J. Am. Chem. Soc., 1997, 119(41), 9927-9928, DOI:10.1021/ja972690I

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

A Simple Enantioselective Synthesis of the Biologically Active Tetracyclic Marine Sesterterpene Scalarenedial

E. J. Corey,* Guanglin Luo, and Linus Shouzhong Lin

Department of Chemistry and Chemical Biology,
Harvard University, Cambridge, Massachusetts, 02138

Supplementary Material

A mixture of the Noe-Lin catalyst, ${ }^{9 \mathrm{a}}$ 1,4-bis[O6'-(4-heptyl)hydrocupreidyl]naphthalazine monomethiodide salt ($158 \mathrm{mg}, 0.14 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(26 \mathrm{mg}, 0.07 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ $(1.38 \mathrm{~g}, 42 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(5.8 \mathrm{~g}, 42 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{NH}_{2}(1.34 \mathrm{~g}, 14 \mathrm{mmol})$, geranyl geranyl acetate ($2.32 \mathrm{~g}, 7 \mathrm{mmol}$), and 140 mL of $1: 1 t-\mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}$ was stirred at $0^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was treated with 30 mL of saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and 30 mL of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ at $0^{\circ} \mathrm{C}$ and was then allowed to warm to $23^{\circ} \mathrm{C}$ for 45 min . Solvent t-BuOH was stripped off in vacuo. The resulting mixture was extracted with EtOAc ($4 \times 20 \mathrm{~mL}$), and the combined extracts were washed wtih dilute KOH , brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel chromatography (2:3 EtOAc-hexane) to give 1.5 g of the above diol (58%), 0.23 g of geranyl geranyl acetate (10%), and 103 mg (65% recovery) of the Noe-Lin ligand, which was recovered for reuse by further eluting the column with $20: 1: 0.1 \mathrm{CHCl}_{3}-\mathrm{MeOH}-$ $\mathrm{NH}_{4} \mathrm{OH}$. Found for the diol: $[\alpha] \mathrm{D}^{23}=+16.3\left(\mathrm{c} 0.51, \mathrm{C}_{6} \mathrm{H}_{6}\right.$); IR (neat) $v 3400,1740,1232 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.35(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 5.17(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 5.09(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=6.9 \mathrm{~Hz}), 4.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.0 \mathrm{~Hz}), 2.30-1.90(10 \mathrm{H}, \mathrm{m}), 2.04$ $(3 \mathrm{H}, \mathrm{s}), 1.69(3 \mathrm{H}, \mathrm{s}), 1.61(3 \mathrm{H}, \mathrm{s}), 1.59(3 \mathrm{H}, \mathrm{s}), 1.45-1.35(2 \mathrm{H}, \mathrm{m}), 1.19(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}$, s); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,142.2,135.3,134.9,125.0,123.8,118.2,78.3$, $72.9,61.4,39.5,39.47,36.8,29.6,26.5,26.4,26.1,23.3,21.0,16.4,15.9,15.85$; HRMS (FAB) calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}: 389.2666$, found: 389.2675.

To a solution of (14R)-14,15-dihydroxy-14,15-dihydrogeranylgeranylacetate $(1.37 \mathrm{~g}$, 3.74 mmol) and pyridine ($0.61 \mathrm{~mL}, 7.49 \mathrm{mmol}$) in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ was added MsCl $(0.35 \mathrm{~mL}, 4.49 \mathrm{mmol})$. After stirring at $23^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was diluted with 45 mL of MeOH , and was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(9 \mathrm{~g}, 64.9 \mathrm{mmol})$. After stirring at $23{ }^{\circ} \mathrm{C}$ for 5 h , the reaction mixture was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), and the combined extracts were washed with dilute $\mathrm{CuSO}_{4}(2 \times 50 \mathrm{~mL})$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by silica gel chromatography ($2: 1$ EtOAc-hexane) to give pure $3(1.03 \mathrm{~g}, 90 \%$) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{23}=-3.7$ (c $0.1, \mathrm{MeOH}$); IR (neat) $v 3450,2916,1378 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.41(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}), 5.15(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 5.10(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz})$, $4.17-4.06(2 H, m), 2.70(1 H, t, J=6.2 \mathrm{~Hz}), 2.20-2.02(8 \mathrm{H}, \mathrm{m}), 1.99(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.7 \mathrm{~Hz})$, $1.67(3 \mathrm{H}, \mathrm{s}), 1.66-1.56(2 \mathrm{H}, \mathrm{m}), 1.61(3 \mathrm{H}, \mathrm{s}), 1.59(3 \mathrm{H}, \mathrm{s}), 1.29(3 \mathrm{H}, \mathrm{s}), 1.25(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.5 ., 135.2,134.0,124.8,123.9,123.4,64.2,59.3,58.3,39.6$, $39.5,36.3,27.5,26.5,26.3,24.9,18.7,16.2,16.0$; $\mathrm{HRMS}(\mathrm{CI})$ calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2}+\mathrm{NH}_{4}\right]^{+}$: 324.2903, found: 324.2894 .

