

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permission.html

Xray Crystallography:

Two data sets were collected on compound 1, and the crystals were obtained from two separate samples. The first crystallographic data set for 1 was obtained at 130 K with MoK α ($\lambda = 0.71073$ Å) radiation: <u>a</u> = 7.944(2) Å, <u>b</u> = 16.238(3) Å, <u>c</u> = 25.640(5) Å, Z = 4, space group Pna21, $R_1 = 0.052$ for 2344 (I>2 σ I) data. The second crystallographic data set for 1 was obtained at 170 K with MoK α ($\lambda = 0.71073$ Å) radiation: <u>a</u> = 7.926(3) Å, <u>b</u> = 16.282(7) Å, <u>c</u> = 25.661(8) Å, Z = 4, space group Pna21, R₁ = 0.066 for 2118 (I>20I) data. The X-ray data for the first data set, upon refinement, indicated the presence of 1,3-Trip₂C₆H₄ at the same position(s). The atom bound to C(1) was refined as a mixture of In and H. The refinement converged at occupancies of 81.4(3)% for In and 18.6(3)% for H, and afforded an In-C distance of 2.256(4) Å. The presence of the contamination probably arose from the very high reactivity of 1 and its gradual decomposition during mounting of the crystal and data collection. The tendency of derivatives of the -C6H3-2,6-Trip2 ligand to crystallize as mixtures which afford good diffraction data has been noted previously; Wehmschulte, R.J.; Grigsby, W.J.; Schiemenz, G.; Bartlett, R.A.; Power, P.P. Inorg. Chem. 1996, 35, 6694. The second data set refined at 100% occupancy for In and afforded an In-C distance of 2.260(7) Å. No decomposition was observed during data collection. The In atom was refined anisotropically, the carbon atoms were refined isotropically. The crystallographic data given in the text are from the second data set.

Crystallographic data for 2 at 130 K with MoK α ($\lambda = 0.71073$ Å) radiation: <u>a</u> = 9.513(2) Å, <u>b</u> = 9.831 Å, <u>c</u> = 21.083(4), $\alpha = 86.65(3)^{\circ}$, $\beta = 81.40(3)^{\circ}$, $\gamma = 89.32(3)^{\circ}$ Å, Z = 4, space group P-1, R₁ = 0.047 for 7034 I>2(σ)I data. Upon refinement, the X-ray data for 2 indicated that the cyclopentadienyl ligand bound to Mn was disordered over two positions, with occupancies of 94% (set A) and 6% (set B). This disorder was modelled using two restrained ring systems with C-C distances set at 1.42 Å.

Table 1. Crystal data for InC₆H₃-2,6-Trip₂.

Identification code	sthl4a
Empirical formula	C ₃₆ H ₄₉ In
Formula weight	596.57
Crystal size	0.30'x 0.20 x 0.18 mm
Crystal habit	parallelepiped
Crystal color	orange
Crystal system ·	Orthorhombic
Space group	Pna2 1
Unit cell dimensions	$a = 7.926(3)$ Å $\alpha = 90^{\circ}$ $b = 16.282(7)$ Å $\beta = 90^{\circ}$ $c = 25.661(8)$ Å $\gamma = 90^{\circ}$
Volume	3312(2) Å ³
Z	4
Density (calculated)	1.196 Mg•m ⁻³
Absorption coefficient	0.734 mm^{-1}
F(000)	1256
Absorption correction	Psi Scans
Max. and min. transmission	0.900 and 0.852

-

2.

1) Psi Scans were used to measure absorption correction.

.

. .

•

Table 2. Data collection for Ind	C ₆ H ₃ -2,6-Trip ₂ .
Diffractometer	Siemens R3m¢
Temperature	168(2) K
Radiation source	normal-focus sealed tube
Wavelength	0.71073 Å (MoK\a)
Monochromator	graphite
θ range for data collection	1.48 to 27.50 [°]
Scan type	\w
Index ranges	$0 \le h \le 10, \ 0 \le k \le 21, \ 0 \le l \le 33$
Reflections collected	4319
Independent reflections	3890 ($R_{int} = 0.0000$)
Standard reflections	2
Percent decay of standards	less than 0.01%

900 a 1900 a

. . .

.

--

~

Table 3. Solution and refinement of $InC_{6}H_{3}-2,6-Trip_{2}$. SHELXS-86 (Sheldrick, 1990) System for solution Structure solution direct SHELXL-93 (Sheldrick, 1993) System for refinement Full-matrix least-squares on F² Refinement method riding Hydrogen atoms Data ?restraints ?parameters 3888 ?7 ?166 Goodness-of-fit on F^2 1.023 $w^{-1} = \sigma^2 (Fo^2) + (0.0462P)^2 + 5.5323P_{\ell}$ Weighting scheme where $P = (Fo^2 + 2Fc^2)$? R1 = 0.1388, wR2 = 0.1650R indices (all data) R1 = 0.0659, wR2 = 0.1223R indices calcd from obsd data Observed data (>2sigma(I)) 2118 Absolute structure parameter -0.14(10)Extinction coefficient NA Largest diff. peak and hole 0.653 and -0.535 eÅ⁻³ 1) $R1 = \sum ||FO-FC||?GS|FO|$ $wR2 = [\Sigma[w(Fo^2 - Fc^2)^2]?GS[w(Fo^2)^2]]^{\frac{1}{2}}$ $Goodness-of-Fit = [\sum [w(Fo^2-Fc^2)^2]?M-N]^{\frac{1}{2}}$ 2) where M is the number of reflections and N is the number of parameters refined. Refinement is based on F^2 for ALL reflections except for those with 3) very negative F^2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2\sigma(F^2)$ is used only for calculating R indices for observed data and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are

statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Table 4. Atomic coordinates $[\times 10^4]$ and equivalent isotropic displacement parameters $[\AA^2 \times 10^3]$ for $InC_6H_3-2.6-Trip_2$. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	У	Z	ण (eq)
In	2781(1)	9237(1)	3314 (2)	50(1)
C(1)	633 (8)	10150(4)	3313(10)	22 (2)
C(2)	-3 (23)	10482(12)	2853 (8)	23 (5)
C(3)	-1167(23)	11118 (13)	2844(8)	29 (5)
C(4)	-1777(9)	11413(5)	3336 (9)	28 (2)
C(5)	-1202(22)	11086 (12)	3785(8)	25 (-5)
C(6)	21 (22)	10477(12)	3790(8)	20 (5)
C(7)	765 (20)	10138(10)	2350(7)	19(4)
C(8)	2004 (23)	10549(11)	2083 (7)	25(4)
C(9)	2778(19)	10153(9)	1655(6)	20(3)
C(10)	2221(16)	9429(9)	1463(6)	24(3)
C(11)	869 (22)	9028(12)	1714(7)	34(5)
C(12)	138(23)	9392 (11)	2162(8)	33 (5)
C(13)	601(22)	10091(11)	4287(7)	25(4)
C(14)	2027 (23)	10462(11)	4554(7)	26(4)'
C(15)	2577(23)	10084(12)	5008(7)	40(5)
C(16)	1929(19)	9333 (10)	5183(7)	34(4)
C(17)	644(21)	8996 (12)	4914(7)	33(5)
C(18)	-40(20)	9337(10)	4469(7)	22(4)
C(19)	2680(28)	11961(15)	1812(9)	58(7)
C(20)	2744 (29)	11319(16)	2251(10)	38(6)
C(21)	4639(19)	11228(10)	2383(7)	48(4)
C(22)	1475(16)	8991(8)	519(5)	33(3)
C(23)	2692(24)	8942 (13)	969(8)	58 (6)
C(24)	3449 (19)	8107(9)	1069(6)	33(3)
C(25)	-1248 (28)	8096(13)	2592(9)	64(6)
C(26)	-1625(20)	8982(10)	2412(7)	35(4)
C(27)	-3079(26)	9107(13)	2126 (7)	66(6)
C(28)	-1023(26)	8003 (11)	4107(8)	53(5)
C(29)	-1339(19)	- 8917 (10)	4205(6)	32(4)
C(30)	-2999(22)	8952(11)	4594 (6)	45(4)
C(31)	2452(26)	11976(12)	4772(7)	44 (5)
C(32)	2700(27)	11330(14)	4364 (9)	32(6)
C(33)	4390(23)	11301(12)	4113(7)	66 (6)
C(34)	3738 (25)	8265(11)	5602(7)	65(6)
C(35)	2940(19)	9047 (9)	5670(6)	30(4)
C(36)	1971(20)	9168(10)	6125 (6)	56 (4)

Table 5. Bond lengths [Å] for $InC_{6}H_{3}^{-2,6-Trip}2$.

