J. Am. Chem. Soc., 1997, 119(42), 10014-10027, DOI:10.1021/ja9716160

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

Intramolecular Cyclization of 2,7- or 2,8-Bis-unsaturated Esters Mediated by (η^{2}-Propene) $\mathrm{Ti}(\mathrm{O}-i$-P re. Facile Construction of Mono- and Bicyclic Skeletons with Stereoselective Introduction of a Side Chain. A Synthesis of d-Sabinene

Hirokazu Urabe, Ken Suzuki, and Fumie Cato*

Contribution from the Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226, Japan

Typical procedure for the preparation of a starting material in the monocyclization. t-Butyl 8-(trimethylsilyl)-(E)-2-octen-7-ynoate (6). To a stirred solution of $\mathrm{NaH}(0.15 \mathrm{~g}, 55 \%$ suspension in mineral oil, 3.5 mmol , washed with hexane) in THF (15 mL) was added $(\mathrm{EtO}){ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2}-t-\mathrm{Bu}(0.90 \mathrm{~mL}, 3.9 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under an argon atmosphere. After the solution was stirred at rt for 30 min , 6-(trimethylsilyl)-5-hexynal ($0.540 \mathrm{~g}, 3.21 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$. Then the mixture was stirred for 10 min at rt . The reaction was terminated by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was separated, washed with 1 M HCl and aqueous NaHCO_{3} solution, dried over MgSO_{4}, and concentrated in vacuo to an oil. The crude compound was purified on silica gel (hexane-ether) to give the title compound $(0.708 \mathrm{~g}$, 83%) as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 0.14(\mathrm{~s}, 9 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.66$ (quintet, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.17$2.33(\mathrm{~m}, 4 \mathrm{H}), 5.85(\mathrm{br} \mathrm{d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dt}, J=15.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 0.11$, $19.31,26.94,28.15,30.86,80.07,85.26,106.39,123.70,146.66,165.92$; IR (neat) 2960 , 2900 (sh), $2160,1720,1650,1370,1320,1280,1250,1220,1150,980,840,760,640 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15 \mathrm{H}_{26} \mathrm{O}_{2} \text { Si: } \mathrm{C}, 67.62 ; \mathrm{H}, 9.84 \text {. Found: } \mathrm{C}, 67.24 ; \mathrm{H}, 9.86 .}$
\boldsymbol{t}-Butyl 8-(trimethylsilyl)-(Z)-2-octen-7-ynoate ($\boldsymbol{Z}-6$). This was prepared from 6-(trimethylsilyl)-5-hexynal and t-butyl (trimethylsilyl)acetate [Hartzell, S. L.; Sullivan, D. F.; Rathe, M. W. Tetrahedron Lett. 1974, 1403. See also: Larson, G. L.; Quiroz, F.; Suárez, J. Synth. Common. 1983, 13, 833]. ${ }^{1} \mathrm{H}$ NMR $\delta 0.14$ (s, 9 H), 1.47 (s, 9 H), 1.66 (quintet, $J=7.6$
$\mathrm{Hz}, 2 \mathrm{H}), 2.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{br} \mathrm{d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 6.12$ (dt, $J=11,7.6 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta-0.02,19.49,27.99,28.09,28.13,80.13,84.84,106.96$, 122.30, 147.58, 166.00; IR (neat) 2960, 2940 (sh), 2170, 1720, 1640, 1410, 1370, 1250, 1220, 1150, 840, 760, 700, $640 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15 \mathrm{H}}^{26} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 67.62 ; \mathrm{H}, 9.84$. Found: C, 67.22; H, 9.60.