(1) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$ LiBr, THF, 1 h
(2)

(3) Pentane/ $\mathrm{H}_{2} \mathrm{O}$ $\mathrm{AcONa} / \mathrm{AcOH}$ $23^{\circ} \mathrm{C}, 3 \mathrm{~h}$

To a solution of (S)-14,15-oxido-E,E,E-geranylgeraniol 3 ($0.93 \mathrm{~g}, 2.95 \mathrm{mmol}$) and MsCl ($0.30 \mathrm{~mL}, 3.83 \mathrm{mmol}$) in 15 mL of THF at $-45^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.82 \mathrm{~mL}, 5.9 \mathrm{mmol})$. After
stirring at $-45^{\circ} \mathrm{C}$ for 45 min , a solution of $\operatorname{LiBr}(1.03 \mathrm{~g}, 11.8 \mathrm{mmol}$, flame-dried under vacuum) in 5 mL of THF was added via canuula. After stirring at $0^{\circ} \mathrm{C}$ for 1 h , the mixture was partitioned between hexane (30 mL) and cold water (30 mL). The organic layer was separated, and the aqueous layer was extracted with hexane $(2 \times 30 \mathrm{~mL})$. The combined organic solution was successively washed with saturated NaHCO_{3} and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give the crude allylic bromide, which was dried by azeotroping with anhydrous benzene and used without further purification. Thus, to a solution of LDA (4.7 mmol , prepared by reaction of 4.9 mmol of diisopropylamine and 4.7 mmol of BuLi in 7 mL of THF) at $-30^{\circ} \mathrm{C}$ was added the imine $5^{10 \mathrm{a}}$ ($1.27 \mathrm{~mL}, 4.42 \mathrm{mmol}$) via syringe, and the resulting yellow solution was allowed to warm up to $0^{\circ} \mathrm{C}$ for 30 min . The solution was cooled to $-30^{\circ} \mathrm{C}$ and a solution of the crude bromide in 1 mL of THF (plus a 2 mL rinse) was added via cannula. The reaction mixture was slowly warmed up to $-10^{\circ} \mathrm{C}$ over 1 h , and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate ($2 \times 30 \mathrm{~mL}$). The combined organic solution was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was dissolved in 25 mL of pentane and treated with 25 mL of $\mathrm{AcOH}-\mathrm{AcONa}$ buffer (a stock solution was prepared by mixing 33 g of $\mathrm{AcONa}, 7 \mathrm{~mL}$ of AcOH and 30 mL of water). After stirring vigorously for 3 h , the mixture was diluted with water and extracted with hexane $(3 \times 40 \mathrm{~mL})$. The combined organic solution was successively washed with saturated NaHCO_{3} and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by silica gel chromatography to afford acylsilane $6\left(1.17 \mathrm{~g}, 89 \%\right.$) as a light yellow oil: $[\alpha]_{\mathrm{D}}{ }^{23}=-2.69$ (c 1.86, MeOH); IR (neat) $v 2957,2929,2858,1642,1249,838,824 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 5.15(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}), 5.09(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 5.06(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}), 2.70(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $6.2 \mathrm{~Hz}), 2.62(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.19(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.16-1.94(10 \mathrm{H}, \mathrm{m}), 1.70-1.50$ $(2 \mathrm{H}, \mathrm{m}), 1.62(3 \mathrm{H}, \mathrm{s}), 1.60(3 \mathrm{H}, \mathrm{s}), 1.59(3 \mathrm{H}, \mathrm{s}), 1.30(3 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{s}), 0.92(9 \mathrm{H}, \mathrm{s})$, $0.18(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.7,135.9,134.9,134.1,124.9,124.3,123.2$, $64.2,58.3,50.3,39.74,39.68,36.4,27.5,26.72,26.68,26.5,25.0,20.7,18.8,16.6,16.1$, 16.0, -6.9; HRMS (FAB) calcd for $\left[\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}\right]^{+}: 469.3478$, found: 469.3476 .