• · · · · · · · · · · · · · · · · · · ·				
In-C(1)	2.260(7)	C(1)-C(2)	1.39(2)	
C(1)-C(6)	1.42(2)	C(2)-C(3)	1.39(2)	
C(2)-C(7)	1.53(3)	C(3)-C(4)	1.44(2)	
C(4)-C(5)	1.35(2)	C(5)-C(6)	1.39(2)	
C(6)-C(13)	1.49(3)	C(7)-C(8)	1.37(2)	
C(7)-C(12)	1.40(2)	C(8)-C(9)	1.41(2)	
C(8)-C(20)	1.45(3)	C(9)-C(10)	1.35(2)	
C(10)-C(11)	1.41(2)	C(10)-C(23)	1.54(3)	
C(11)-C(12)	1.42(3)	C(12)-C(26)	1.68(2)	
C(13)-C(18)	1.41(2)	C(13)-C(14)	1.45(2)	
C(14)-C(15)	1.39(3)	C(14)-C(32)	1.59(3)	
C(15)-C(16)	1.40(2)	C(16)-C(17)	1.35(2)	
C(16)-C(35)	1.56(2)	C(17)-C(18)	1.38(3)	
C(18)-C(29)	1.41(2)	C(19)-C(20)	1.54(3)	
C(20)-C(21)	1.55(3)	C(22)-C(23)	1.51(2)	
C(23)-C(24)	1.51(2)	C(25)-C(26)	1.54(3)	
C(26)-C(27)	1.38(2)	C(28)-C(29)	1.53(2)	
C(29)-C(30)	1.65(2)	C(31)-C(32)	1.49(3)	
C(32)-C(33)	1.49(3)	C(34)-C(35)	1.43(2)	
C(35)-C(36)	1.41(2)			

•

Symmetry transformations used to generate equivalent atoms:

.

C(2) - C(1) - C(6)	117.5(6)	C(2) - C(1) - In	121.9(14)
C(6) - C(1) - In	120.2(14)	C(3) - C(2) - C(1)	123 (2)
C(3) - C(2) - C(7)	122 (2)	C(1)-C(2)-C(7)	115(2)
C(2) - C(3) - C(4)	117(2)	C(5)-C(4)-C(3)	120.4(7)
C(4) - C(5) - C(6)	122(2)	C(5)-C(6)-C(1)	120(2)
C(5) - C(6) - C(13)	122 (2)	C(1)-C(6)-C(13)	118(2)
C(8) - C(7) - C(12)	121 (2)	C(8)-C(7)-C(2)	122(2)
C(12) - C(7) - C(2)	118(2)	C(7)-C(8)-C(9)	118(2)
C(7) - C(8) - C(20)	124 (2)	C(9)-C(8)-C(20)	117(2)
C(10) - C(9) - C(8)	123 (2)	C(9)-C(10)-C(11)	119(2)
C(9) - C(10) - C(23)	132.0(14)	C(11)-C(10)-C(23)	108.8(14)
C(10) - C(11) - C(12)	119(2)	C(7)-C(12)-C(11)	120(2)
C(7)-C(12)-C(26)	121 (2)	C(11)-C(12)-C(26)	119(2)
C(18)-C(13)-C(14)	119(2)	C(18)-C(13)-C(6)	123 (2)
C(14)-C(13)-C(6)	118(2)	C(15)-C(14)-C(13)	117 (2)
C(15)-C(14)-C(32)	123 (2)	C(13)-C(14)-C(32)	119(2)
C(14)-C(15)-C(16)	123 (2)	C(17)-C(16)-C(15)	118(2)
C(17)-C(16)-C(35)	133 (2)	C(15)-C(16)-C(35)	109.3(14)
C(16)-C(17)-C(18)	124 (2)	C(17)-C(18)-C(29)	119(2)
C(17)-C(18)-C(13)	119(2)	C(29)-C(18)-C(13)	122 (2)
C(8)-C(20)-C(19)	111(2)	C(8)-C(20)-C(21)	112 (2)
C(19)-C(20)-C(21)	105(2)	C(22)-C(23)-C(24)	116 (2)
C(22)-C(23)-C(10)	117(2)	C(24)-C(23)-C(10)	115(2)
C(27)-C(26)-C(25)	117(2)	C(27)-C(26)-C(12)	116(2)
C(25)-C(26)-C(12)	109.0(14)	C(18)-C(29)-C(28)	116(2)
C(18)-C(29)-C(30)	105.9(14)	C(28)-C(29)-C(30)	105.2(14)
C(33)-C(32)-C(31)	116(2)	C(33)-C(32)-C(14)	114(2)
C(31)-C(32)-C(14)	112(2)	C(36)-C(35)-C(34)	118(2)
C(36)-C(35)-C(16)	110.0(13)	C(34)-C(35)-C(16)	113.3(14)

21

Symmetry transformations used to generate equivalent atoms:

Table 7. Anisotropic displacement parameters $[\text{\AA}^2 \times 10^3]$ for $\text{InC}_{6^H_3}$ -2,6-Trip₂. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [(ha^{*})²U₁₁ + ... + 2hka^{*}b^{*}U₁₂]

					· · · · · · · · · · · · · · · · · · ·	
	U11	· U22	U 33	U23	013	U1.2
In	49(1)	41(1)	60(1)	-3 (1)	1(2)	21(1)

بر بر

.

.

Table 8. Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters ($\dot{A}^2 \times 10^3$) for InC₆H₃-2,6-Trip₂.

		v	Z	Ū(eq)
Н(3)	-1545 (23)	11350(13)	2525 (8)	35
H(4)	-2591(9)	11841(5)	3346 (9)	34
H(5)	-1647(22)	11278(12)	4106 (8)	30
Н(9)	3729(19)	10405(9)	1496 (6)	25
H(11)	454 (22)	8521(12)	1585(7)	41
H(15)	3430(23)	10345(12)	5208(7)	49
H(17)	181(21)	8495(12)	5037(7)	39 . •
H(19A)	3307 (128)	11757(33)	1509(18)	87
H(19B)	3189 (128)	12475(26)	1933 (17)	87
H(19C)	1503 (30)	12060(53)	1713 (32)	87
H(20)	2122 (29)	11530(16)	2562(10)	46
H (21A)	5115 (31)	11769(12)	2462(31)	71
H(21B)	5233 (26)	10989(48)	2085 (14)	71
H(21C)	4768 (20)	10868(40)	2687(21)	71
H (22A)	505(45)	8634 (35)	587(13)	49
н(22В)	2042(30)	8813(40)	199(7)	49 .'
H (22C)	1088(68)	9559 (12)	478 (17)	49 ,
H(23)	3682 (24)	9258 (13)	835(8)	69
H(24A)	4025 (91)	7915 (24)	753 (11)	50
H(24B)	2553 (23)	7719(15)	1162(33)	50
H(24C)	4263 (81)	8144 (14)	1355 (22)	50
H(25A)	-2169(88)	7901(32)	2815(43)	95
H(25B)	-189(93)	8088(19)	2789(44)	95
H(25C)	-1148(163)	7738 (20)	2287 (9)	95
H(26)	-1817 (20)	9293 (10)	2743 (7)	42
H(27A)	-3388 (72)	9690(16)	2139 (32)	100.
H(27B)	-3996 (41)	8777 (47)	2273 (24)	100-
H(27C)	-2885(46)	8944 (58)	1763 (11)	100
H(28A)	0(86)	7936 (12)	3896 (39)	79
I (28B)	-1988(70)	7767(19)	3921 (41)	79
I(28C)	-877(147)	-7720(17)	4441(8)	79
$\frac{1}{29}$	-1599(19)	9201(10)	3868 (6)	38
-(-2810(48)	8592 (40)	4894 (17)	68
I (30B)	-4002 (29)	8769(47)	4404 (11)	68
H(30C)	-3168 (63)	9517(14)	4715 (25)	68
I (31A)	1273 (42)	11974 (42)	4886 (29)	66
1(31B)	2732 (116)	12515(14)	4626 (13)	66
I(31C)	3188 (98)	11861 (36)	5070(18)	66
1(32)	1915 (27)	11491 (14)	4077 (9)	38
1(22)	1713(21)	10825 (24)	3880 (20)	100
1(2254)	4443(4/) 5060(01)	11062 (34)	1202 (23) 1202 (7)	100
1(330)	3202(24) AE91/EAN	11005 (01)	30411	100
(33C)	4371(34)		5010(10)	100
1 (34A)	4358 (125)	8TST (32)	2313(18)	97

H(35) H(36A) H(36B) H(36C)	8892(19) 847(45) 1865(97) 2529(64)	9447(9) 8929(51) 9757(10) 8901(48)	6076(15) 6194(21) 6421(9)	85 85 85
· · · · · · · · · · · · · · · · · · ·	·····		4	•

.