\boldsymbol{t}-Butyl (\boldsymbol{E})-2-tridecen-7-ynoate (15). This was prepared from 5-undecyn-1-ol by Swern oxidation and the Horner-Emmons reaction in 75% overall yield. ${ }^{1} \mathrm{H}$ NMR $\delta 0.89$ (t, $J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.62$ (quintet, $J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-2.22(\mathrm{~m}, 4 \mathrm{H})$, 2.28 (br q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{dt}, J=15.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dt}, J=15.6,7.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13}$ C NMR $\delta 13.88,18.16,18.60,22.11,27.36,28.05,28.69,30.89,30.98,79.12,80.06$, 81.12, 123.56, 147.22, 166.20; IR (neat) 2940, 2930, 2860, 1720, 1650, 1460, 1370, 1330, 1290, 1260, 1220, $980 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2}$: C, 77.22; H, 10.67. Found: C, 77.15 ; H, 10.68.
\boldsymbol{t}-Butyl 9-(trimethylsilyl)-(E)-2-nonen-8-ynoate (17). This was prepared from 6-(trimethylsilyl)-5-hexyn-1-ol in 44\% overall yield via the following sequence: (i) $\mathrm{MsCl}, \mathrm{Et} 3 \mathrm{~N}$; (ii) NaCN ; (iii) Dibal-H; (iv) (EtO) ${ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2}-t$ - $\mathrm{Bu}, \mathrm{NaH} .{ }^{1} \mathrm{H}$ NMR $\delta 0.06$ (s, 9H), 1.36$1.67(\mathrm{~m}, 4 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 2.08-2.31(\mathrm{~m}, 4 \mathrm{H}), 5.74(\mathrm{br} \mathrm{d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dt}, J=$ $15.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 0.01,19.51,27.05,27.88,28.06,31.34,80.02,84.76$, 107.01, 123.35, 147.55, 166.21; IR (neat) 2960, 2940, 2900 (sh), 2860, 2180, 1720, 1650, 1370, 1320, 1290, 1250, 1160, 1140, 980, 840, $760,640 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}$: C, 68.52; H, 10.06. Found: C, 68.24; H, 10.09 .
N, N-Diethyl-(E)-2-tridecen-7-ynamide (21). This was prepared from 5 -undecyn-1-ol by Swern oxidation and the Horner-Emmons reaction $\left(\mathrm{NaH},(\mathrm{EtO}){ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CONEt}_{2}, 1,2\right.$ DME) in 73% overall yield [Landor, P. D.; Landor, S. R.; Odyek, O. J. Chem. Soc., Perkin I. 1977, 93]. ${ }^{1} \mathrm{H}$ NMR $\delta 0.86(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.21-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.39-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.61$ (quintet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-2.21(\mathrm{~m}, 4 \mathrm{H})$, $2.29(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{brd}, J=$ $14.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dt}, J=14.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 13.11,13.92,14.79,18.19,18.65$, $22.14,27.69,28.76,31.01,31.35,40.73,42.08,79.18,80.94,121.07,144.95,165.75$; IR
(neat) 2980, 2930, 2860, 2370, 1660, 1620, 1450 (sh), 1430, 1380, 1360, 1280, 1250, 1220, 1140, 1100, $970 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{ON}: \mathrm{C}, 77.51 ; \mathrm{H}, 11.10 ; \mathrm{N}, 5.32$. Found: C, 77.34; H, 10.93; N, 5.25.