To a solution of methyl phenylsulfone ($1.94 \mathrm{~g}, 12.44 \mathrm{mmol}$) in 20 mL of THF containing 1.88 mL of TMDEA (12.44 mmol) at $-78^{\circ} \mathrm{C}$ was added n-butyllithium (1.6 M in hexane, $8.17 \mathrm{~mL}, 13.07 \mathrm{mmol}$) dropwise. After the addition of n-butyllithium was complete and the reaction mixture allowed to $-40^{\circ} \mathrm{C}$, chloromethyl(phenyldimethyl)silane ($2.25 \mathrm{~mL}, 12.44 \mathrm{mmol}$) was added via syringe. The mixture was allowed to warm up to $23^{\circ} \mathrm{C}$ overnight (12 h). The reaction mixture was hydrolyzed with aqueous 1 M HCl . The organic layer was separated and the aqueous layer was extracted with ether $(2 \times 30 \mathrm{~mL})$. The combined organic extracts were successively washed with saturated NaHCO_{3} and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by silica gel chromatography to afford $7(3.41 \mathrm{~g}, 90 \%)$ as a colorless crystalline compound: $\operatorname{mp} 72-74^{\circ} \mathrm{C}$; IR (neat) v 3069, 2956, 1318, 1308, 1168, 1144, $838,819 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.30(10 \mathrm{H}, \mathrm{m}), 2.99-2.93(2 \mathrm{H}, \mathrm{m}), 1.20-$ $1.13(2 \mathrm{H}, \mathrm{m}), 0.28(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.5,136.4,133.5,133.3,129.5$, 129.1, 128.1, 128.0, 52.3, 8.4, -3.5; HRMS (CI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{SSi}+\mathrm{NH}_{4}\right]^{+}$: 322.1297, found: 322.1299 .

To a solution of sulfone $7(394 \mathrm{mg}, 1.29 \mathrm{mmol})$ in 10 mL of THF-ether-HMPA (4.5:4.5:1) at $-78^{\circ} \mathrm{C}$ was added n - $\mathrm{BuLi}(1.62 \mathrm{M}$ in hexane, $0.8 \mathrm{~mL}, 1.29 \mathrm{mmol}$) dropwise. The resulting yellow solution was then treated with acylsilane $6(0.6 \mathrm{~mL}, 534 \mathrm{mg}, 1.2 \mathrm{mmol})$ via
syringe. After stirring at $-78^{\circ} \mathrm{C}$ for 20 min , the reaction mixture was allowed to warm up to $0{ }^{\circ} \mathrm{C}$ for 10 min . The reaction mixture was partitioned between saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and hexane (10 mL). The organic layer was separated and the aqueous layer was extracted with hexane $(3 \times 10 \mathrm{~mL})$. The combined organic solution was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was carefully purified by silica gel chromatography (100:10:1 hexane-ether-Et ${ }_{3} \mathrm{~N}$) to afford enolsilane $8(546 \mathrm{mg}, 75 \%)$ as a light yellow oil and the starting material acylsilane $6(105 \mathrm{mg}, 20 \%)$. Found for enolsilane 8: $[\alpha]{ }^{23}=-4.11\left(\mathrm{c} 1.46, \mathrm{C}_{6} \mathrm{H}_{6}\right)$; IR (neat) v 2958, 2929, 1249, 1123, 1114, $836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.50-7.44$ $(2 \mathrm{H}, \mathrm{m}), 7.26-7.18(3 \mathrm{H}, \mathrm{m}), 5.36(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}), 5.29(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}), 5.26(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=6.8 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}), 2.56(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}), 2.36(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}), 2.22-$ $1.98(16 \mathrm{H}, \mathrm{m}), 1.66(3 \mathrm{H}, \mathrm{s}), 1.59(3 \mathrm{H}, \mathrm{s}), 1.54(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s}), 0.99(9 \mathrm{H}$, s), $0.26(6 \mathrm{H}, \mathrm{s}), 0.13(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 150.4,135.3,134.9,134.4$, $133.9,129.2,125.1,124.9,124.7,102.3,63.5,40.2,40.1,36.9,31.7,28.0,27.2,27.1,26.1$, $26.0,25.0,18.9,18.3,16.2,16.1,16.0,15.6,-3.2,-4.2$; FABMS: $608\left[\mathrm{C}_{38} \mathrm{H}_{64} \mathrm{O}_{2} \mathrm{Si}_{2}\right]^{+}, 631$ $[\mathrm{M}+\mathrm{Na}]^{+}$.