Table 10. Crystal data for CpMn(CO) (InC H3-2,6-Trip2).

sth12 Identification code C₄₃H₅₄InMnO₂ Empirical formula 772.62 Formula weight Crystal size 0.46 x 0.40 x 0.28 mm parallelepiped Crystal habit Crystal color orange Triclinic Crystal system ΡĪ Space group a = 9.513(2) Å $\alpha = 86.65(3)^{\circ}$ Unit cell dimensions b = 9.831(2) Å $\beta = 81.40(3)^{\circ}$ c = 21.083(4) Å $\gamma = 89.32(3)^{\circ}$ 1946.2(7) Å³ Volume z 2 1.318 Mg•m⁻³ Density (calculated) 0.950 mm^{-1} Absorption coefficient F(000) 804 Absorption correction¹ XABS2 0.804 and 0.678 Max. and min. transmission

XABS2: an empirical absorption correction program. Parkin,S.;
Moezzi, B.; Hope, H. J. Appl. Cryst. 1995, 28, 53-56.

Table 11. Data collection for ($CpMn(CO)_{2}(InC_{6}H_{3}^{-2}, 6-Trip_{2})$.
Diffractometer	Siemens R3m/V
Temperature	130(2) K
Radiation source	normal-focus sealed tube
Wavelength	0.71073 Å (МоКа)
Monochromator	graphite
heta range for data collection	0.98 to 27.49°
Scan type	ω
Index ranges	$-12 \le h \le 12, -12 \le k \le 12, 0 \le l \le 27$
Reflections collected	8937
Independent reflections	$8937 (R_{int} = 0.0000)$
Standard reflections	2
Percent decay of standards	less than 0.01%

.

.

24

.

.

and the second sec

Table 12. Solution and refinement of CpMn(CO)₂ (InC₆H₃-2,6-Trip₂). System for solution SHELXS-86 (Sheldrick, 1990) Structure solution direct SHELXL-93 (Sheldrick, 1993) System for refinement Full-matrix least-squares on F² Refinement method riding Hydrogen atoms 8936 / 0 / 435 Data / restraints / parameters Goodness-of-fit on F^2 1.013 $w^{-1} = \sigma^2 (Fo^2) + (0.033700P)^2 + 1.388300P,$ Weighting scheme where $P = (Fo^2 + 2Fc^2)/3$ R1 = 0.0667, wR2 = 0.1106R indices (all data) R1 = 0.0474, wR2 = 0.0958R indices calcd from obsd data Observed data (>2sigma(I)) 7034 0.0011(2)Extinction coefficient $0.562 \text{ and } -0.735 \text{ eA}^{-3}$ Largest diff. peak and hole 1) R1 = $\sum ||FO-FC||/\sum |FO|$ $wR2 = [\sum [w(Fo^2 - Fc^2)^2] / \sum [w(Fo^2)^2]]^{\frac{1}{2}}$ Goodness-of-Fit = $\left[\sum \left[w \left(Fo^2 - Fc^2\right)^2\right] / (M - N)\right]^{\frac{1}{2}}$ 2) where M is the number of reflections and N is the number of parameters refined. Refinement is based on F^2 for ALL reflections except for those with 3) very negative F² or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2\sigma(F^2)$ is used only for calculating R indices for observed data and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

÷.

Table 13. Atomic coordinates [x 10^4] and equivalent isotropic displacement parameters [Å² x 10^3] for CpMn(CO)₂ (InC₆H₃-2,6-Trip₂). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

			7	II (eq)
	x	¥		
In(1)	2565(1)	2386(1)	2403 (1)	22(1)
Mn(1)	1518(1)	4631(1)	2433(1)	22(1)
O(1)	-560(3)	3965 (3)	1598 (2)	40(1)
0(2)	3618(3)	5561(3)	1321(1)	37(1)
C(1)	3651 (3)	450(3)	2399(2)	18(1)
C(2)	4213 (4)	-137(3)	2924 (2)	20(1)
C(3)	4977 (4)	-1354 (4)	2851(2)	25 (1)
C(4)	5130(4)	-1982(4)	2270(2)	25(1)
C(5)	4548(4)	-1400(3)	1751(2)	21(1)
C(6)	3818(4)	-164(3)	1808(2)	19(1)
C(7)	3979(4)	576(4)	3547 (2)	21(1)
C(8)	2854(4)	178(4)	4032(2)	26(1)
C(9)	2578(4)	925(4)	4577(2)	33(1)
C(10)	3375 (5)	2051(4)	4662(2)	33(1) , "
C(11)	4495(4)	2416(4)	4185(2)	33(1)
C(12)	4822(4)	1703(4)	3628(2)	26(1)
C(13)	3288(4)	614(3)	1260(2)	18(1)
C(14)	1833(4)	612(3)	1196(2)	18(1)
C(15)	1365(4)	1493(3)	723 (2)	21(1)
C(16)	2285(4)	2367(3)	318(2)	21(1)
C(17)	3715(4)	2323 (3)	386 (2)	21(1)
C(18)	4242(4)	1458(3)	845(2)	20(1)
C(19)	1898(4)	-1016(4)	3958(2)	30(1)
C(20)	1552(5)	-1947(4)	4566(2)	43 .(1)
C(21)	526(5)	-491(5)	3721(2)	40(1)
C(22)	3005(5)	2858(5)	5264 (2)	42(1)
C(23)	4305(6)	3120(6)	5580(2)	61(2)
C(24)	2254 (<u>6</u>)	4177(5)	5113(2)	56(1)
C(25)	6135(4)	2103 (4)	3148(2)	30(1)
C(26)	7468(5)	1580(5)	3404(2)	48(1)
C(27)	6231(5)	3642(4)	2967(2)	40(1)
C(28)	5817(4)	1518(4)	908(2)	24(1)
C(29)	6138(4)	2792(4)	1238(2)	33(1)
C(30)	6787(4)	1427(4)	262(2)	30(1)
C(31)	803(4)	-375(4)	1603(2)	25(1)
C(32)	-706(4)	180(5)	1766(2)	42(1)
C(33)	776(5)	-1711(4)	1265(2)	37(1)
C(34)	1740(4)	3356(4)	-167(2)	21(1)
C(35)	1819(4)	4820(4)	40(2)	29(1)
C(36)	2533(4)	3234(4)	-849(2)	30(1)
C(37)	2803(4)	5154(4)	1759(2)	26(1)

C(38)	288(4)	4185(4)	1925(2)	26(1)
C (39A)	45(4)	4843 (5)	3288 (2)	46(2)
C(40A)	143(3)	6084 (4)	2904 (2)	42(2)
C(41A)	1566 (4)	6553 (3)	2838 (2)	38(1)
C(42A)	2348(3)	5603 (4)	3181 (2)	37(2)
C(43A)	1409(6)	4546(3)	3459(1)	42(2)
C(39B)	395(6)	4446 (4)	3464 (2)	13 (14)
C(40B)	35(3)	5689(5)	3149(2)	7(14)
C(41B)	1292(4)	6476 (2)	2985(2)	37 (27)
C(41D)	2430(3)	5719(4)	3199(2)	102(60)
C(42B)	1876(6)	4464 (3) ⁻	3495 (2)	42 (26)
-,,				

-

.

· ·

.

~

ید. مع بو . .

Yeu Nu

. نه

•.

16. 16.

Table 14. Bond lengths [Å] for CpMn(CO) $(InC_{6}H_{3}-2, 6-Trip_{2})$.

