $5^{\circ} \mathrm{C}$ for 12 h gave 3b in 78% yield (273 mg). ${ }^{31 \mathrm{P}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 121.5 \mathrm{MHz}\right) \delta 17.9\left(J_{\mathrm{P}-\mathrm{Pt}}\right.$
$=3835 \mathrm{~Hz}) ;{ }^{1} \mathrm{H}$ NMR $\left.\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.08(3 \mathrm{H}, \mathrm{Me})\right), 3.94(2 \mathrm{H}, \mathrm{br}$, synH), $3.17\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}-\mathrm{H}}\right.$ unresolved, $J_{\mathrm{H}-\mathrm{P}}=9.0 \mathrm{~Hz}, J_{\mathrm{H}-\mathrm{Pt}}=40.8 \mathrm{~Hz}$, anti-H), 7.0-7.5 ($34 \mathrm{H}, \mathrm{m}$, phenyl \& indolyl H), $8.58(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100.6 \mathrm{MHz}) \delta 10.4\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 63.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=29.5 \mathrm{~Hz}, \mathrm{C}_{\mathrm{t}}\right), 112.3,115.5,119.4$, $119.8,120.1,136.6$ (indole-C), 127.1 (ipso-C), 129-133 (phenyl C). MS ($\mathrm{FAB}, \mathrm{m} / \mathrm{z}$): $890\left(\mathrm{M}^{+}-\mathrm{BF}_{4}\right)$.
$\left\{\mathbf{P t}\left(\mathrm{PPh}_{3}\right)_{2}\left[\eta^{3}-\mathrm{CH}_{2} \mathrm{C}\left(4-\mathrm{Me}_{2} \mathrm{NC}_{\mathbf{6}} \mathrm{H}_{4}\right) \mathrm{CH}_{2}\right]\right\}\left(\mathrm{BF}_{4}\right)$ (4). Refer to the preparation of 3a. Complex 1 prepared from trans $-\mathrm{Pt}(\mathrm{Br})\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{1}-\right.$ CHCCH_{2}) ($300 \mathrm{mg}, 0.358 \mathrm{mmol}$) and $\mathrm{AgBF}_{4}(78 \mathrm{mg}, 0.401 \mathrm{mmol}$) reacted with $\mathrm{PhNMe}_{2}(866 \mathrm{mg}, 7.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $5^{\circ} \mathrm{C}$ for 24 h gave 4 in 50% yield (173 mg). ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.5 \mathrm{MHz}\right) \delta 18.5\left(J_{\mathrm{P}-\mathrm{Pt}}=3799\right.$ $\mathrm{Hz}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.94\left(2 \mathrm{H}, \mathrm{dd}, J_{\mathrm{H}-\mathrm{H}}=3.8 \mathrm{~Hz}, J_{\mathrm{H}-\mathrm{P}}=9.2\right.$ $\mathrm{Hz}, J_{\mathrm{H}-\mathrm{Pt}}=37.1 \mathrm{~Hz}$, anti-H$), 3.10\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.73(2 \mathrm{H}$, br, syn -H$), 6.64$ $\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}-\mathrm{H}}=8.8 \mathrm{~Hz}, o\right.$-phenyl), $7.0-7.4\left(32 \mathrm{H}, \mathrm{m}\right.$, phenyl \& o-aryl H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) ~ \delta 40.1\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 61.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=30.4 \mathrm{~Hz}, \mathrm{C}_{\mathrm{t}}\right)$, 111.6 (o-aryl C), 120.7 (ipso-C), 128-134 (phenyl C), 152.5 (NC); MS (FAB, $\mathrm{m} / \mathrm{z}) 854\left(\mathrm{M}^{+}-\mathrm{BF}_{4}\right)$. Anal. Calcd for $\mathrm{PtC}_{4} 7 \mathrm{H}_{44} \mathrm{NP}_{2} \mathrm{BF}_{4} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 56.46 ; H, 4.46; N, 1.39. Found : C, 56.87; H, 4.44; N, 1.23.
$\left\{\mathbf{P t}\left(\mathrm{PPh}_{3}\right)_{2}\left[\eta^{\mathbf{3}} \mathbf{C H}_{\mathbf{2}} \mathbf{C}\left(\mathbf{2}, \mathbf{4}-(\mathrm{MeO})_{2} \mathbf{C}_{\mathbf{6}} \mathrm{H}_{3}\right) \mathrm{CH}_{\mathbf{2}}\right]\right\}\left(\mathrm{BF}_{4}\right)(\mathbf{5})$. Refer to the preparation of 3a. Complex 1 prepared from trans $-\mathrm{Pt}(\mathrm{Br})\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{1-}\right.$ CHCCH_{2}) ($300 \mathrm{mg}, 0.358 \mathrm{mmol}$) and $\mathrm{AgBF}_{4}(78 \mathrm{mg}, 0.401 \mathrm{mmol})$ reacted with $1,3-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}(1 \mathrm{~mL}, 7.