To a solution of enolsilane $8(190 \mathrm{mg}, 0.31 \mathrm{mmol})$ in 80 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-95^{\circ} \mathrm{C}$ was added a precooled solution of $\mathrm{MeAlCl}_{2}(1 \mathrm{M}$ in hexane, $0.37 \mathrm{~mL}, 0.37 \mathrm{mmol}$) in 20 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(-95^{\circ} \mathrm{C}\right)$ along the side of the flask via cannula. After stirring at $-95^{\circ} \mathrm{C}$ for 30 min , the reaction mixture was quenched by successive addition of $\mathrm{Et}_{3} \mathrm{~N}(1.3 \mathrm{~mL})$ and a $4: 1 \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ solution (1.3 mL) again along the side of the flask at $-95^{\circ} \mathrm{C}$. The resulting mixture was then poured into 40 mL of half saturated $\mathrm{NH}_{4} \mathrm{Cl}$, the organic phase was separated,
and the aqueous phase was extracted with ether ($2 \times 20 \mathrm{~mL}$). The combined organic solution was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was dissolved in 9.5 mL of $\mathrm{CH}_{3} \mathrm{CN}$ and treated with 0.46 mL of aqueous $\mathrm{HF}(48 \%)$ at $23^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was neutralized with saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, and then partitioned between 20 mL of EtOAc and 20 mL of 1 M KOH . The organic layer was separated, and the aqueous layer was extracted with $\operatorname{EtOAc}(2 \times 10 \mathrm{~mL})$. The combined organic extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was dissolved in 4.6 mL of $10 \% \mathrm{KOH}$ in MeOH . After refluxing for 3 h under argon, the mixture was diluted with water, and the product was extracted into ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic solution was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was carefully purified by flash column chromatography to afford the more stable β-epimer 10 ($47 \mathrm{mg}, 30 \%$) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{23}=-17.6\left(\mathrm{c} 0.37, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $\cup 3453,2939,1710,1388,1248,1112,909,838 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.45(2 \mathrm{H}, \mathrm{m}), 7.37-7.30(3 \mathrm{H}, \mathrm{m}), 3.19(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $11.6,4.6 \mathrm{~Hz}), 2.36-2.28(1 \mathrm{H}, \mathrm{m}), 2.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}), 2.12(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=13.3,7.2 \mathrm{~Hz})$, $1.99-1.91(1 \mathrm{H}, \mathrm{m}), 1.82(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=12.6,3.2 \mathrm{~Hz}), 1.79-1.69(2 \mathrm{H}, \mathrm{m}), 1.69-0.98(14 \mathrm{H}$, $\mathrm{m}), 0.97(3 \mathrm{H}, \mathrm{s}), 0.83(3 \mathrm{H}, \mathrm{s}), 0.82(3 \mathrm{H}, \mathrm{s}), 0.77(3 \mathrm{H}, \mathrm{s}), 0.67(3 \mathrm{H}, \mathrm{s}), 0.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.1$ $\mathrm{Hz}), 0.20(3 \mathrm{H}, \mathrm{s}), 0.19(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.9,139.6,133.7,128.8$, $127.7,79.0,60.9,60.3,59.3,55.5,43.7,42.2,41.8,40.9,38.9,38.4,38.2,37.3,28.0,27.4$, $23.0,18.1,17.9,17.3,16.4,15.2,14.6,7.1,-1.9,-2.9$; HRMS (FAB) calcd for $\left[\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{2} \mathrm{Si}+\right.$ $\mathrm{Na}]^{+}$: 517.3478, found: 517.3464.