.

In(1)-C(1)	2.155(3)	In(1)-Mn(1)	2.4102(9)	
Mn(1) - C(38)	1.774(4)	Mn(1) - C(37)	1.785(4)	
Mn(1) - C(40A)	2.115(3)	Mn(1) - C(41A)	2.123(3)	
Mn(1)-C(39A)	2.130(3)	Mn(1) - C(42A)	2.143(3)	
Mn(1)-C(43A)	2.148(3)	$Mn(1)_{7}C(41B)$	2.203(3)	
Mn(1)-C(40B)	2.206(3)	Mn(1) - C(42B).	2.269(4)	
Mn(1)-C(39B)	2.273(3)	Mn(1)-C(43B)	2.311(4)	
O(1)-C(38)	1.167(5)	O(2)-C(37)	1.168(5)	
C(1)-C(2)	1.393(5)	C(1)-C(6)	1.403(5)	
C(2)-C(3)	1.396(5)	C(2)-C(7)	1.511(5)	
C(3)-C(4)	1.391(5)	C(4)-C(5)	1.389(5)	
C(5)-C(6)	1.394(5)	C(6)-C(13)	1.495(5)	
C(7)-C(8)	1.408(5)	C(7)-C(12)	1.408(5)	
C(8)-C(9)	1.391(5)	C(8)-C(19)	1.522(5)	
C(9)-C(10)	1.383(6)	C(10)-C(11)	1.387(5)	
C(10)-C(22)	1.531(5)	C(11)-C(12)	1.396 (5)	
C(12)-C(25)	1.525(5)	C(13)-C(18)	1.406 (5)	
C(13)-C(14)	1.411(5)	C(14)-C(15)	1.402(5)	
C(14)-C(31)	1.521(5)	C(15)-C(16)	1.394(5)	
C(16)-C(17)	1.389(5)	C(16)-C(34)	1.513(5)	
C(17)-C(18)	1.396(5)	C(18)-C(28)	1.526(5)	
C(19)-C(20)	1.528(6)	C(19)-C(21)	1.539(6)	
C(22)-C(24)	1.513(7)	C(22)-C(23)	1.522(7)	
C(25)-C(26)	1.524(6)	- C (25) -C (27)	1.539(6) ,	
C(28)-C(29)	1.524(5)	C(28)-C(30)	1.533(5)+	
C(31)-C(32)	1.527(5)	C(31)-C(33)	1.534(5)	
C(34)-C(36)	1.530(5)	C(34)-C(35)	1.534(5)	
C(39A)-C(43A)	1.42	C(39A)-C(40A)	1.42	
C(40A)-C(41A)	1.42	C(41A)-C(42A)	1.42	•
C(42A)-C(43A)	1.42	C(39B)-C(40B)	1.42	
C(39B)-C(43B)	1.42	C(40B)-C(41B)	1.42	
C(41B)-C(42B)	1.42	C(42B)-C(43B)	1.42	

2.

Table 15. Bond angles [°] for CpMn(CO)₂(InC₆H₃-2,6-Trip₂).

. .

. .

C(1) - In(1) - Mn(1)	·175.39(9) C(38)-Mn(1)-C(37)	91.7(2)
C(38)-Mn(1)-C(40A)	93.8(2) C(37)-Mn(1)-C(40A)	120.1(2)
C(38) - Mn(1) - C(41A)	124.2(2) C(37)-Mn(1)-C(41A)	92.2(2)
C(40A) - Mn(1) - C(41A)	39.2 $C(38) - Mn(1) - C(39A)$	98.0(2)
C(37) - Mn(1) - C(39A)	157.3(2) C(40A)-Mn(1)-C(39A)	39.08~(5)
C(41A) - Mn(1) - C(39A)	65.40(7) C(38)-Mn(1)-C(42A)	159.03 (14)
C(37) - Mn(1) - C(42A)	100.2(2) C(40A)-Mn(1)-C(42A)	65.31(7)
C(41A) - Mn(1) - C(42A)	38.88(6) C(39A)-Mn(1)-C(42A)	65.05(7)
C(38) - Mn(1) - C(43A)	132.3(2) C(37)-Mn(1)-C(43A)	136.0(2)
C(40A) - Mn(1) - C(43A)	65.23(7) C(41A)-Mn(1)-C(43A)	65.09(7)
C(39A) - Mn(1) - C(43A)	38.77(5) C(42A)-Mn(1)-C(43A)	38.65(6)
C(38) - Mn(1) - C(41B)	122.91(14)C(37)-Mn(1)-C(41B)	102.0(2)
C(38) - Mn(1) - C(40B)	98.3(2) C(37)-Mn(1)-C(40B)	135.2(2)
C(41B) - Mn(1) - C(40B)	37.6 C(38)-Mn(1)-C(42B)	159.09(14)
C(37) - Mn(1) - C(42B)	98.4(2) $C(41B) - Mn(\frac{1}{2}) - C(42B)$	* .37.0
C(40B) - Mn(1) - C(42B)	61.78(6) C(38)-Mn(1)-C(39B)	107.9(2)
C(37) - Mn(1) - C(39B)	159.2(2) C(41B)-Mn(1)-C(39B)	61.74(6)
C(40B) - Mn(1) - C(39B)	36.9 $C(42B) - Mn(1) - C(39B)$	60.77(7) 🧭
C(38) - Mn(1) - C(43B)	141.6(2) C(37)-Mn(1)-C(43B)	126.1(2)
C(41B) - Mn(1) - C(43B)	61.14(7) C(40B) -Mn(1) -C(43B)	61.10(7)
C(42B) - Mn(1) - C(43B)	36.10(5) C(39B) -Mn(1) -C(43B)	36.1
C(2) - C(1) - C(6)	121.4(3) C(2)-C(1)-In(1)	123.8(2)
C(6) - C(1) - In(1)	114.7(2) C(1)-C(2)-C(3)	118.7(3)
C(1) - C(2) - C(7)	118.5(3) C(3)-C(2)-C(7)	122.8(3)
C(4) - C(3) - C(2)	120.3(3) C(5)-C(4)-C(3)	120.7(3)
C(4) - C(5) - C(6)	119.9(3) C(5)-C(6)-C(1)	118.9(3)
C(5) - C(6) - C(13)	123.9(3) C(1)-C(6)-C(13)	117.0(3)
C(8) - C(7) - C(12)	119.5(3) C(8)-C(7)-C(2)	120.1(3)
C(12) - C(7) - C(2)	120.2(3) C(9)-C(8)-C(7)	119.2(4)
C(9) - C(8) - C(19)	119.5(3) C(7)-C(8)-C(19)	121.2(3)
C(10) - C(9) - C(8)	122.3(4) C(9)-C(10)-C(11)	117.9(4)
C(9) - C(10) - C(22)	120.2(4) C(11)-C(10)-C(22)	121.9(4)
C(10) - C(11) - C(12)	122.3(4) C(11)-C(12)-C(7)	118.8(3)
C(11) - C(12) - C(25)	119.3(3) C(7)-C(12)-C(25)	121.8(3)
C(18) - C(13) - C(14)	120.1(3) C(18)-C(13)-C(6)	118.6(3)
C(14) - C(13) - C(6)	120.9(3) C(15)-C(14)-C(13)	118.6(3)
C(15) - C(14) - C(31)	120.3(3) C(13)-C(14)-C(31)	121.1(3)
C(16) - C(15) - C(14)	122.3(3) C(17)-C(16)-C(15)	117.7(3)
C(17) - C(16) - C(34)	121.1(3) C(15)-C(16)-C(34)	121.2(3)
C(16) - C(17) - C(18)	122.5(3) C(17)-C(18)-C(13)	118.9(3)
C(17) - C(18) - C(28)	119.1(3) C(13)-C(18)-C(28)	121.9(3)
C(8) - C(19) - C(20)	113.9(3) C(8)-C(19)-C(21)	110.0(3)
C(20) - C(19) - C(21)	110.7(3) C(24)-C(22)-C(23)	111.1(4)
C(24) - C(22) - C(10)	110.9(4) C(23)-C(22)-C(10)	112.1(4)
C(26) - C(25) - C(12)	109.7(3) C(26)-C(25)-C(27)	111.3(4)
C(12) - C(25) - C(27)	113.5(3) C(29)-C(28)-C(18)	110.7(3)
C(29) - C(28) - C(30)	110.9(3) C(18)-C(28)-C(30)	112.7(3)
C(14) - C(31) - C(32)	114.3(3) C(14)-C(31)-C(33)	109.5(3)
C(32) ~C(31) -C(33)	109.9(3) C(16)-C(34)-C(36)	112.6(3)