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $5{ }^{\circ} \mathrm{C}$ for 3 days gave 5 in 83% yield (292 mg). ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.5 \mathrm{MHz}\right) \delta 19.2$ $\left(J_{\mathrm{P}-\mathrm{Pt}}=3875 \mathrm{~Hz}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.07\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}-\mathrm{P}}=8.3 \mathrm{~Hz}\right.$, $J_{\mathrm{H}-\mathrm{Pt}}=39.3 \mathrm{~Hz}$, anti-H), $3.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.03(2 \mathrm{H}$, br, syn-H), $6.45\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{H}-\mathrm{H}}=1.9,8.7 \mathrm{~Hz}, m-\mathrm{CH}\right), 6.54\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}-\mathrm{H}}=1.9\right.$ $\mathrm{Hz}, m-\mathrm{CH}), 7.0-7.4(31 \mathrm{H}, \mathrm{m}$, phenyl \& o-aryl H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6\right.$ $\mathrm{MHz}) \delta 55.6,55.9\left(\mathrm{~s}, \mathrm{~s}, \mathrm{OCH}_{3}\right), 66.8\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=3.8,32.6 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{Pt}}=85.0\right.$ $\mathrm{Hz}, \mathrm{C}_{\mathrm{t}}$), $98.8,105.8$ ($\mathrm{s}, \mathrm{s}, m-\underline{\mathrm{C}} \mathrm{H}$), 115.6 (s , ipso- C), 133.9 ($\mathrm{s}, \mathrm{C}_{\mathrm{c}}$), 129-134
(phosphino phenyl C), $159.3\left(J_{\mathrm{C}-\mathrm{Pt}}=16.7 \mathrm{~Hz}, o-\mathrm{C}\right), 163.3\left(J_{\mathrm{C}-\mathrm{Pt}}=9.1 \mathrm{~Hz}, p-\right.$ C). MS (FAB, m/z): $896\left(\mathrm{M}^{+}-\mathrm{BF}_{4}\right)$.
$\left\{\mathbf{P t}\left(\mathbf{P P h}_{3}\right)_{2}\left[\eta^{3} \mathbf{- C H}_{\mathbf{2}} \mathbf{C}\left(\mathbf{2 , 4 , 6}-(\mathbf{M e O})_{3} \mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{2}}\right) \mathbf{C H}_{2}\right]\right\}\left(\mathrm{BF}_{4}\right)(6)$. Refer to the preparation of 3a. Complex 1 prepared from trans $-\mathrm{Pt}(\mathrm{Br})\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{1}-\right.$ CHCCH_{2}) ($300 \mathrm{mg}, 0.358 \mathrm{mmol}$) and $\mathrm{AgBF}_{4}(78 \mathrm{mg}, 0.401 \mathrm{mmol})$ reacted with $1,3,5-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}(1.2 \mathrm{~g}, 7.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $5^{\circ} \mathrm{C}$ for 24 h gave 6 in 84% yield (305 mg). ${ }^{31 \mathrm{P}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 121.5 \mathrm{MHz}\right) \delta 19.1\left(J_{\mathrm{P}-\mathrm{Pt}}\right.$ $=3912 \mathrm{~Hz}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.12\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}-\mathrm{P}}=8.3 \mathrm{~Hz}, J_{\mathrm{H}-\mathrm{Pt}}=\right.$ 40.7 Hz , anti-H), $3.47\left(6 \mathrm{H}, \mathrm{s}, o-\mathrm{OCH}_{3}\right), 3.92\left(3 \mathrm{H}, \mathrm{s}, p-\mathrm{OCH}_{3}\right), 4.08(2 \mathrm{H}, \mathrm{br}$, syn-H), $6.19(2 \mathrm{H}, \mathrm{s}, m-\mathrm{CH}), 7.1-7.3(30 \mathrm{H}, \mathrm{m}$, phenyl H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100.6 \mathrm{MHz}) \delta 55.8,56.0\left(\mathrm{~s}, \mathrm{~s}, \mathrm{OCH}_{3}\right), 69.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=29.6 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{Pt}}=89.5\right.$ $\left.\mathrm{Hz}, \mathrm{C}_{\mathrm{t}}\right), 91.1(\mathrm{~s}, m-\mathrm{C}), 104.1\left(J_{\mathrm{C}-\mathrm{Pt}}=17.5 \mathrm{~Hz}\right.$, ipso-C), $133\left(\mathrm{~s}, \mathrm{C}_{\mathrm{c}}\right), 129-134$ (phosphino phenyl C), 160.1 ($J_{\mathrm{C}-\mathrm{Pt}}=19.0 \mathrm{~Hz}, o-\mathrm{C}$), 163.0 (s, $p-\mathrm{C}$). MS ($\mathrm{FAB}, \mathrm{m} / \mathrm{z}$): 927 ($\mathrm{M}^{+}-\mathrm{BF}_{4}$).