To a solution of $10(34.9 \mathrm{mg}, 0.07 \mathrm{mmol})$ in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ under argon was added DMAP ($25.8 \mathrm{mg}, 0.21 \mathrm{mmol}$) followed by pentafluorophenyl chlorothionoformate* ($23 \mu \mathrm{~L}$, 0.14 mmol). After the addition was complete, the cooling bath was removed and the reaction mixture was stirred overnight (11 h). The brown-colored mixture was partitioned between 10 mL of EtOAc and 10 mL of water. The organic layer was separated and the aqueous layer was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The combined organic solution was washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by silica gel chromatography to afford the thionoformate ($48.5 \mathrm{mg}, 95 \%$) a colorless oil: IR (neat) v 2951, 1712, 1522, 1307, $1139,998 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.44(2 \mathrm{H}, \mathrm{m}), 7.37-7.31(3 \mathrm{H}, \mathrm{m}), 4.93$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.6,4.7 \mathrm{~Hz}), 2.37-2.30(1 \mathrm{H}, \mathrm{m}), 2.20-2.09(2 \mathrm{H}, \mathrm{m}), 2.03-1.90(2 \mathrm{H}, \mathrm{m})$, $1.90-1.01(15 \mathrm{H}, \mathrm{m}), 0.98(3 \mathrm{H}, \mathrm{s}), 0.95(3 \mathrm{H}, \mathrm{s}), 0.89(3 \mathrm{H}, \mathrm{s}), 0.85(3 \mathrm{H}, \mathrm{s}), 0.68(3 \mathrm{H}, \mathrm{s}), 0.53$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.2 \mathrm{~Hz}), 0.20(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.8,191.8,139.5,133.7$, $128.8,127.7,95.3,60.6,60.2,59.2,55.5,43.6,42.0,41.8,40.7,38.7,38.1,37.9,37.2$, 27.7, 23.0, 22.2, 17.9, 17.8, 17.3, 16.6, 16.4, 14.6, 7.0, -1.9, -3.0; HRMS (FAB) calcd for $\left[\mathrm{C}_{39} \mathrm{H}_{49} \mathrm{~F}_{5} \mathrm{O}_{3} \mathrm{SSi}+\mathrm{Na}\right]^{+}: 743.2990$, found: 743.2983.

* Corey, E. J.; Rao, K. S.; Ghosh, A. K. Tetrahedron Lett. 1992, 6955.

To a solution of the thionoformate ($46.5 \mathrm{mg}, 0.065 \mathrm{mmol}$) in refuxing benzene (14 mL) under argon was slowly added a mixture of $n-\mathrm{Bu}_{3} \mathrm{SnH}(52 \mu \mathrm{~L}, 0.19 \mathrm{mmol})$ and AIBN (0.88 mg , 0.0065 mmol) in 10 mL of benzene via syringe pump over 3 h . The resulting mixture was refluxed for another hour and cooled to $23^{\circ} \mathrm{C}$. Benzene was evaporated in vacuo and the residue was directly purified by silica gel chromatography to afford the deoxygenated ketone 11 (29 mg , 94%) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{23}=-21.3$ (c $0.45, \mathrm{CHCl}_{3}$); \mathbb{R} (neat) $v 2948,1713,838 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.45(2 \mathrm{H}, \mathrm{m}), 7.36-7.31(3 \mathrm{H}, \mathrm{m}), 2.35-2.28(1 \mathrm{H}, \mathrm{m}), 2.18$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}), 2.12(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=13.3,7.3 \mathrm{~Hz}), 2.0-1.92(1 \mathrm{H}, \mathrm{m}), 1.82-1.25(15 \mathrm{H}, \mathrm{m})$, $1.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.5,11.1 \mathrm{~Hz}), 1.12(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=13.4,4.0 \mathrm{~Hz}), 1.07-0.95(2 \mathrm{H}, \mathrm{m}), 0.84$ $(3 \mathrm{H}, \mathrm{s}), 0.82(3 \mathrm{H}, \mathrm{s}), 0.81(3 \mathrm{H}, \mathrm{s}), 0.80(3 \mathrm{H}, \mathrm{s}), 0.66(3 \mathrm{H}, \mathrm{s}), 0.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.7 \mathrm{~Hz}), 0.20$ $(3 \mathrm{H}, \mathrm{s}), 0.19(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.2,139.7,133.7,128.8,127.7,61.0$, $60.3,59.4,56.6,43.7,42.2,42.1,41.9,40.9,39.9,38.3,37.5,33.4,33.3,22.9,21.4,18.7$, $18.4,17.7,17.3,16.3,14.6,7.0,-1.9,-2.9$; HRMS (CI) calcd for $\left[\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{OSi}+\mathrm{NH}_{4}\right]^{+}$: 496.3975, found: 496.3976.