Ethyl 8-(trimethylsilyl)-(E)-2-octen-7-ynoate (28). This was prepared from 6-(trimethylsilyl)-5-hexyn-1-ol by Swern oxidation and the Horner-Emmons reaction in 67% overall yield. ${ }^{1} \mathrm{H}$ NMR $\delta 0.15(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.68 (quintet, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.26 $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{dq}, J=1.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.85(\mathrm{dt}, J=$ $15.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dt}, J=15.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 0.09,14.24,19.27,26.86$, $31.00,60.16,85.35,106.26,122.00,147.96,166.54$; IR (neat) 2960, 2940 (sh), 2900 (sh), 2180, 1720, 1660, 1270 (sh), 1250, 1190, 1150, 1040, $840,760 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 65.50 ; \mathrm{H}, 9.30$. Found: C, 65.17 ; H, 9.43.

Ethyl 8-(trimethylsilyl)-(Z)-2-octen-7-ynoate (37). This was prepared from 6-(trimethylsilyl)-5-hexynal by a literature method [Taguchi, H.; Shimoji, K.; Yamamoto, H.; Nozaki, H. Bull. Chem. Soc. Jpn. 1974, 47, 2529]. ${ }^{1}$ H NMR $\delta 0.15$ (s, 9H), 1.28 (t, J=7.7 $\mathrm{Hz}, 3 \mathrm{H}), 1.68$ (quintet, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.16(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dt}, J=11.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 0.17,14.27,19.59,28.11,28.22,59.79,84.92,106.46,122.46,148.91,166.25$; IR (neat) 3050, 2980, 2940, 2880, 2180, 1730, 1650, 1260, 1200, 850, 760, $700 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 65.50 ; \mathrm{H}, 9.30$. Found: C, 65.66; H, 9.32.

Ethyl (E)-2-tridecen-7-ynoate (38). This was prepared from 5-undecynal by the Horner-Emmons reaction in 73% yield. ${ }^{1} \mathrm{H}$ NMR $\delta 0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.24-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.64$ (quintet, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.23(\mathrm{~m}$, $4 \mathrm{H}), 2.31(\mathrm{dq}, J=1.5,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{dt}, J=15.6,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.96 (dt, $J=15.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 13.90,14.20,18.21,18.64,22.14,27.39,28.74$, $31.02,31.06,60.06,78.95,81.13,121.80,148.23,166.51$; IR (neat) $2950,2860,2220,1720$, 1650, 1450, 1380, 1320, 1270, 1200, 1160, 1100, 1040, $980,860 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}: \mathrm{C}, 76.23 ; \mathrm{H}, 10.24$. Found: $\mathrm{C}, 76.19 ; \mathrm{H}, 10.35$.

Ethyl 9-(trimethylsilyl)-(E)-2-nonen-8-ynoate (40). This was prepared from 6-(trimethylsilyl)-5-hexyn-1-ol in 53% overall yield via the following sequence: (i) $\mathrm{MsCl}, \mathrm{Et} 3 \mathrm{~N}$; (ii)

NaCN ; (iii) Dibal-H; (iv) (EtO) ${ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{NaH} .{ }^{1} \mathrm{H}$ NMR $\delta 0.14$ ($\left.\mathrm{s}, 9 \mathrm{H}\right), 1.28$ (t, $J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-1.63(\mathrm{~m}, 4 \mathrm{H}), 2.16-2.28(\mathrm{~m}, 4 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.82(\mathrm{dt}, J=$ $15.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dt}, J=15.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 0.13,14.25,19.61,27.07$, $27.93,31.57,60.13,84.80,106.87,121.58,148.69,166.64$; IR (neat) 2970 (sh), 2950, 2910, 2870, 2180, 1720, 1660, 1370, 1310, 1270, 1250, 1190, 1150, 1050, $980,850,760 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}$: C, $66.61 ; \mathrm{H}, 9.58$. Found: C, 66.16; H, 9.75.

Methyl 6-[(t-butyl)dimethylsiloxy]-8-(trimethylsilyl)-(E)-2-octen-7-ynoate (42): ${ }^{1} \mathrm{H}$ NMR $\delta 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.69-1.88(\mathrm{~m}, 2 \mathrm{H})$, 2.22-2.46 (m, 2H), $3.72(\mathrm{~s}, 3 \mathrm{H}), 4.36(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{br} \mathrm{d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ (dt, $J=15.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta-4.94,-4.40,0.11,18.21,25.79,27.91,36.66,51.37$, $62.52,89.32,106.91,121.25,148.78,167.01$; IR (neat) 2950, 2990, 2930, 2860, 2170, 1730, $1660,1440,1330,1250,1200,1160,1100,1050,840,880,760 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}_{2}$: C, $60.96 ; \mathrm{H}, 9.66$. Found: C, 60.71 ; H, 9.60 .

