

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Experimental Section

General

Solvents were dried by standard procedures. IR spectra were recorded on a Bio-Rad FTS-40 spectrophotometer. The NMR spectra were recorded on Bruker AC-E200, Bruker ACE-300, or a Varian Unity 400 plus spectrometer. For the ³¹P NMR spectra, the spectrometer frequency at 81.015, 121.496, or 161.897 MHz was employed, respectively, and chemical shifts are given in ppm (δ) relative to 85% H₃PO₄ in CDCl₃. Values upfield of the standard are defined as negative. Mass spectrometric analyses were collected on a JEOL SX-102A spectrometer. Elemental analyses were done on a Perkin-Elmer 2400 CHN analyzer.

Synthesis and Characterization

{Pt(PPh₃)₂[η^3 -CH₂C(2-pyrrolyl)CH₂]}(BF₄) (2a). A two-necked round-bottomed flask was charged with [Pt(PPh₃)₂(η^3 -C₃H₃)](BF₄) (51 mg, 0.059 mmol) and dry CDCl₃ (1 mL). Pyrrole (4 μ L, 0.6 mmol) was injected into solution at 25 °C. The reaction solution was stirred in nitrogen atmosphere for 20 h. The conversion to 2a was over 90% based on the NMR data. ³¹P NMR (CDCl₃, 121.5 MHz) δ 18.1 (*J*_{P-Pt} = 3757 Hz); ¹H NMR (CDCl₃, 300 MHz) δ 2.68 (2H, dd, *J*_{H-H} = 3.0 Hz, *J*_{H-P} = 7.0 Hz, *J*_{H-Pt} = 45 Hz, anti-H), 3.74 (2H, br, syn-H), 6.0 (1H, br, 3-H_{py}), 6.2 (1H, br, 4-H_{py}), 7.1-7.7 (31H, m, phenyl H & 5-H_{py}), 9.95 (1H, br, N<u>H</u>); ¹³C NMR (CDCl₃, 200 MHz) δ 58.6 (dd, *J*_{C-P} = 3.8, 35.9 Hz, *J*_{C-Pt} = 106 Hz, C_t), 110.5 (*J*_{C-Pt} = 12.1 Hz, 4-C_{py}), 112.2 (*J*_{C-Pt} = 23.8 Hz, 3-C_{py}), 125.6 (s, *J*_{C-Pt} = 16 Hz, 5-C_{py}), 126.0 (*J*_{C-Pt} = 38 Hz, C_c), 128.2 (s, 2-C_{py}), 128.6-133.6 (phenyl C).

{Pt(PPh₃)₂[η^3 -CH₂C(2-N-methylpyrrolyl)CH₂]}(BF₄) (2b).

[Pt-(PPh₃)₂(η^3 -C₃H₃)](BF₄) was prepared in situ with equimolar amount of *trans*-Pt(Br)(PPh₃)₂(η^1 -CHCCH₂) (302 mg, 0.358 mmol) and AgBF₄ (70 mg, 0.358 mmol) in CH₂Cl₂ at -20 °C. After filtering off AgBr precipitate, N-methylpyrrole (30 μ L) was charged and the reaction was allowed to last for 3 h at 25 °C. Adding diethyl ether to the concentrated reaction solution gave the product in 81% yield. ³¹P NMR (CDCl₃, 121.5 MHz) δ 18.2 (*J*_{P-Pt} = 3823 Hz); ¹H NMR (CDCl₃, 300 MHz) δ 3.18 (2H, d, *J*_{H-P} = 9.0 Hz, *J*_{H-Pt} = 41.5 Hz, anti-H), 3.42 (3H, s, NCH₃), 3.55 (2H, br, syn-H), 6.07 (1H, dd, *J*_{H-H} = 2.0, 3.9 Hz, *J*_{H-Pt} = 11 Hz, 4-H_{py}), 6.19 (1H, dd, *J*_{H-H} = 2.6, 3.9 Hz, 3-H_{py}), 6.78 (1H, dd, *J*_{H-H} = 2.0, 2.6 Hz, *J*_{H-Pt} = 10.3 Hz, 5-H_{py}), 7.1-7.7 (30H, m, phenyl H); ¹³C NMR (CDCl₃, 50.3 MHz) δ 36.3 (s, NCH₃), 63.1 (dd, *J*_{C-P} = 3.3, 34.5 Hz, *J*_{C-Pt} = 100.4 Hz, C_t), 109.0 (*J*_{C-Pt} = 10.1 Hz, 4-C_{py}), 113.8 (*J*_{C-Pt} = 28 Hz, 3-C_{py}), 127.5-133.8 (phenyl C, C_c, and 2-C_{py}). Anal. Calcd for PtC44H40NP₂BF₄: C, 57.03; H, 4.35; N, 1.51. Found : C, 56.30; H, 4.21; N, 1.19.