To a solution of $11(28.7 \mathrm{mg}, 0.06 \mathrm{mmol})$ and N-phenyltrifluoromethanesulfonimide ${ }^{12}$ ($53.5 \mathrm{mg}, 0.15 \mathrm{mmol}$) in anhydrous THF (2 mL) at $-78^{\circ} \mathrm{C}$ under argon was added KHMDS
($78 \mu \mathrm{~L}, 0.072 \mathrm{mmol}$) via syringe. After 20 min the reaction was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ $(1 \mathrm{~mL})$. The mixture was extracted with hexane ($3 \times 10 \mathrm{~mL}$). The combined organic phase was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by silica gel chromatography (100:1 hexane-ether) to afford the vinyl triflate $\mathbf{1 2}$ as a colorless oil (34 mg , $90 \%):[\alpha]{ }_{\mathrm{D}}{ }^{23}=+45.7\left(\mathrm{c} 0.7, \mathrm{CHCl}_{3}\right)$; IR (neat) $v 2926,1414,1208,1143,875 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.50(2 \mathrm{H}, \mathrm{m}), 7.38-7.32(3 \mathrm{H}, \mathrm{m}), 5.73-5.68(1 \mathrm{H}, \mathrm{m}), 2.33-2.28$ $(1 \mathrm{H}, \mathrm{m}), 2.18-2.01(2 \mathrm{H}, \mathrm{m}), 1.74-1.08(17 \mathrm{H}, \mathrm{m}), 0.87(3 \mathrm{H}, \mathrm{s}), 0.84(3 \mathrm{H}, \mathrm{s}), 0.81(3 \mathrm{H}, \mathrm{s})$, $0.80(3 \mathrm{H}, \mathrm{s}), 0.78(3 \mathrm{H}, \mathrm{s}), 0.75-0.68(1 \mathrm{H}, \mathrm{m}), 0.33(3 \mathrm{H}, \mathrm{s}), 0.32(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.4,139.2,133.8,129.0,127.8,115.4,60.8,56.5,54.5,48.1,42.2,41.7$, $40.6,39.9,38.8,37.6,37.4,33.4,33.3,21.6,21.4,18.6,18.2,17.5,16.6,16.5,13.5,11.2$, $-2.3,-3.0$; HRMS (FAB) calcd for $\left[\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{SSi}+\mathrm{Na}\right]^{+}: 633.3022$, found: 633.3018 .

(1) $\mathrm{BF}_{3} \cdot 2 \mathrm{AcOH}$
(10 equiv)

(2) THF-MeOH (1:1) $\mathrm{KF}, \mathrm{KHCO}_{3}, \mathrm{H}_{2} \mathrm{O}_{2}$ $0^{\circ} \mathrm{C}$ to $23^{\circ} \mathrm{C}, 12 \mathrm{~h}$