~`

C(16)-C(34)-C(35)	110.1(3)	C(36)-C(34)-C(35)	•	110.5(3)
O(2) - C(37) - Mn(1)	176.6(3)	O(1)-C(38)-Mn(1)		176.1(3)
C(43A)-C(39A)-C(40A)	108.0	C(43A)-C(39A)-Mn(1)		71.29(13)
C(40A) - C(39A) - Mn(1)	69.87(11)-C (41A) -C (40A) -C (39A)		108.0
C(41A) - C(40A) - Mn(1)	70.73(13	TC(39A) - C(40A) - Mn(1)		71.05(12)
C(42A)-C(41A)-C(40A)	108.0	C(42A) - C(41A) - Mn(1)		71.34(12)
C(40A) - C(41A) - Mn(1)	70.11(13)C(43A)-C(42A)-C(41A)		108.0
C(43A)-C(42A)-Mn(1)	70.85(12] @(41A)-C(42A)-Mn(1)		69.78(11)
C(42A)-C(43A)-C(39A)	108.0	$^{\prime}C(42A) - C(43A) - Mn(1)$	•	70.50(12)
C(39A) -C(43A) -Mn(1)	69.95(13)C(40B)-C(39B)-C(43B)		108.0
C(40B)-C(39B)-Mn(1)	68.95(10)C(43B)-C(39B)-Mn(1)		73.42(12)
C(41B)-C(40B)-C(39B)	108.0	C(41B)-C(40B)-Mn(1)		71.09(12)
C(39B)-C(40B)-Mn(1)	74.12(1r)C(40B)-C(41B)-C(42B)		108.0
C(40B) - C(41B) - Mn(1)	71.33(12	C(42B) - C(41B) - Mn(1)		74.04(12)
C(43B)-C(42B)-C(41B)	108.0	C(43B)-C(42B)-Mn(1)		73.57(11)
C(41B)-C(42B)-Mn(1)	68.96(11)) C (42B) -C (43B) -C (39B)		108.0
C(42B)-C(43B)-Mn(1)	70.33(11))C(39B)-C(43B)-Mn(1)		70.51(12)

•

•

21

••

Table 16. Anisotropic displacement parameters $[\dot{A}^2 \times 10^3]$

for $CpMn(CO)_2(InC_6H_3^{-2}, 6-Trip_2)$.

The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [(ha^{*})²U₁₁ + ... + 2hka^{*}b^{*}U₁₂]

						•
	Ull	U22	U 33	U23	U13	U12
In(1)	22(1)	22(1)	23 (1)	-1(1)	-4(1)	1(1)
Mn(1)	23(1)	22(1)	22(1)	-2(1)	-2(1)	0(1)
0(1)	31(2)	51 (2)	43 (2)	-6(2)	-14(1)	-1(1)
0(2)	36(2)	36 (2)	35(2)	0(1)	5(1)	-10(1)
C(1)	10(2)	24(2)	20(2)	1(1)	1(1)	-2(1)
C(2)	15(2)	26(2)	18(2)	1(1)	-1(1)	-3(1)
C(3)	26(2)	28(2)	21(2)	6 (2)	-4(2)	4(2)
C(4)	24(2)	25(2)	24 (2)	-1(2)	2(2)	~ 6(2)
C(5)	21(2)	25(2)	18(2)	-1(1)	0(1)	-1(1)
C(6)	14(2)	24 (2)	16(2)	2(1)	0(1)	-2(1)
C(7)	21(2)	29(2)	14(2)	1(1)	-2(1)	1(1)
C(8)	25(2)	30(2)	21 (2)	-1(2)	0(2)	0(2)
C (9)	33(2)	39(2)	23 (2)	-5(2)	10(2)	-7(2)
C(10)	45(3) 🔹	38(2)	15(2)	-5(2)	0(2)	-7(2)
C(11)	34(2)	38(2)	26 (2)	-8(2)	-2(2)	-14(2)
C(12)	25(2)	36(2)	18(2)	-1(2)	-4(2)	-4(2)
C(13)	17(2)	20 (2)	16(2)	-2(1)	-2(1)	-3(1)
C(14)	16(2)	23 (2)	16(2)	-1(1)	-2(1)	-4(1)
C(15)	14(2)	27(2)	23 (2)	-1(1)	-4(1)	-6(1)
C(16)	23 (2)	22(2)	17(2)	-2(1)	-1(1)	-2(1)
C(17)	22(2)	24 (2)	18(2)	4(1)	-4(1)	-6(1)
C(18)	18(2)	23 (2)	19(2)	-2(1)	-5(1)	-3(1)
2(19)	26(2)	34(2)	27 (2)	-6(2)	8(2)	-7(2)
C(20)	42(3)	34(2)	49(3)	3(2)	6(2)	-8(2)
C(21)	34(2)	52(3)	33 (2)	-8(2)	2(2)	-12(2)
C(22)	61(3)	44(2)	18(2)	-8(2)	5(2)	
2(23)	93 (5)	68(4)	28(3)	-14(2)	-22(3)	10(3)
C(24)	60(3)	74 (4)	37(3)	-29(3)	-7(2)	21(3)
2(25)	24(2)	41(2)	24(2)	-5(2)	1(2)	-12(2)
2(26)	29(2)	66 (3)	47(3)	1(2)	-3(2)	-5(2)
(27)	40(3)	43(2)	34(2)	-4(2)	6(2)	-16(2)
2(28)	18(2)	31(2)	24 (2)	6(2)	-8(2)	-5(2)
(29)	23 (2)	51(2)	25(2)	-4(2)	-3(2)	-13(2)
(30)	21(2)	37(2)	32(2)	-4(2)	-5(2)	-1(2)
(31)	17(2)	35(2)	22(2)	6(2)	-3(2)	-6(2)
(32)	26(2)	45(3)	47(3)	9(2)	13(2)	-3(2)
(33)	39(3)	32(2)	39(2)	3(2)	1(2)	-19(2)
(34)	15(2)	28(2)	20(2)	4(1)	-2(1)	0(1)
(35)	28(2)	27(2)	31(2)	4(2)	-3(2)	2(2)
(36)	29(2)	40(2)	20(2)	4(2)	-5(2)	5(2)
(37) .	27(2)	20(2)	33 (2)	-4(2)	-8(2)	0(2)
(38)	23(2)	28(2)	25(2)	0(2)	-1(2)	2(2)

. نه

C(39A)	48(3)	48(3)	35(3)	-13(3)	17(3)	-21(3)
C(40A)	43 (3)	48(3)	35(3)	-18(3)	-4(2)	19(2)
C(41A)	58(3)	27(2)	28(3)	-9(2)	-2(3)	-1(2)
C(42A)	41(4)	43(3)	29(3)	-18(2)	-8(2)	-1(2)
C(43A)	69(5)	38(3)	20(2)	-7(2)	-7(2)	4(2)

♥. ■ ■.