Ethyl 4-[(t-butyl)dimethylsiloxy]-8-(trimethylsilyl)-(E)-2-octen-7-ynoate (44). This was prepared from 6-(trimethylsilyl)-5-hexyn-1-ol via the following sequence: (i) (ClCO)2, DMSO, Et3N; (ii) TMSCN, cat. ZnI_{2}; (iii) H^{+}; (iv) TBSCl, Et3N, cat. DMAP; (v) Dibal-H; (vi) (EtO) $2_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{NaH} .{ }^{1} \mathrm{H}$ NMR $\delta 0.04$ (s, 3 H), 0.08 (s, 3H), 0.14 (s, $9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.64-1.78(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.40(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{br} \mathrm{q}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=1.7,15.7 \mathrm{~Hz}$, 1 H), 6.90 (dd, $J=5.4,15.7 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta-5.11,-4.67,0.06,14.12,15.53,18.05$, $25.75,35.96,60.33,70.14,85.40,106.49,120.47,150.26,166.65$; IR (neat) 2960, 2930, $2900,2860,2180,1720,1660,1470,1370,1250,1160,1120,1090,1050,980,840,780$, $760,640 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si} 2$: C, $61.90 ; \mathrm{H}, 9.84$. Found: C, $61.45 ; \mathrm{H}, 9.80$.

Ethyl 4-butyl-8-(trimethylsilyl)-(E)-2-octen-7-ynoate (46). This was prepared from 6-(trimethylsilyl)-5-hexyn-1-ol via the following sequence: (i) Jones reagent; (ii) (ClCO$)_{2}$; (iii) EtOH, Et3N; (iv) LDA, BuI, HMPA; (v) LiAlH4; (vi) (ClCO) 2 , DMSO, Et3N; (vii) $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{NaH} .{ }^{1} \mathrm{H}$ NMR $\delta 0.14(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.14-1.59 (m, 7H), 1.68 (br ddt, $J=5.2,13.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-2.36(\mathrm{~m}, 3 \mathrm{H})$, $4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{dd}, J=0.8,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=9.3,15.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR $\delta-0.04,13.83,14.15,17.67,22.49,29.16,32.91,33.72,41.43,60.20,85.04,106.75$, $121.89,152.39,166.72$; IR (neat) $2960,2930,2860,2180,1720,1650,1370,1310,1270$,
 Found: C, 69.20; H, 10.15.

Ethyl (E)-2,7-octadienoate (50). This was prepared from 5-hexenal by the HornerEmmons reaction in 55% yield. ${ }^{1} \mathrm{H}$ NMR $\delta 1.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.56 (quintet, $J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.09(\mathrm{br} \mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{dq}, J=1.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, 4.98 (dd, $J=1.4,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dq}, J=17.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.79$ (ddt, $J=10.2,17.0,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.82(\mathrm{dt}, J=15.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dt}, J=15.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.26$, $27.19,31.48,33.06,60.13,115.07,121.58,137.99,148.85,166.69$; IR (neat) 3100,3000 , 2950, 2880, 1730, 1660, 1460, 1380, 1320 (sh), 1280, 1200, 1180, 1050, $990,920 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16 \mathrm{O}}^{2}$: C, 71.39; H, 9.59. Found: C, 71.53; H, 9.98.

Ethyl 4,5-benzo-(E)-2,7-octadienoate (52). This was prepared from obromobenzaldehyde via the following sequence: (i) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{H}^{+}$; (ii) t - BuLi , $\mathrm{Li}_{2} \mathrm{Cu}(\mathrm{CN})\left(2\right.$-thienyl), allyl bromide; (iii) H^{+}; (iv) $(\mathrm{EtO}){ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{NaH} .{ }^{1} \mathrm{H}$ NMR δ $1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.52(\mathrm{br} \mathrm{d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{dq}, J=$ $17.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dq}, J=10.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{ddt}, J=10.1,17.0,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.35(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{dd}, J=1.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=15.9$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.26,37.40,60.38,116.28,119.60,126.55,126.77,130.04,130.18$, $133.39,136.47,139.17,142.07,166.87$; IR (neat) $3070,2990,2940$ (sh), 2900 (sh), 1720, $1640,1600,1480,1450,1370,1320,1280,1270,1220,1170,1040,980,920,760 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 77.75; H, 7.46. Found: C, 77.63; H, 7.45.