To a solution of vinyl triflate $12(28.3 \mathrm{mg}, 0.046 \mathrm{mmol})$ in 1 mL of CHCl_{3} at $23{ }^{\circ} \mathrm{C}$ was slowly added $\mathrm{BF}_{3} \cdot 2 \mathrm{AcOH}(70 \mu \mathrm{~L}, 0.46 \mathrm{mmol})$. The resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 5 h , diluted by ether (10 mL) and neutralized by saturated aqueous NaHCO_{3}. The organic layer was separated and the aqueous layer was extracted with ether $(2 \times 10 \mathrm{~mL})$. The combined organic solution was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was dissolved in 1 mL of THF-MeOH (1:1) at $0^{\circ} \mathrm{C}$, and followed by the addition of KF (17 mg , 0.29 mmol) and $\mathrm{KHCO}_{3}(140 \mathrm{mg}, 1.4 \mathrm{mmol})$. The mixture was kept stirring at $0^{\circ} \mathrm{C}$ for 15 min followed by the addition of 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(0.2 \mathrm{~mL})$. The reaction was warmed up to $23{ }^{\circ} \mathrm{C}$ overnight (12 h). The reaction mixture was cooled at $0^{\circ} \mathrm{C}$, diluted with EtOAc (5 mL) and treated with saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}(1 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was
extracted with ethyl acetate ($2 \times 10 \mathrm{~mL}$). The combined organic solution was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by silica gel chromatography to afford the homoallylic alcohol ($21.5 \mathrm{mg}, 94 \%$) as colorless fine crystals: $[\alpha] \mathrm{D}^{23}=+10.6$ (c $1.26, \mathrm{CHCl}_{3}$) $\mathrm{mp} 172-173{ }^{\circ} \mathrm{C}$; IR (neat) v 2931, $1417,1206,1144,880 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.79-5.83(1 \mathrm{H}, \mathrm{m}), 3.87(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.7,3.2 \mathrm{~Hz}), 3.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.7$, $5.9 \mathrm{~Hz}), 2.35-2.01(4 \mathrm{H}, \mathrm{m}), 1.74-0.91(16 \mathrm{H}, \mathrm{m}), 0.90(3 \mathrm{H}, \mathrm{s}), 0.85(3 \mathrm{H}, \mathrm{s}), 0.84(3 \mathrm{H}, \mathrm{s})$, $0.82(3 \mathrm{H}, \mathrm{s}), 0.80(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.5,119.1,60.7,59.1,56.4$, $56.1,54.0,42.1,41.8,40.9,39.9,37.6,37.5,37.4,33.3,21.4,18.6,18.2,17.4,17.1,16.5$, 15.3; HRMS (FAB) calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{~F}_{3} \mathrm{SO}_{4}+\mathrm{Na}^{+}\right.$: 515.2419 , found: 515.2411.

A mixture of the homollylic alcohol ($20 \mathrm{mg}, 0.041 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.91 \mathrm{mg}, 0.0041$ $\mathrm{mmol}, 90 \mu \mathrm{~L}$ was added from the stock solution 10.4 mg in 1 mL of DMF), and dppp (1.67 mg , $0.0041 \mathrm{mmol}, 90 \mu \mathrm{~L}$ was added from the stock solution of 19.6 mg in 1 mL of DMF) in DMF (0.67 mL) was heated to $65^{\circ} \mathrm{C}$ under CO balloon (1 atm).* After 15 min , during which time the color of the solution changed from light brown to deep brown, $\operatorname{Et}_{3} \mathrm{~N}(22 \mu \mathrm{~L})$ in $106 \mu \mathrm{~L}$ of DMF was added via syringe. Stirring was continued at the same temperature for 5 h . After dilution with $\mathrm{H}_{2} \mathrm{O}$, the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic solution was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by silica gel chromatography to afford the lactone $13(15 \mathrm{mg}, 100 \%)$ as colorless needle crystals: $[\alpha]^{23}=-5.6\left(\mathrm{c} 0.84, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 194-196{ }^{\circ} \mathrm{C}$; IR (neat) v 2923, $1765 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.88-6.84(1 \mathrm{H}, \mathrm{m}), 4.36(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.1 \mathrm{~Hz}), 2.79-$ $2.75(1 \mathrm{H}, \mathrm{m}), 2.38-2.26(1 \mathrm{H}, \mathrm{m}), 2.16-2.05(1 \mathrm{H}, \mathrm{m}), 1.74-1.05(15 \mathrm{H}, \mathrm{m}), 0.92(3 \mathrm{H}, \mathrm{s})$, $0.84(6 \mathrm{H}, \mathrm{s}), 0.80(3 \mathrm{H}, \mathrm{s}), 0.76(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.3,136.5,127.0$,
$67.3,61.4,56.5,54.9,51.2,42.1,41.8,40.9,40.0,37.7,37.6,34.3,33.3,24.2,21.4,18.6$, 18.1, 17.2, 16.5, 14.1; HRMS (EI) calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{2}\right]^{+}: 370.2872$, found: 370.2882.

* Kotsuki, H.; Datta, P. K.; Suenaga, H. Synthesis 1996, 470.