· · ·

• •

Table 17. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å² x 10³) for CpMn(CO)₂ (InC₆H₃-2,6-Trip₂).

	x	Υ	Z	U (eq)	
н(3)	5394 (4)	-1755 (4)	3200 (2)	30	
H(4)	5637(4)	-2818 (4)	2228 (2)	30	
H(5)	4649(4)	-1842(3)	1358 (2)	26	
H(9)	1816 (4)	654 (4)	4903 (2)	39	
H(11)	5061(4)	3179 (4)	4239(2)	39	
H(15)	386(4)	1495(3)	677 (2)	25	
H(17)	4359(4)	2904 (3)	110(2)	25	
H(19)	2415(4)	-1578(4)	3617(2)	36	
H(20A)	1105 (30)	-2782(14)	4463 (4)	65	
H(20B)	899 (27)	-1477(13)	4887(6)	65-	
H(20C)	2431 (6)	-2178 (26)	4739 (9)	65	
H(21A)	-59 (15)	-1266 (5)	3651(14)	60	
H(21B)	769(5)	56 (26)	3316(8)	60	
H(21C)	-6(16)	72 (26)	4044 (7)	60	
H(22)	2329(5)	2295(5)	5579(2)	50	
H(22)	4012 (8)	3574 (35)	5981 (9)	92	
H(23H)	4012(0)	2703 (32)	5289(8)	92	
п (23D) П (23C)	4973(19)	2251 (6)	5675(17)	92	
H(23C)	4/00(24)	ACOE (10)	5502(5)	84	
H(24A)	2048 (35)	4005 (IO) 2074 (E)	A957(17)	84	
H(24B)	1303(19)	3374(3)	4781 (13)	84	
H(24C)	2866(10)	4725(17)	2745(2)	35	
H(25)	6074(4) 0200(E)	1030(4)	2745(2)	70	
H(26A)	8308(5)	1828(30)	3032(7)	72	
H(26B)	7419(17)	586(6)	34/5(15)	72	
H(26C)	7533(19)	1990(26)	3812(8)	14	
H(27A)	7084 (18)	3829(6)	2652(11)	60	
H(27B)	6284 (33)	4137(5)	3353(3)	60-	
H(27C)	5387(16)	3939(7)	2781(14)	60	
H(28)	6032(4)	712(4)	1189(2)	29	
H(29A)	5873 (28)	3603 (4)	989(7)	49	
H(29B)	7155 (7)	2822(15)	1267(12)	49	
H(29C)	5591 (23)	2772 (14)	1671(5)	49	
H(30A)	7783(4)	1409(28)	332(2)	45	
H(30B)	6625(21)	2222(14)	-22(5)	45	
H(30C)	6573 (20)	594 (14)	62(6)	45	
H(31)	1175(4)	-586(4)	2017(2)	30	
H(32A)	-1258(10)	-440(17)	2087(11)	63	
H(32B)	-1157(12)	253 (30)	1376(4)	63	
H(32C)	-672(5)	1081(14)	1938(14)	63	
H (33A)	114 (24)	-2348(12)	1528(7)	56	
H(33B)	1731(8)	-2112(16)	1204 (13)	56	
H (33C)	465 (30)	-1527(6)	845(6)	56	
4(24)	717(4)	3141 (4)	-173(2)	25	

٠ نه

1460(26)	5452(4)	-278(7)	44	
1469(26)	5452(4)	71 (12)	4.4	
2808 (6)	5040(10)	11(12)	~*~*	
1232 (23)	4902(8)	460(6)	44	
2076 (17)	3821 (21)	-1150(2)	45	
2508 (24)	2286(7)	-967 (5)	45	
3523 (8)	3516 (26)	-866 (4)	45	
-786 (4)	4306(5)	3408 (2)	55	
-612 (5)	· 6523(7)	2723 (3)	50	
1930(7)	7361(3)	2605 (2)	45	
3328 (3)	5663(6)	3218 (2) '	44	
1650 (9)	3775 (4)	[°] 3715 (2)	51	
-243 (8)	3728 (6)	3626 (3)	16	
-886(3)	5949(7)	3062(3)	8	
1361 (6)	7354(3)	2769(3)	44	
3393 (3)	6002(6)	3152(3)	123	
2402 (9)	3761(5)	3681(2)	51	
	1469 (26) 2808 (6) 1232 (23) 2076 (17) 2508 (24) 3523 (8) -786 (4) -612 (5) 1930 (7) 3328 (3) 1650 (9) -243 (8) -886 (3) 1361 (6) 3393 (3) 2402 (9)	1469 (26)5452 (4)2808 (6)5040 (10)1232 (23)4902 (8)2076 (17)3821 (21)2508 (24)2286 (7)3523 (8)3516 (26)-786 (4)4306 (5)-612 (5)6523 (7)1930 (7)7361 (3)3328 (3)5663 (6)1650 (9)3775 (4)-243 (8)3728 (6)-886 (3)5949 (7)1361 (6)7354 (3)3393 (3)6002 (6)2402 (9)3761 (5)	1469(26) $5452(4)$ $-278(7)$ $2808(6)$ $5040(10)$ $71(12)$ $1232(23)$ $4902(8)$ $460(6)$ $2076(17)$ $3821(21)$ $-1150(2)$ $2508(24)$ $2286(7)$ $-967(5)$ $3523(8)$ $3516(26)$ $-866(4)$ $-786(4)$ $4306(5)$ $3408(2)$ $-612(5)$ $6523(7)$ $2723(3)$ $1930(7)$ $7361(3)$ $2605(2)$ $3328(3)$ $5663(6)$ $3218(2)$ $1650(9)$ $3775(4)$ $3715(2)$ $-243(8)$ $3728(6)$ $3626(3)$ $-886(3)$ $5949(7)$ $3062(3)$ $1361(6)$ $7354(3)$ $2769(3)$ $3393(3)$ $6002(6)$ $3152(3)$ $2402(9)$ $3761(5)$ $3681(2)$	1469(26) $5452(4)$ $-278(7)$ 44 $2808(6)$ $5040(10)$ $71(12)$ 44 $1232(23)$ $4902(8)$ $460(6)$ 44 $2076(17)$ $3821(21)$ $-1150(2)$ 45 $2508(24)$ $2286(7)$ $-967(5)$ 45 $3523(8)$ $3516(26)$ $-866(4)$ 45 $-786(4)$ $4306(5)$ $3408(2)$ 55 $-612(5)$ $6523(7)$ $2723(3)$ 50 $1930(7)$ $7361(3)$ $2605(2)$ 45 $3328(3)$ $5663(6)$ $3218(2)$ 44 $1650(9)$ $3775(4)$ $3715(2)$ 51 $-243(8)$ $3728(6)$ $3626(3)$ 16 $-886(3)$ $5949(7)$ $3062(3)$ 8 $1361(6)$ $7354(3)$ $2769(3)$ 44 $3393(3)$ $6002(6)$ $3152(3)$ 123 $2402(9)$ $3761(5)$ $3681(2)$ 51

.

.

. .

-

v. v.

> 1 1

.

•

نه .

•

Table 1. Original crystal data for 2,6-Trip₂C₆H₃In.

Identification code	sth07
Empirical formula	C36 ^H 49.18 ^{In} 0.82
Formula weight	576.08
Crystal size	0.54 x 0.30 x 0.08 mm
Crystal habit	parallelepiped
Crystal color	orange
Crystal system	Orthorhombic
Space group	Pna2
Unit cell dimensions	$a = 7.944(2) \text{ Å} \alpha = 90^{\circ}$ $b = 16.238(3) \text{ Å} \beta = 90^{\circ}$
	$c = 25.640(5) \text{ Å} \gamma = 90^{\circ}$
Volume	3307(3) Å ³
Ζ	4
Density (calculated)	1.198 Mg•m ⁻³
Absorption coefficient	0.735 mm ⁻¹
F(000)	1256
Absorption correction ¹	XABS2
Max. and min: transmission	0.956 and 0.830

XABS2: an empirical absorption correction program. Parkin,S.;
Moezzi, B.; Hope, H. J. Appl. Cryst. 1995, 28, 53-56.

21

· · .

	Table 2. Original data collection	on for 2,6-Trip ₂ C ₆ H ₃ In.
	Diffractometer	Siemens R3M/V
	Temperature	130(2) K
	Radiation source	normal-focus sealed tube
	Wavelength	0.71073 Å (ΜοΚα)
	Monochromator	graphite
	heta range for data collection	1.48 to 27.49 ⁰
	Scan type	ω
	Index ranges	$0 \le h \le 10, \ 0 \le k \le 21, \ 0 \le l \le 33$
-	Reflections -collected	4313
	Independent reflections	$3885 (R_{int} = 0.0000)$
	Standard reflections	2
	Percent decay of standards	2.25
	-	

*****. *

.