Ethyl (2E,7Z)-2,7-tridecadienoate (55) (93-94\% Z). This was prepared from (Z)-4-decen-1-ol (93-94\% Z) via the following sequence: (i) $\mathrm{MsCl}, \mathrm{Et} 3 \mathrm{~N}$; (ii) NaCN ; (iii) Dibal-H; (iv) $(\mathrm{EtO}){ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{NaH} .{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.40(\mathrm{~m}, 6 \mathrm{H}), 1.28(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.51$ (quintet, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-2.11(\mathrm{~m}, 4 \mathrm{H}), 2.20(\mathrm{dq}, J=1.6,6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.24-5.47(\mathrm{~m}, 2 \mathrm{H}), 5.81(\mathrm{dt}, J=15.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dt}, J=$ $15.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.01,14.25,22.52,26.59,27.22,28.04,29.35,31.49$, $31.65,60.08,121.45,128.63,130.86,149.01,166.66$; IR (neat) $2980,2930,2860,1720$,

1650, 1460, 1370, 1310, 1270, 1190, 1150, 1040, $980 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2}$: C, 75.58; H, 10.99. Found: C, 75.49; H, 11.06.

A preparation of a starting material for Type II tandem cyclization. Ethyl 7-octen-2-ynoate (56). To a stirred solution of $\mathrm{CBr} 4\left(29.1 \mathrm{~g}, 87.7 \mathrm{mmol}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60$ mL) was added $\mathrm{PPh} 3(45.9 \mathrm{~g}, 175 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and 5-hexenal ($2.15 \mathrm{~g}, 21.9 \mathrm{mmol}$) in this order at $0^{\circ} \mathrm{C}$ under an argon atmosphere. After the solution was stirred for 30 min at $0^{\circ} \mathrm{C}$, the reaction was terminated by the addition of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was separated, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified on silica gel (hexane) to give 1,1-dibromo-1,6-heptadiene ($4.86 \mathrm{~g}, 87 \%$). To a stirred solution of this dibromide (4.37 g , 17.2 mmol) in THF (60 mL) was added $\mathrm{BuLi}(13.3 \mathrm{~mL}, 2.85 \mathrm{M}$ solution in hexane, 37.8 mmol) at $-78^{\circ} \mathrm{C}$ under an argon atmosphere. The solution was kept for 1 h at this temperature and stirred for 1 h at rt . Then ethyl chloroformate $(2.30 \mathrm{~mL}, 24.1 \mathrm{mmol})$ was added at $-78^{\circ} \mathrm{C}$. After stirring for 30 min at $-78^{\circ} \mathrm{C}$, the reaction was terminated by the addition of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was separated, dried over MgSO_{4}, and concentrated in vacuo to an oil. The crude oil was purified on silica gel to give the title compound $(2.80 \mathrm{~g}, 88 \%):{ }^{1} \mathrm{H}$ NMR $\delta 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3 H), 1.69 (quintet, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{tq}, J=1.5,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.01(\mathrm{br} \mathrm{d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dq}, J=17.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.77$ (ddt, $J=10.3,17.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 14.01,17.96,26.66,32.61,61.72,73.41$, 88.89, 115.71, 137.08, 153.78; IR (neat) 2980, 2930, 2860, 2240, 1700, 1640, 1450, 1360, 1250, 1070, 1010, $990,910,750 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}: \mathrm{C}, 72.26 ; \mathrm{H}, 8.49$. Found: C, 71.86; H, 8.60.

Ethyl 4-(N-benzyl- N-allylamino)-2-butynoate (67). This was prepared from the corresponding acetylene via lithiation with $\mathrm{BuLi}\left(1.1\right.$ equiv, $\mathrm{THF},-78^{\circ} \mathrm{C}, 20 \mathrm{~min}$) and the addition of $\mathrm{ClCO}_{2} \mathrm{Et}\left(1.1\right.$ equiv, $-78{ }^{\circ} \mathrm{C} \rightarrow$ r.t. $)$ in 94% yield. ${ }^{1} \mathrm{H}$ NMR $\delta 1.34(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.19$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.29(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{ddd}, J=7.0,9.0,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.38(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.04,41.30,56.70,57.48,61.92,77.80,83.41,118.35,127.28,128.36,129.01$, $135.09,138.16,153.44$; IR (neat) $3080,3040,2990,2940,2830,2230,1720,1460,1370$, 1250, $1060,750,700 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}: \mathrm{N}, 5.44$. Found: $\mathrm{N}, 5.21$.