{Pt(PPh₃)₂[η^3 -CH₂C(3-indolyl)CH₂]}(BF₄) (3a). Refer to the preparation of 2b. Complex 1 was prepared from *trans*-Pt(Br)(PPh₃)₂(η^{1} -CHCCH₂) (300 mg, 0.358 mmol) and AgBF₄ (78 mg, 0.401 mmol) and was allowed to react with indole (420 mg, 3.59 mmol) in CH₂Cl₂ at 25 °C for 7 h. The isolated yield was 286 mg (83%). ³¹P NMR (CDCl₃, 121.5 MHz) δ 18.8 (*J*_{P-Pt} = 3803 Hz); ¹H NMR (CDCl₃, 300 MHz) δ 2.85 (2H, dd, *J*_{H-H} = 1.2 Hz, *J*_{H-P} = 9.4 Hz, *J*_{H-Pt} = 44.2 Hz, anti-H), 3.89 (2H, br, syn-H), 6.84-7.71 (35H, phenyl & indolyl H), 10.50 (1H, s, N<u>H</u>); ¹³C NMR (CDCl₃, 100.6 MHz) δ 61.1 (d, *J*_{C-P} = 31.9 Hz, C_t), 110.7, 113.5, 119.0, 121.1, 122.8, 124.2, 129.0, 137.4 (C_{indolyl}), 132 (C_c), 128-134 (phenyl C); MS (FAB, m/z): 876 (M⁺-BF₄). Anal. Calcd for PtC₄₇H₄₀NP₂BF₄: C, 58.56; H, 4.19; N, 1.45. Found : C, 57.70; H, 4.28; N, 1.45.

{Pt(PPh₃)₂[η^3 -CH₂C(2-(3-methylindolyl))CH₂]}(BF₄) (3b). Refer to the preparation of 3a. Complex 1 prepared from *trans*-Pt(Br)(PPh₃)₂(η^1 -CHCCH₂) (300 mg, 0.358 mmol) and AgBF₄ (78 mg, 0.401 mmol) reacted with 3-methylindole (920 mg, 7.02 mmol) in CH₂Cl₂ (15 mL) at 5 °C for 12 h gave 3b in 78% yield (273 mg). ³¹P NMR (CDCl₃, 121.5 MHz) δ 17.9 (J_{P-Pt} = 3835 Hz); ¹H NMR (CDCl₃, 300 MHz) δ 2.08 (3H, Me)), 3.94 (2H, br, syn-H), 3.17 (2H, d, $J_{\text{H-H}}$ unresolved, $J_{\text{H-P}}$ = 9.0 Hz, $J_{\text{H-Pt}}$ = 40.8 Hz, anti-H), 7.0-7.5 (34H, m, phenyl & indolyl H), 8.58 (1H, s, N<u>H</u>); ¹³C NMR (CDCl₃, 100.6 MHz) δ 10.4 (s, <u>C</u>H₃), 63.6 (d, $J_{\text{C-P}}$ = 29.5 Hz, C_t), 112.3, 115.5, 119.4, 119.8, 120.1, 136.6 (indole-C), 127.1 (*ipso*-C), 129-133 (phenyl C). MS (FAB, m/z): 890 (M+-BF₄).