~

Table 3. Original solution and refinement of 2,6-Trip₂C₆H₃In. SHELXS-86 (Sheldrick, 1990) System for solution direct Structure solution SHELXL-93 (Sheldrick, 1993) System for refinement Full-matrix least-squares on F² Refinement method riding Hydroden atoms 3880 / 39 / 341 Data / restraints / parameters Goodness-of-fit on F^2 1.039 $w^{-1} = \sigma^2 (Fo^2) + (0.04999P)^2 + 0.1237P,$ Weighting scheme where $P = (Fo^2 + 2Fc^2)/3$ R1 = 0.1110, wR2 = 0.1483R indices (all data) R1 = 0.0520, wR2 = 0.0993R indices calcd from obsd data Observed data (>2sigma(I)) 2344 Absolute structure parameter 0.04(9)0.435 and -0.300 eÅ^{-3} Largest diff. peak and hole 1) R1 = $\sum ||Fo-Fc||/\sum |Fo||$ $wR2 = [\Sigma[w(Fo^2 - Fc^2)^2] / \Sigma[w(Fo^2)^2]]^{\frac{1}{2}}$ Goodness-of-Fit = $\left[\sum \left[w(Fo^2 - Fc^2)^2\right]/(M-N)\right]^{\frac{1}{2}}$ 2) where M is the number of reflections and N is the number of parameters refined. Refinement is based on F² for ALL reflections except for those with 3) very negative F^2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2\sigma(F^2)$ is used only for calculating R indices for observed data and is not relevant to the choice

of reflections for refinement. R-factors based on F^2 are

statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

The atom bound to C1 was refined as a mixture of In and H. The refinement converged to occupancies of 81.4(3) for In and 18.6(3) for H. The

carbon atoms in the 2,6-Trip ${}^{C}_{6}{}^{H}_{3}$ were refined using restraints of typical values for carbon-carbon bond distances.

::

Table 4. Original atomic coordinates $[\times 10^4]$ and equivalent isotropic

displacement parameters $[\text{\AA}^2 \times 10^3]$

for 2,6-Trip₂C₆H₃In.

U(eq) is defined as one third of the trace of the

orthogonalized U tensor.

	x	У	Z	U(eq)
·	•		<u> </u>	
In	2803(1)	9233(1)	3313(2)	48(1)
H(1)	1517	9733	3300	30
C(1)	659(6)	10144(3)	3318 (5)	28(1)
C(2)	18(18)	10473(8)	2853 (4)	33 (4)
C(3)	-1147(18)	11110(8)	2837(5)	27(3)
C(4)	-1755(6)	11396(3)	3310(6)	37(1)
C(5)	-1198 (20)	11062(9)	3774(6)	37(4)
C(6)	24 (14)	10448(7)	3791(4)	20(3)
C(7)	646 (16)	10114(7)	2346(4)	29(4)
C(8)	2044 (16)	10479(7)	2095(4)	25(3)
C(9)	2708 (18)	10143(7)	1639(5)	34(4)
C(10)	2103 (17)	9405(7)	1445(4) [.]	27(3)
C(11)	722 (19)	9049(9)	1687(5)	53 (5)
C(12)	50 (19)	9356 (8)	2155(5)	34 (4)
C(13)	728 (15)	10087(7)	4290(4)	29(4)
C(14)	2011(17)	10498(8)	4569(5)	38(4)
C(15)	2667 (17)	10083(8)	5001(5)	41(4)
C(16)	2076 (22)	9338 (9)	5192(6)	54(5)
C(17)	779(16)	8973 (9)	4911(4)	31(3)
C(18)	31(20)	9346(7)	4478(5)	35(4)
C(19)	2541(16)	11992(9)	1876(6)	47(4)
C(20)	2759(16)	11302(8)	2268(5)	40(4)
C(21)	4604(15)	11252(13)	2416(6)	54(4)
C(22)	1578(19)	9054(10)	493(4)	59(4)
C(23)	2638(18)	8921(8)	962(4)	61(5)
C(24)	3585(16)	8146(8)	1042(6)	55(4)
C(25)	-1251(31)	8061(10)	2551(8)	102(8)
C(26)	-1496 (18)	8958(8)	2407(6)	54(5)
C(27)	-3024 (23)	9024 (17)	2054(8)	69(7)
C(28)	-1064(24)	8033(7)	4071(6)	49(4)
C(29)	-1451(16)	8917(8)	4217(4)	41(4)
C(30)	-3030(22)	8973 (15)	4547(10)	78(7)
C(31)	2621 (26)	11930(10)	4824(6)	84(6)
C(32)	2709 (20)	11321(7)	4375(5)	40(4)
C(33)	4443 (22)	11212(16)	4140(8)	118(9)
C(34)	3629 (24)	8215(9)	5594(6)	89(7)
C(35)	2920 (15)	9047(7)	5686(5)	42(3)
C(36)	1723 (23)	9071(12)	6120(5)	108(8)

: نه

			•
In-C(1)	2.256(4)	C(1)-C(6)	1.403(8)
C(1) - C(2)	1.404(8)	C(2)-C(3)	1.388(8)
C(2) - C(7)	1.509(8)	C(3)-C(4)	1.384(8)
C(4) - C(5)	1.379(8)	C(5)-C(6)	1.393(8)
C(6) - C(13)	1.513(8)	C(7)-C(12)	1.406(8)
C(7) - C(8)	1.414(8)	C(8)-C(9)	1.393(8)
C(8)-C(20)	1.519(9)	C(9)-C(10)	1.384(8)
C(10) - C(11)	1.387(9)	C(10)-C(23)	1.525(8)
C(11) - C(12)	1.405(8)	C(12)-C(26)	1.531(9)
C(13)-C(14)	1.413(8)	C(13)-C(18)	1.410(8)
C(14)-C(15)	1.399(8)	C(14)-C(32)	1.530(8)
C(15)-C(16)	1.387(9)	C(16)-C(17)	1.390(9)
C(16)-C(35)	1.509(9)	C(17)-C(18)	1.397(8)
C(18)-C(29)	1.523(8)	C(19)-C(20)	1.515(9)
C(20)-C(21)	1.517(8)	C(22)-C(23)	1.484(9)
C(23)-C(24)	1.481(9)	C(25)-C(26)	1.515(9)
C(26)-C(27)	1.518(9)	C(28)-C(29)	1.515(9)
C(29)-C(30)	1.515(9)	C(31)-C(32)	1.519(9)
C(32)-C(33)	1.514(9)	C(34)-C(35)	1.483(9)
C(35) -C(36)	1.465(9)		

Table 5. Original bond lengths [Å] for 2,6-Trip₂C₆H₃In.

• •• •

÷

~~

C(6)-C(1)-C(2)	118.1(4)	C(6) - C(1) - In	120.5(7)
C(2) - C(1) - In	121.2(8)	C(3)-C(2)-C(1)	123.3(10)
C(3)-C(2)-C(7)	118.9(11)	C(1)-C(2)-C(7)	117.7(11)
C(2)-C(3)-C(4)	117.2(10)	C(5) - C(4) - C(3)	120.7(5)
C(4)-C(5)-C(6)	122.2(10)	C(1)-C(6)-C(5)	118.3(9)
C(1)-C(6)-C(13)	117.4(9)	C(5)-C(6)-C(13)	124.2(10)
C(12)-C(7)-C(8)	118.2(10)	C(12)-C(7)-C(2)	121.8(10)
C(8)-C(7)-C(2)	119.3(10)	C(9)-C(8)-C(20)	116.6(10)
C(9)-C(8)-C(7)	121.0(10)	C(20)-C(8)-C(7)	122.0(9)
C(8)-C(9)-C(10)	120.6(10)	C(11)-C(10)-C(9)	118.3(10)
C(11)-C(10)-C(23)	111.6(10)	C(9)-C(10)-C(23)	129.9(10)
C(10)-C(11)-C(12)	122.3(11)	C(7)-C(12)-C(11)	118.7(11)
C(7)-C(12)-C(26)	119.5(10)	C(11)-C(12)-C(26)	121.0(11)
C(14) - C(13) - C(18)	120.9(10)	C(14)-C(13)-C(6)	120.8(10)
C(18)-C(13)-C(6)	118.3(10)	C(13)-C(14)-C(15)	116.3(11)
C(13)-C(14)-C(32)	120.7(11)	C(15)-C(14)-C(32)	122.9(12)
C(16)-C(15)-C(14)	125.0(12)	C(15)-C(16)-C(17)	116.1(12)
C(15)-C(16)-C(35)	114.7(10)	C(17)-C(16)-C(35)	129.2(11)
C(18)-C(17)-C(16)	122.8(13)	C(17)-C(18)-C(13)	118.4(12)
C(17)-C(18)-C(29)	118.6(10)	C(13)-C(18)-C(29)	123.0(10)
C(8)-C(20)-C(21)	112.8(13)	C(8)-C(20)-C(19)	114.4(12)
C(21)-C(20)-C(19)	108.4(11)	C(24)-C(23)-C(22)	121.5(12)
C(24)-C(23)-C(10)	117.9(11)	C(22)-C(23)-C(10)	1,15.1(11)
C (25) -C (26) -C (27)	109(2)	C(25)-C(26)-C(12)	114.0(14)
C(27)-C(26)-C(12)	111.1(14)	C(18)-C(29)-C(30)	111.6(13)
C(18)-C(29)-C(28)	112.6(12)	C(30)-C(29)-C(28)	111.2(14)
C(31)-C(32)-C(33)	115(2)	C(31)-C(32)-C(14)	107.8(12)
C(33)-C(32)-C(14) ·	110.9(14)	C(36)-C(35)-C(16)	109.9(12)
C(36)-C(35)-C(34)	113.0(12)	C(16)-C(35)-C(34)	108.7(12)