2-(2',4', $\mathbf{6}^{\prime}$-trimethoxyphenyl)propene
 $\mathrm{CH}_{2}=\mathrm{C}\left[2^{\prime}, 4^{\prime}, 6^{\prime}-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right] \mathrm{CH}_{3}$ (7a).

Compound 7a was resulted from the reaction of $6(30 \mathrm{mg}, 0.03 \mathrm{mmol})$ and $\mathrm{Bu}_{4} \mathrm{NBH}_{4}(15 \mathrm{mg}, 0.06 \mathrm{mmol})$ in CDCl_{3} for 1 day. The yield was 60% based on the NMR data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.99\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{H}-\mathrm{H}}=0.7\right.$, $\left.1.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.87\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.84\left(1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{H}-\mathrm{H}}=\right.$ $\left.0.7,2.5 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 5.30\left(1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{H}-\mathrm{H}}=1.4,2.5 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 6.15(2 \mathrm{H}, m-$ $\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 23.7\left(\mathrm{CH}_{3}\right), 55.3,55.9\left(\mathrm{OCH}_{3}\right), 90.8$ $(m-\mathrm{C}), 116.0\left(=\mathrm{CH}_{2}\right), 139.1(\mathrm{Ar}-\underline{\mathrm{C}}), 157.8(o-\mathrm{C}), 160.0(p-\mathrm{C}) ;$ HRMS: calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$208.1099, found 208.1090.
(3-phenylthio)-2-($2^{\prime}, 4^{\prime}, 6^{\prime}$-trimethoxyphenyl)-propene $\mathrm{CH}_{2}=\mathrm{C}\left[2^{\prime}, 44^{\prime}, 6^{\prime}-(\mathrm{MeO}){ }_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right] \mathrm{CH}_{2}$ (SPh) (7b).
Compound 7 c was resulted from the reaction of $6(30 \mathrm{mg}, 0.03 \mathrm{mmol})$ and $\mathrm{NaSPh}\left(12 \mathrm{mg}, 0.09 \mathrm{mmol}\right.$) in CDCl_{3} for 3 days. The yield was 58% based on the NMR data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.73(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH} 3), 3.80(3 \mathrm{H}$,
$\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 3.83\left(2 \mathrm{H}, \mathrm{dd}, J_{\mathrm{H}-\mathrm{H}}=0.9,1.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.05\left(1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{H}-\mathrm{H}}=0.9\right.$, $\left.1.7 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 5.57\left(1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{H}-\mathrm{H}}=1.4,1.7 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 6.12(2 \mathrm{H}, m-\mathrm{CH})$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 39.6\left(\mathrm{CH}_{2}\right), 55.3,55.7\left(\mathrm{OCH}_{3}\right), 90.7(\mathrm{~m}-\mathrm{C})$, $118.2\left(=\underline{\mathrm{CH}}_{2}\right), 137.7$ (Ar-C), 158.4 ($o-\mathrm{C}$), $160.5(p-\mathrm{C})$; HRMS: calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right) 316.1133$, found 316.1136 .

4,4-bis(phenylsulfonyl)-2-($2^{\prime}, 4^{\prime}, 6^{\prime}$-trimethoxyphenyl)-1-butene $\mathrm{CH}_{2}=\mathrm{C}\left[2^{\prime}, 4^{\prime}, 6^{\prime}-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right] \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{SO}_{2} \mathbf{P h}\right)_{2}(\mathbf{7 c})$.