{Pt(PPh₃)₂[η^3 -CH₂C(4-Me₂NC₆H₄)CH₂]}(BF₄) (4). Refer to the preparation of **3a**. Complex **1** prepared from *trans*-Pt(Br)(PPh₃)₂(η^{1-} CHCCH₂) (300 mg, 0.358 mmol) and AgBF₄ (78 mg, 0.401 mmol) reacted with PhNMe₂ (866 mg, 7.16 mmol) in CH₂Cl₂ (15 mL) at 5 °C for 24 h gave 4 in 50% yield (173 mg). ³¹P NMR (CDCl₃, 121.5 MHz) δ 18.5 (J_{P-Pt} = 3799 Hz); ¹H NMR (CDCl₃, 300 MHz) δ 2.94 (2H, dd, J_{H-H} = 3.8 Hz, J_{H-P} = 9.2 Hz, J_{H-Pt} = 37.1 Hz, anti-H), 3.10 (6H, s, CH₃), 3.73 (2H, br, syn-H), 6.64 (2H, d, J_{H-H} = 8.8 Hz, *o*-phenyl), 7.0-7.4 (32H, m, phenyl & *o*-aryl H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 40.1 (s, <u>CH₃</u>), 61.6 (d, J_{C-P} = 30.4 Hz, C_t), 111.6 (*o*-aryl C), 120.7 (*ipso*-C), 128-134 (phenyl C), 152.5 (N<u>C</u>); MS (FAB, m/z) 854 (M⁺-BF₄). Anal. Calcd for PtC₄₇H₄₄NP₂BF₄·0.5CH₂Cl₂: C, 56.46; H, 4.46; N, 1.39. Found : C, 56.87; H, 4.44; N, 1.23.

{Pt(PPh₃)₂[η³-CH₂C(2,4-(MeO)₂C₆H₃)CH₂]}(BF₄) (5). Refer to the preparation of **3a**. Complex **1** prepared from *trans*-Pt(Br)(PPh₃)₂(η¹-CHCCH₂) (300 mg, 0.358 mmol) and AgBF₄ (78 mg, 0.401 mmol) reacted with 1,3-(MeO)₂C₆H₄ (1 mL, 7.25 mmol) in CH₂Cl₂ (15 mL) at 5 °C for 3 days gave **5** in 83% yield (292 mg). ³¹P NMR (CDCl₃, 121.5 MHz) δ 19.2 (*J*_{P-Pt} = 3875 Hz); ¹H NMR (CDCl₃, 300 MHz) δ 3.07 (2H, d, *J*_{H-P} = 8.3 Hz, *J*_{H-Pt} = 39.3 Hz, anti-H), 3.49 (3H, s, OCH₃), 3.91 (3H, s, OCH₃), 4.03 (2H, br, syn-H), 6.45 (1H, dd, *J*_{H-H} = 1.9, 8.7 Hz, *m*-CH), 6.54 (1H, d, *J*_{H-H} = 1.9 Hz, *m*-CH), 7.0-7.4 (31H, m, phenyl & *o*-aryl H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 55.6, 55.9 (s, s, OCH₃), 66.8 (dd, *J*_{C-P} = 3.8, 32.6 Hz, *J*_{C-Pt} = 85.0 Hz, C_t), 98.8, 105.8 (s, s, *m*-CH), 115.6 (s, *ipso*-C), 133.9 (s, C_c), 129-134

(phosphino phenyl C), 159.3 (*J*_{C-Pt} = 16.7 Hz, *o*-C), 163.3 (*J*_{C-Pt} = 9.1 Hz, *p*-C). MS (FAB, m/z): 896 (M+-BF₄).

