

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Symbol b	Level c	R _{Li-O1}	θ	R _{Li-O2}	∠O1LiO2	R _{H1-O2}	$\Delta E(n) d$	Imag. freq. (sym)
Li(H ₂ O)								
Ia 1+0 (C _{2v})	А	1.909					12.5	181 <i>i</i> (B ₁)
	В	1.903	0.0				12.2	122 <i>i</i> (B ₁)
	С	1.917	0.0				10.6 (12.2)	
Ib 1+0 (C _s)	Α	1.918	29.3				12.6	
	В	1.910	27.1				12.3	
Li(H ₂ O) ₂								
IIa 2+0 (C _{2v})	А	1.917			142.9		25.8	77 <i>i</i> (A ₂), 66 <i>i</i> (B ₁)
	В	1.871			174.3		26.8	
	С	1.934			123.7		20.2	119 <i>i</i> (A ₂), 62 <i>i</i> (B ₂)
II <i>b</i> 2+0 (C ₂)	А	1.917			119.0		26.2	12 <i>i</i> (B)
	С	1.935			107.7		21.1 (25.9)	
IIg 2+0 (C_s)	Α	1.909			127.4		26.1	26 <i>i</i> (A")
	С	1.924			117.6		20.5	123 <i>i</i> (A")
II c 2+0 (C_s)	Α	1.937		1.903	104.7		26.1	188 <i>i</i> (A")
	В	1.942		1.882	95.5		26.2	
	С	1.956		1.918	105.3		21.0	64 <i>i</i> (A")
IId 2+0 (C ₁)	Α	1.924		1.919	113.0		26.2	
IIe 1+1 (C _s)	Α	1.884				1.776	22.5	77i (A")
	В	1.869				1.774	22.7	
	С	1.888				1.883	19.2 (22.4)	
IIf $1+1$ (C ₁)	Α	1.890				1.778	22.5	

Table S1. Optimized Geometrical Parameters (Å and degrees) a and Total Binding Energies, $\Delta E(n)$ (kcal/mol), of Li(H₂O)_n (n = 1-2) Calculated at Various Levels. Imaginary Frequencies (cm⁻¹) and Symmetry of Imaginary Modes are Given if Exist.

^a Parameters are shown in Figure S1. ^b Corresponds to structures in Figure S1. ^c A: MP2/6-311++G(d,p). B: MP2/6-31++G(d,p). C: HF/6-31++G(d,p). ^d $-\Delta E(n) = E[Li(H_2O)_n] - E[Li] - nE[H_2O]$ (without CPC). Values for potential minima are in italic. Values in parentheses are at MP2/6--31++G(d,p) // HF/6-31++G(d,p).

Symbol ^b	Level ^c	R _{Li-O1}	R _{Li-O2}	R _{Li-O3}	∠O1LiO2	∠O2LiO3	∠O1LiO3	R _{H1-O3}	R _{H2-O2}	ΔEď	Imag. freq. (sym.)
Ша 3+0 (С _{2v})	Α	1.902	1.913		117.3					42.3	161 <i>i</i> (B ₁), 17 <i>i</i> (B ₂)
	В	1.885	1.886		113.0					43.5	66 <i>i</i> (B ₂), 57 <i>i</i> (B ₁)
	С	1.915	1.910		115.6					<i>33.</i> 2 (42.8)	
IIIk 3+0 (C _s)	Α	1.909	1.913		117.0	125.3				42.3	1 <i>i</i> (A")
	В	1.891	1.885		112.7	133.4				43.5	51 <i>i</i> (A")
Ш/ 3+0 (С _s)	A	1.903	1.918	1.912		125.0	127.0			42.3	150 <i>i</i> (A")
	В	1.865	1.932	1.874		126.7	140.7			44.0	41 <i>i</i> (A")
III <i>b</i> 3+0 (C ₁)	Α	1.909	1.913	1.913	117.4	125.3	116.7			42.3	
Ш <i>с</i> 3+0 (С ₁)	В	1.859	1.930	1.860	118.3	92.5	149.2			44.1	
Ш <i>d</i> 3+0 (С ₃)	А	1.907			119.6					42.4	
	В	1.880			117.5					44.0	
	С	1.912			119.9					<i>33.3</i> (40.2)	
Ше 2+1 (С _s)	А	1.880	1.971		107.7			1.798	2.030	37.8	314 <i>i</i> (A"), 114 <i>i</i> (A")
	В	1.850	1.928		113.5			1.796	1.988	40.5	
	С	1.891	2.008		106.7			1.914	2.178	30.1	73i (A")

Table S2. Optimized Geometrical Parameters (Å and degrees)^a and Total Binding Energies, ΔE (kcal/mol), of Li(H₂O)₃ Calculated at Various Levels. Imaginary Frequencies (cm⁻¹) and Symmetry of Imaginary Modes are Presented if Exist.

(Continues to next page.)

Supporting Information (2/1)

K. Hashimotu

					(Table S2	2 continued	1.)				
Symbol ^b	Level ^c	R _{Li-O1}	R _{Li-O2}	R _{Li-O3}	∠01LiO2	∠O2LiO3	∠O1LiO3	R _{H1-O3}	RH2-O2	ΔEď	Imag. freq. (sym.)
IIIf 2+1 (C ₁)	A	1.884	1.975		106.6			1.773	2.014	38.3	
	С	1.890	2.010		106.0			1.912	2.174	<i>30.1</i> (39.0)	
IIIg 2+1 (C _s)	Α	1.921			103.2			1.994		36.4	
	в	1.888			111.2			1.994		38.2	
	С	1.931			99.7			2.126		29.1 (34.7)	
IIIh 1+2 (C _{2v})	Α	1.862						1.829		31.0	15 <i>i</i> (B ₁)
	В	1.842						1.825		31.5	47 <i>i</i> (B ₂)
	С	1.863						1.929		26.4 (31.2)	
III <i>i</i> 1+2 (Cs)	Α	1.863						1.829		31.0	
	В	1.836						1.838		31.7	63i (A")
III <i>j</i> 1+2 (C ₁)	В	1.830						1.823	1.844	31.7	

^a Parameters are shown in Figure 1. ^b Corresponds to structures in Figure 1. ^c A: MP2/6-311++G(d,p). B: MP2/6-31++G(d,p). C: HF/6-31++G(d,p). ^d $-\Delta E(n) = E[Li(H_2O)_n] - E[Li] - n E[H_2O]$ (without CPC). Values for potential minima are in italic. Values in parentheses are at MP2/6-31++G(d,p)//HF/6-31++G(d,p).

K. Hashimoto

supporting Information (3/5)

	······································	Li s basis function							
n	- structure ^a	inner	outer	diffuse	total				
0		0.32	0.60	0.03	0.96				
1	Ia	0.21	0.69	0.08	0.98				
2	IIb	0.17	0.59	0.14	0.90				
3	IIIa	0.18	0.29	0.33	0.79				
4	IVa	0.22	0.17	0.36	0.74				
5	Va	0.21	0.10	0.28	0.59				
6	VIa	0.21	0.10	0.21	0.52				
8	VIIIa	0.20	0.17	0.15	0.52				

Table S3. Mulliken Total Gross Population in Li s Basis Functions in $Li(H_2O)_n$ Clusters by HF/6-31++G(d,p) Method.

a Indicates the structures in Figures 1 and 2.

K. Hashimoto

Supporting Information (4/5)

K. Hashimoto Fig. SI Supporting Information (5/5)