Refer to the preparation of $\mathbf{7 b}$. The yield was 34% based on the NMR data. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.20\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}-\mathrm{H}}=4.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.67(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.53\left(1 \mathrm{H}, \mathrm{t}, J_{\mathrm{H}-\mathrm{H}}=4.5 \mathrm{~Hz}, \mathrm{CH}\right), 4.86,5.20(1 \mathrm{H}$, $\left.1 \mathrm{H}, \mathrm{d}, \mathrm{d}, J_{\mathrm{H}-\mathrm{H}}=1.2 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 5.98(2 \mathrm{H}, m-\mathrm{CH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100.6\right.$ $\mathrm{MHz}) \delta 29.7\left(\mathrm{CH}_{2}\right), 55.3,55.7\left(\mathrm{OCH}_{3}\right), 80.0(\mathrm{CH}), 90.7(m-\mathrm{C}), 113.5\left(=\mathrm{CH}_{2}\right)$, 120.3 (ipso-C), 138.6 (Ar-C), 158.2 (o-C), 160.8 ($p-\mathrm{C}$); HRMS: calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right) 502.1120$, found 502.1087.

Crossover Labeling Experiment.

Comlpex 1 prepared from the reaction of trans $-\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{1}-\mathrm{C}_{3} \mathrm{H}_{3}\right)(\mathrm{Br})$ ($100 \mathrm{mg}, 0.119 \mathrm{mmol}$) and $\mathrm{AgBF}_{4}(26 \mathrm{mg}, 0.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$, reacted with a mixture of $1,3,5-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}(200 \mathrm{mg}, 1.19 \mathrm{mmol})$ and $1,3,5-$ $(\mathrm{MeO}){ }_{3} \mathrm{C}_{6} \mathrm{D}_{3} /-1,3,5-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{D}_{2} \mathrm{H}\left(\mathrm{d}_{3}: \mathrm{d}_{2}=78: 22,204 \mathrm{mg}, 1.19 \mathrm{mmol}\right)$ at 5 ${ }^{\circ} \mathrm{C}$ for 1 day. The deuterium-labeled complex 6 ' was precipitated by adding diethylether to the concentrated reaction solution. The integrations of the ${ }^{1} \mathrm{H}$ NMR resonances for $\mathbf{6}^{\prime}$ are: $\delta 3.12(2 \mathrm{H}, 7.05), \delta 3.47(6 \mathrm{H}, 23.8), \delta 3.92(3 \mathrm{H}$, $10.8), \delta 4.08(2 \mathrm{H}, 6.92), \delta 6.19(2 \mathrm{H}, 4.01)$.

The reaction of 6' ($50 \mathrm{mg}, 0.05 \mathrm{mmol}$) and $\mathrm{NaSPh}(20 \mathrm{mg}, 0.15 \mathrm{mmol})$ was stirred in CDCl_{3} at $25^{\circ} \mathrm{C}$ for 3 days to gave deuterated products of $7 \mathbf{b}$. In the ${ }^{1} \mathrm{H}$ NMR spectra, the deuterium was found at $\delta 3.83,5.05,5.57$, and
6.12. The HRMS showed the relative intensities for $\mathrm{M}(316.1141): \mathrm{M}+1-$ (317.1196): $\mathrm{M}+2(318.1264): \mathrm{M}+3(319.1307)=24: 31: 34: 12$. 7 b contains 18 carbon atoms. The data is then calibrated with the ${ }^{13} \mathrm{C}$ abundance. The ratio of $\mathrm{M}: \mathrm{M}+1: \mathrm{M}+2: \mathrm{M}+3$ becomes 28:31:34:7. The starting labeling ratio for $1,3,5$-trimethoxybenzene is $\mathrm{d}_{0}: \mathrm{d}_{2}: \mathrm{d}_{3}=50: 11: 39$. The labeling ratio would be exactly the same, if the reaction of $\mathbf{1}$ and arene underwent an intramolecular process. Without considering the primary isotope effect, the data with full deuterium scrambling could be calculated.

$$
\begin{aligned}
& \mathrm{d}_{0}=(50)(11 / 3+50)=26.8 \\
& \mathrm{~d}_{1}=(50)(11 \times 2 / 3+39)+(11 \times / 3+50)(11 \times 2 / 3)=27.1 \\
& \mathrm{~d}_{2}=(39+11 \times 2 / 3)(11 \times 2 / 3)+(11 / 3+50)(11 / 3+39)=26.3 \\
& \mathrm{~d}_{3}=(39+11 / 3)(11 \times 2 / 3+39)=19.8
\end{aligned}
$$

These experimental data match with an intermolecular process.