Ethyl 4-(allyloxy)-2-nonynoate (69). This was prepared analogously in 84% yield from the corresponding terminal acetylene. ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~m}, 7 \mathrm{H})$, 1.45 (quintet, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{dd}, J=6.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.31(\mathrm{~m}$, $4 \mathrm{H}), 5.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{ddd}, J=6.0,9.0,17.0 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 13.91,13.97,22.41,24.75,31.37,34.95,61.98,68.45,70.08,77.42$, $86.30,117.72,133.91,153.31 ;$ IR (neat) $3080,2950,2860,2230,1720,1470,1250,1080$ cm^{-1}. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3}$: C, $70.56 ; \mathrm{H}, 9.30$. Found: C, $70.31 ; \mathrm{H}, 9.27$.

Ethyl 6-[(tert-butyl)dimethylsiloxy]-7-octen-2-ynoate (72). This was prepared from 1-(trimethylsilyl)-4-iodo-1-butyne in 36% overall yield via the following reactions: i) lithiation of the iodide ($t-\mathrm{BuLi}$, ether) followed by the addition of acrolein, ii) protection of the hydroxy group (ethyl vinyl ether, cat. $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$, ether), iii) desilylation (TBAF), iv) ethoxycarbonylation ($\mathrm{BuLi}, \mathrm{ClCO}_{2} \mathrm{Et}, \mathrm{THF}$), v) deprotection of the EE ether (ether-THF-3 N HCl (1:1:1), r. t.), and vi) silylation (TBS-Cl, imidazole, DMF). ${ }^{1} \mathrm{H}$ NMR $\delta 0.02$ (s, 3 H), 0.06 (s, 3 H), $0.88(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{dt}, J=14,7.5 \mathrm{~Hz}, 1$ H), $2.40(\mathrm{dt}, J=14,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=$ $16 \mathrm{~Hz}, 1 \mathrm{H}$), 5.75 (ddd, $J=7,9,16 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta-5.01,-4.43,13.98,14.34,18.12$, $25.79,35.54,61.61,72.00,73.33,89.06,114.60,140.46,153.70$; IR (neat) 2960, 2930, $2900,2860,2240,1715,1470,1360,1250,1130,1070,1020,990,920,840,780,750,680$ cm^{-1}. Anal. Calcd for $\mathrm{C}_{16 \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 64.82 ; \mathrm{H}, 9.52 \text {. Found: C, } 65.09 ; \mathrm{H}, 9.92 \text {. } . . .9}$

Ethyl 6-vinyl-2-decynoate (74): ${ }^{1} \mathrm{H}$ NMR $\delta 0.87$ (t, J=7 Hz, 3 H), 1.24 (m, 6 H), $1.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=7.5,16.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.32(\mathrm{ddd}, J=6.8,7.5,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{~d}, J=17$ $\mathrm{Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dt}, J=17,9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 13.90$ (2 peaks), $16.45,22.58,29.14,32.43,34.39,43.29,61.70,73.11,89.49,115.78,141.67,154.00$; IR (neat) $3080,2960,2920,2880,2860,2240,1715,1640,1460,1420,1365,1300$ (sh), 1250, 1070, 1000, 920, 860, $750 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}: \mathrm{C}, 75.63 ; \mathrm{H}, 9.97$. Found: C, 75.33 ; H, 10.05.

Ethyl 6-[[(tert-butyl)dimethylsiloxy]methyl]-7-octen-2-ynoate (76). This is a racemic form of $\mathbf{8 6}$. For physical properties, see those of $\mathbf{8 6}$.