{Pt(PPh₃)₂[η³-CH₂C(2,4,6-(MeO)₃C₆H₂)CH₂]}(BF₄) (6). Refer to the preparation of **3a**. Complex **1** prepared from *trans*-Pt(Br)(PPh₃)₂(η¹-CHCCH₂) (300 mg, 0.358 mmol) and AgBF₄ (78 mg, 0.401 mmol) reacted with 1,3,5-(MeO)₃C₆H₃ (1.2 g, 7.15 mmol) in CH₂Cl₂ (15 mL) at 5 °C for 24 h gave **6** in 84% yield (305 mg). ³¹P NMR (CDCl₃, 121.5 MHz) δ 19.1 (*J*_{P-Pt} = 3912 Hz); ¹H NMR (CDCl₃, 300 MHz) δ 3.12 (2H, d, *J*_{H-P} = 8.3 Hz, *J*_{H-Pt} = 40.7 Hz, anti-H), 3.47 (6H, s, *o*-OCH₃), 3.92 (3H, s, *p*-OCH₃), 4.08 (2H, br, syn-H), 6.19 (2H, s, *m*-CH), 7.1-7.3 (30H, m, phenyl H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 55.8, 56.0 (s, s, OCH₃), 69.7 (d, *J*_{C-P} = 29.6 Hz, *J*_{C-Pt} = 89.5 Hz, C_t), 91.1 (s, *m*-C), 104.1 (*J*_{C-Pt} = 17.5 Hz, *ipso*-C), 133 (s, C_c), 129-134 (phosphino phenyl C), 160.1 (*J*_{C-Pt} = 19.0 Hz, *o*-C), 163.0 (s, *p*-C). MS (FAB, m/z): 927 (M+-BF₄).

2-(2',4',6'-trimethoxyphenyl)propene

CH₂=C[2',4',6'-(MeO)₃C₆H₂]CH₃ (7a).

Compound **7a** was resulted from the reaction of **6** (30 mg, 0.03 mmol) and Bu₄NBH₄ (15 mg, 0.06 mmol) in CDCl₃ for 1 day. The yield was 60% based on the NMR data. ¹H NMR (CDCl₃, 300 MHz) δ 1.99 (3H, dd, $J_{\text{H-H}} = 0.7$, 1.4 Hz, CH₃), 3.81 (3H, s, OCH₃), 3.87 (6H, s, OCH₃), 4.84 (1H, dt, $J_{\text{H-H}} = 0.7$, 2.5 Hz, =CH₂), 5.30 (1H, dt, $J_{\text{H-H}} = 1.4$, 2.5 Hz, =CH₂), 6.15 (2H, *m*-CH); ¹³C NMR (CDCl₃, 100.6 MHz) δ 23.7 (CH₃), 55.3, 55.9 (OCH₃), 90.8 (*m*-C), 116.0 (=CH₂), 139.1 (Ar-C), 157.8 (*o*-C), 160.0 (*p*-C); HRMS: calcd for C₁₂H₁₆O₃S (M⁺) 208.1099, found 208.1090.

(3-phenylthio)-2-(2',4',6'-trimethoxyphenyl)-propene

$CH_2 = C[2',4',6'-(MeO)_3C_6H_2]CH_2(SPh) (7b).$

Compound 7c was resulted from the reaction of 6 (30 mg, 0.03 mmol) and NaSPh (12 mg, 0.09 mmol) in CDCl₃ for 3 days. The yield was 58% based on the NMR data. ¹H NMR (CDCl₃, 300 MHz) δ 3.73 (6H, s, OCH₃), 3.80 (3H,

s, OC<u>H</u>₃), 3.83 (2H, dd, $J_{\text{H-H}} = 0.9$, 1.4 Hz, C<u>H</u>₂), 5.05 (1H, dt, $J_{\text{H-H}} = 0.9$, 1.7 Hz, =C<u>H</u>₂), 5.57 (1H, dt, $J_{\text{H-H}} = 1.4$, 1.7 Hz, =C<u>H</u>₂), 6.12 (2H, *m*-C<u>H</u>); ¹³C NMR (CDCl₃, 100.6 MHz) δ 39.6 (CH₂), 55.3, 55.7 (OCH₃), 90.7 (*m*-C), 118.2 (=CH₂), 137.7 (Ar-C), 158.4 (*o*-C), 160.5 (*p*-C); HRMS: calcd for C₁₈H₂₀O₃S (M⁺) 316.1133, found 316.1136.