Table

10³]

7. Original anisotropic displacement parameters

[Å² x

21

• •

for 2,6-Trip₂C₆H₃In. The anisotropic displacement factor exponent takes the form: $-2\pi^2 \left[(\ln^2)^2 H + \ln^2 h +$

$$-2\pi^2$$
 [(ha^{*})²U₁₁ + ... + 2hka^{*}b^{*}U₁₂]

	U11	່ <u>ບ</u> 22	U 33	U23	U 13	' U12
In	44(1)	37(1)	63(1)	2(1)	0(1)	20(1)
C(1)	27(3)	28(3)	30 (3)	7 (8)	23(7)	2(2)
C(2)	49(8)	29(8)	23(7)	4(6)	-2(7)	-10(7)
C(4)	31(3)	37(3)	43 (3)	-1(12)	-7(11)	7(2)
C(5)	34(5)	37(5)	39(5)	-11(4)	8(4)	9(4)
C(6)	 3(5)	25(7)	33 (8)	4(6)	-2(5)	4(5)
C(7)	41(8)	24(7)	21(7)	11(5)	4(6)	-4(6)
C(8)	30(8)	22(6)	22(6)	-2(5)	10(5)	4(6)
C(9)	49(9)	22(5)	30(7)	2(5)	7(6)	-13 (5)
C(10)	37(5)	26(4)	17(4)	-5(3)	13(3)	11(3)
C(11)	84(12)	29(7)	45(8)	-18(6)	-22(8)	7(7)
C(12)	32(9)	39(9)	31(9)	6(8)	3(8)	4(7)
C(13)	20(7)	39(8)	28(8)	9(6)	11(5)	15(6)
C(14)	32(9)	58(9)	25(7)	-14(7)	16(6)	1(7)
C(15)	23(7)	70(10)	31(8)	-3(7)	-6(6)	26(6)
C(17)	39(7)	31(6)	22 (5)	-10(4)	-7(5)	9(5)
C(18)	51(11)	23 (8)	32(9)	5(7)	7(9)	-6(7)
C(19)	36(7)	44(7)	59(8)	-9(6)	-6(5)	11(5)
C(20)	22(7)	54(10)	45(10)	3(8)	10(7)	0(7)
C(21)	31(6)	65(10)	66 (8)	25(7)	-16(6)	-14(6)
C(22)	83 (9)	71(9)	22(7)	8(6)	0(6)	-8(7)
C(23)	97(12)	70(9)	16(5)	-2(5)	11(6)	34(9)
C(24)	39(7)	58(8)	69(11)	-16(7)	0(7)	-10(6)
C(25)	~100(17)	92 (14)	113 (18)	57(12)	-8(13)	-27(12)
C(26)	59(12)	21(6)	82(11)	-5(7)	23(9)	-17(7)
C(27)	49(13)	83(16)	76(14)	-11(11)	12(10)	-13(11)
C(28)	49(8)	34(7)	64(11)	0(7)	-9(7) 🗂	-3(6)
C(29)	47(10)	58(10)	19(6)	13(6)	6(6)	-6(7)
C(30)	38(12)	73 (12)	124 (18)	-37(13)	10(12)	-14(9)
C(31)	163(17)	30(6)	60(9)	-8(6)	4(10)	-25(9)
C(32)	51(11)	36 (9)	33 (8)	8(7)	1(8)	-15(8)
C(33)	107(16)	69(13)	176 (22)	2(15)	83 (15)	-26 (12)
C(34)	138(15)	95 (11)	35(8)	22(8)	7(8)	95 (10)
C(35)	33(5)	30(5)	64 (8)	10(4)	-23 (5)	-15(4)
C(36)	150(16)	127 (14)	45 (10)	30(9)	14 (10)	122 (12)

Table 8. Original hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters (Å² $\times 10^3$)

.....

```
for 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>In.
```

	x	У	z	U(eq)
H(3)	-1512(18)	11340(8)	2516 (5)	32
H(4)	-2565(6)	11826(3)	3315(6)	45
H(5)	-1664 (20)	11258 (9)	4092(6)	44
н(9)	3585 (18)	10423(7)	1460(5)	40
H(11)	213 (19)	8580(9)	1531(5)	63
H(15)	3588 (17)	10330(8)	5178(5)	50
H(17)	385 (16)	8447(9)	5017(4)	37
H(19A)	3068 (59)	11835(16)	1545 (8)	70
H(19B)	3076 (60)	12493 (12)	2009(10)	70
H(19C)	1339 (16)	12094 (24)	1820(17)	7.0
H(20)	2130 (16)	11468(8)	2589(5)	48
H(21A)	4946 (24)	11766(18)	2586 (21)	81
H(21B)	5283 (17)	11166 (39)	2102(7)	81
H(21C)	4776 (20)	10790(24)	2657(19)	81
H(22A)	447 (52)	8835(76)	557 (20)	88
H(22B)	2082 (92)	8769.(69)	195(13)	88
н (22С)	1506 (141)	9645(11)	419(31)	88 ,
· H(23)	3609(18)	9277(8)	857(4)	73
H(24A)	4031 (139)	7954 (43)	707(10)	83
H(24B)	2832 (44)	7726 (25)	1187(48)	83
H(24C)	4518(100)	8243 (20)	1284 (40)	83
H(25A)	-2214(93)	7872 (25)	2758(46)	152
н(25В)	-217(101)	8001(16)	2756 (47)	152
H(25C)	-1164 (171)	7730(15)	2233 (8)	152
H(26)	-1749(18)	9267(8)	2735(6)	65
H(27A)	-3178(60)	9599 (19)	1948(25)	104
н(27В)	-4026(30)	8836 (49)	2242(14)	104
H(27C)	-2854 (52)	8682(43)	1744(18)	104
H(28A)	-116(75)	8020(8)	3827 (27)	74
H(28B)	-2055(44)	7784(17)	3907 (30)	74
H(28C)	-772(106)	7722 (15)	4386(8)	74
H(29)	-168 <u>4</u> (16)	9219(8)	3885(4)	50
H(30A)	-2792(37)	8766 (50)	4898(14)	117
H(30B)	-3922(41)	8640(46)	4388(21)	117
H(30C)	-3396 (63)	9548(17)	4568(28)	117
H(31A)	1542 (44)	11868(35)	5005(20)	127
H(31B)	2719(109)	12492(10)	4689(7)	127
H(31C)	3544 (59)	11822(33)	5068 (17)	127
H(32)	1945(20)	11525(7)	4093 (5)	48
н (ЗЗА)	4341 (23)	10947(58)	3798 (19)	176
н(33В)	5129(46)	10866(57)	4370 (21)	176
н(33С)	4981(58)	11751(17)	4100(39)	176
H(34A)	4446(172)	8086 (47)	5869(41)	134

H(34B)	4190(199)	8202 (33)	5254 (32)	134	
H(34C)	2719 (39)	7807(16)	5600(70)	134	
H(35)	3869(15)	9431(7)	5767(5)	50	
H(36A)	795(143)	8689 (98)	6051 (40)	161 .	
H(36B)	1277 (206)	9631 (31)	6157 (54)	161	
H(36C)	2295 (71)	8910 (132)	6443 (16)	161	

. .

- · · · ·

. • • • • .

• •

· . *

. 9

24

• •