Ethyl (E)-7-tridecen-2-ynoate (78) ($>98-99 \% E$). This was prepared from commercially available ethyl E-4-decenoate via the following reactions: i) reduction (LiAlH_{4}, ether, 100%), ii) tosylation ($\mathrm{TsCl}, \mathrm{py}$) and iodination (NaI , acetone, 92% for 2 steps), iii) alkylation of (trimethylsilyl)acetylene (BuLi, THF-HMPA) and desilylation (TBAF, 84% for 2 steps), and iv) ethoxycarbonylation ($\mathrm{BuLi}, \mathrm{ClCO}_{2} \mathrm{Et}, \mathrm{THF}, 96 \%$). The isomeric purity was determined in comparison with an authentic sample of the Z-isomer by ${ }^{13} \mathrm{C}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR $\delta 0.87(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~m}, 6 \mathrm{H}), 1.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.62$ (quintet, $J=7$ $\mathrm{Hz}, 2 \mathrm{H}), 1.95(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{dt}, J=15.4,7 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dt}, J=15.4,7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 13.91$, $17.83,22.41,27.30,29.09,31.28,31.41$ (2 peaks), $32.41,61.53,73.26,89.01,128.17$, 132.02, 153.67; IR (neat) 2960, 2920, 2860, 2240, 1720, 1460, 1360, 1250, 1070, 970, 750 cm^{-1}. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$: C, 76.23; H, 10.23. Found: C, $75.89 ; \mathrm{H}, 10.27$.

Ethyl (Z)-7-tridecen-2-ynoate ($\mathbf{8 0}$) ($93-94 \% ~ Z$). This was prepared from commercially available Z-4-decen-1-ol via the following reactions: i) tosylation ($\mathrm{TsCl}, \mathrm{py}$) and iodination (NaI, acetone, 90% for 2 steps), ii) alkylation with (trimethylsilyl)acetylene (BuLi, THF-HMPA) and desilylation (TBAF, 86% for 2 steps), and iii) ethoxycarbonylation (BuLi, $\mathrm{ClCO}_{2} \mathrm{Et}$, THF, 93%). The isomeric purity was determined in comparison with an authentic sample of the E-isomer by ${ }^{13} \mathrm{C}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 6$ H), $1.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.63$ (quintet, $J=7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.01(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{q}, J=$ $7 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.27(\mathrm{dt}, J=10,7 \mathrm{~Hz}, 1 \mathrm{H}), 5.41$ (dt, $J=10,7 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 13.92$ (2 peaks), 17.97, 22.44, 26.10, 27.13, 27.46, 29.28, $31.41,61.55,73.29,88.95,127.63,131.57,153.66$; IR (neat) $2960,2930,2860,2240,1715$, 1460, 1360, 1250, 1080, $750 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}: \mathrm{C}, 76.23 ; \mathrm{H}, 10.23$. Found: C, 76.32; H, 10.07.
(4S)-3-[(2S)-2-Vinyl-4-pentenoyl]-4-isopropyl-2-oxazolidinone (88). To diisopropylamine ($1.56 \mathrm{~mL}, 11.2 \mathrm{mmol}$) in 40 mL of THF was added BuLi (4.67 mL of a 2.40 M solution in hexane, 11.2 mmol) at $-78^{\circ} \mathrm{C}$. After 10 min , hexamethylphosphoric triamide (1.95 $\mathrm{mL}, 11.2 \mathrm{mmol}$) in 5 mL of THF was added, and the mixture was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$. The oxazolidinone 87 [Ref. 33 a in text] ($2.0 \mathrm{~g}, 10.2 \mathrm{mmol}$) in 20 mL of THF was added at that
temperature, followed 15 min later by allyl bromide ($2.65 \mathrm{~mL}, 30.6 \mathrm{mmol}$). After the stirring was continued for 20 min at $-78^{\circ} \mathrm{C}$, the solution was gradually allowed to come to $-10^{\circ} \mathrm{C}$ over 30 min , and was kept at this temperature for 1 h . Dilute hydrochloric acid was added and the organic products were extracted with ether-hexane (1:1). Combined organic extracts were washed with aqueous NaHCO_{3} solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to an oil, which was purified by silica gel chromatography to afford the title compound ($1.47 \mathrm{~g}, 61 \%$) as an inseparable $9: 1$ mixture of diastereoisomers.