4,4-bis(phenylsulfonyl)-2-(2',4',6'-trimethoxyphenyl)-1-butene CH₂=C[2',4',6'-(MeO)₃C₆H₂]CH₂CH(SO₂Ph)₂ (7c).

Refer to the preparation of **7b**. The yield was 34% based on the NMR data. ¹H NMR (CDCl₃, 300 MHz) δ 3.20 (2H, d, $J_{\text{H-H}} = 4.5$ Hz, C<u>H</u>₂), 3.67 (6H, s, OC<u>H</u>₃), 3.79 (3H, s, OC<u>H</u>₃), 4.53 (1H, t, $J_{\text{H-H}} = 4.5$ Hz, C<u>H</u>), 4.86, 5.20 (1H, 1H, d, d, $J_{\text{H-H}} = 1.2$ Hz, =C<u>H</u>₂), 5.98 (2H, *m*-C<u>H</u>); ¹³C NMR (CDCl₃, 100.6 MHz) δ 29.7 (<u>C</u>H₂), 55.3, 55.7 (O<u>C</u>H₃), 80.0 (<u>C</u>H), 90.7 (*m*-C), 113.5 (=<u>C</u>H₂), 120.3 (*ipso*-C), 138.6 (Ar-<u>C</u>), 158.2 (*o*-C), 160.8 (*p*-C); HRMS: calcd for C₂₅H₂₆O₇S₂ (M⁺) 502.1120, found 502.1087.

Crossover Labeling Experiment.

Comlpex 1 prepared from the reaction of *trans*-Pt(PPh₃)₂(η^{1} -C₃H₃)(Br) (100 mg, 0.119 mmol) and AgBF₄ (26 mg, 0.13 mmol) in CH₂Cl₂ at -20 °C, reacted with a mixture of 1,3,5-(MeO)₃C₆H₃ (200 mg, 1.19 mmol) and 1,3,5-(MeO)₃C₆D₃/-1,3,5-(MeO)₃C₆D₂H (d₃:d₂ = 78:22, 204 mg, 1.19 mmol) at 5 °C for 1 day. The deuterium-labeled complex **6'** was precipitated by adding diethylether to the concentrated reaction solution. The integrations of the ¹H NMR resonances for **6'** are: δ 3.12 (2H, 7.05), δ 3.47 (6H, 23.8), δ 3.92 (3H, 10.8), δ 4.08 (2H, 6.92), δ 6.19 (2H, 4.01).

The reaction of 6' (50 mg, 0.05 mmol) and NaSPh (20 mg, 0.15 mmol) was stirred in CDCl₃ at 25 °C for 3 days to gave deuterated products of 7b. In the ¹H NMR spectra, the deuterium was found at δ 3.83, 5.05, 5.57, and

6.12. The HRMS showed the relative intensities for M(316.1141):M+1-(317.1196):M+2(318.1264):M+3(319.1307) = 24:31:34:12. **7b** contains 18 carbon atoms. The data is then calibrated with the ¹³C abundance. The ratio of M:M+1:M+2:M+3 becomes 28:31:34:7. The starting labeling ratio for 1,3,5-trimethoxybenzene is $d_0:d_2:d_3 = 50:11:39$. The labeling ratio would be exactly the same, if the reaction of **1** and arene underwent an intramolecular process. Without considering the primary isotope effect, the data with full deuterium scrambling could be calculated.

$$d_0 = (50)(11/3 + 50) = 26.8$$

$$d_1 = (50)(11x2/3 + 39) + (11x/3 + 50)(11x2/3) = 27.1$$

$$d_2 = (39+11x2/3)(11x2/3) + (11/3 + 50)(11/3 + 39) = 26.3$$

$$d_3 = (39+11/3)(11x2/3 + 39) = 19.8$$

These experimental data match with an intermolecular process.