To a solution of lactone $13(14.7 \mathrm{mg}, 0.04 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under argon was added DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.12 \mathrm{~mL}, 0.12 \mathrm{mmol}$) dropwise via syringe. The reaction mixture was stirring at $-78^{\circ} \mathrm{C}$ for 30 min and at $-20^{\circ} \mathrm{C}$ for 30 min . Excess DIBAL-H was consumed by the addition of EtOAc and water. The organic layer was separated and the aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic solution was washed with $0.5 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by silica gel chromatography (2:1 EtOAc-hexane) afforded the diol 14 (14.2 mg, 95\%) as colorless fine crystals: mp $215-217^{\circ} \mathrm{C}$; IR (neat) v 3290 (br), $2919 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.76$ $5.80(1 \mathrm{H}, \mathrm{m}), 4.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.9 \mathrm{~Hz}), 3.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.6 \mathrm{~Hz})$, $3.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.3,8.8 \mathrm{~Hz}), 2.20-1.0(18 \mathrm{H}, \mathrm{m}), 0.89(3 \mathrm{H}, \mathrm{s}), 0.85(3 \mathrm{H}, \mathrm{s}), 0.84(3 \mathrm{H}, \mathrm{s})$, $0.81(3 \mathrm{H}, \mathrm{s}), 0.73(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.6,136.7,67.5,61.6,60.9$, $56.5,55.0,54.8,42.2,41.8,41.1,39.9,37.7,37.5,35.7,33.3,22.6,21.4,18.7,18.2,17.7$, 16.8, 16.5, 15.9; HRMS (EI) calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{2}\right]^{+}: 374.3185$, found: 374.3168 .

A solution of diol $14(5.5 \mathrm{mg}, 0.0147 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL , plus a 0.5 mL rinse) was added dropwise to the swern reagent (prepared by adding a solution of DMSO ($21 \mu \mathrm{~L}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($50 \mu \mathrm{~L}$) to a solution of oxalyl chloride ($13 \mu \mathrm{~L}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ at $-50^{\circ} \mathrm{C}$ for 5 min) under argon at $-50^{\circ} \mathrm{C}$, and stirred for 1 h at the same temperature. ${ }^{14 \mathrm{c}}$ To the reaction mixture was then added $\mathrm{Et}_{3} \mathrm{~N}(31 \mu \mathrm{~L})$ dropwise. After 10 min , the reaction was quenched by water and the mixture was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic solution was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by silica gel chromatography (4:1 hexane-EtOAc) to afford scalar-16-ene-19,20-dial (scalarenedial) $\mathbf{1}(4.8 \mathrm{mg}, 90 \%)$ as colorless fine crystals: $[\alpha]_{\mathrm{D}}{ }^{23}=-20.7\left(\mathrm{c} 0.27, \mathrm{CHCl}_{3}\right)\left(\mathrm{lit} .[\alpha]_{\mathrm{D}}{ }^{25}=-19\left(\mathrm{c} 0.7, \mathrm{CHCl}_{3}\right)\right) ; \mathrm{mp}$ 203-204 ${ }^{\circ} \mathrm{C}$ (lit. mp 200-203 ${ }^{\circ} \mathrm{C}$); IR (neat) v 2925, 2846, 1711, $1673 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}), 9.45(1 \mathrm{H}, \mathrm{s}), 7.09-7.11(1 \mathrm{H}, \mathrm{m}), 2.80(1 \mathrm{H}, \mathrm{br}, \mathrm{s})$, $2.48-2.28(2 H, m), 1.90(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=13.3,3.0 \mathrm{~Hz}), 1.74(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=12.6,3.2 \mathrm{~Hz}), 1.70-$ $1.25(11 \mathrm{H}, \mathrm{m}), 1.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.7,4.9 \mathrm{~Hz}), 1.13(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=13.4,4.0 \mathrm{~Hz}), 0.95(3 \mathrm{H}, \mathrm{s})$, $0.91(3 \mathrm{H}, \mathrm{s}), 0.84(3 \mathrm{H}, \mathrm{s}), 0.83(3 \mathrm{H}, \mathrm{s}), 0.80(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.10$, $193.18,154.39,138.18,60.98,60.84,56.43,54.29,42.13,41.77,41.21,39.87,37.93$, $37.52,36.97,33.33,24.37,21.40,18.60,18.12,17.07,16.49,16.09$; HRMS (EI) calcd for [$\left.\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{2}\right]^{+}: 370.2872$, found: 370.2871 .