Major isomer: ${ }^{1} \mathrm{H}$ NMR $\delta 0.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.30$ $(\mathrm{m}, 2 \mathrm{H}), 2.58(\mathrm{dt}, J=14,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=3,8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.41(\mathrm{dt}, J=8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=$ $18 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=18 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{ddt}, J=10,18,7 \mathrm{~Hz}, 1$ H), 5.88 (ddd, $J=8,10,18 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 14.53,17.84,28.36,36.79,46.81,58.61$, $63.08,117.22,117.92,134.89,135.58,153.73,173.68$; IR (neat) 3080, 2960, 2930, 2880, $1780,1700,1640,1490,1460,1440,1390,1370,1300,1230,1200,1140,1120,1100,1060$, 1020, $990,920,770,750,720,660 \mathrm{~cm}^{-1}$ for a $9: 1$ mixture of the diastereoisomers. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}: \mathrm{C}, 65.80 ; \mathrm{H}, 8.07$; $\mathrm{N}, 5.90$. Found: $\mathrm{C}, 65.64 ; \mathrm{H}, 8.08 ; \mathrm{N}, 5.74$ for a $9: 1$ mixture of the diastereoisomers.

Minor isomer. The following peaks are characteristic of the minor diastereoisomer. ${ }^{1} \mathrm{H}$ NMR $\delta 0.82(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 5.26(\mathrm{~d}, J=18 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR} \delta 14.46,17.76,28.20$, 35.72, 46.71, 58.27, 117.04, 118.14, 135.24, 135.73.
(tert-Butyl)dimethylsilyl ether of (S)-2-vinyl-4-penten-1-ol (89). To LiAlH4 ($0.706 \mathrm{~g}, 18.6 \mathrm{mmol}$) in 20 mL of THF was added the allylated oxazolidinone $88(1.47 \mathrm{~g}, 6.20$ mmol) in 4 mL of THF at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 30 min , the solution was diluted with dry ether. Water (0.71 mL), 15% aqueous NaOH solution (0.71 mL), and water (2.2 mL) were cautiously added in this order with vigorous stirring. The organic layer was filtered to remove solid materials, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated to give an oil. A mixture of this crude alcohol, TBS-Cl ($1.40 \mathrm{~g}, 9.3 \mathrm{mmol}$), and imidazole ($0.844 \mathrm{~g}, 12.4 \mathrm{mmol}$) in DMF (3 mL) was stirred at room temperature for 1 h . The solution was diluted with pentane-ether ($1: 1$) and the organic phase was washed successively with 1 N HCl and aqueous NaHCO_{3} solution. Drying ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and
concentration of the organic layer afforded a crude oil, which was purified on silica gel (etherhexane) to give the title compound ($1.19 \mathrm{~g}, 85 \%$): ${ }^{1} \mathrm{H}$ NMR $\delta 0.03(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 2.06$ ($\mathrm{m}, 1 \mathrm{H}$), $2.27(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{dd}, J=5.8,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd} . J=5.8,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-$ $5.08(\mathrm{~m}, 4 \mathrm{H}), 5.62-5.85(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta-5.54,-5.50,18.21,25.81,35.23,45.94$, $65.84,115.53,115.88,136.95,139.78$; IR (neat) $3080,2960,2930,2900,2860,1640,1470$, $1440,1420,1380,1360,1250,1100,990,910,840,780,660 \mathrm{~cm}^{-1} .[\alpha] \mathrm{D}^{23}+7.9$ (c 2, CHCl_{3}) for a sample of 80% ee. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{OSi}$:, $68.96 ; \mathrm{H}, 11.57$. Found: C , 68.89; H, 11.62.
(S)-4-[[(tert-Butyl)dimethylsiloxy]methyl]-5-hexen-1-ol (90). To the diene 89 ($1.15 \mathrm{~g}, 5.08 \mathrm{mmol}$) in 25 mL of THF was added $9-\mathrm{BBN}$ (13.2 mL of a 0.5 M solution of THF, 6.6 mmol) at $-20^{\circ} \mathrm{C}$. The solution was stirred at $0^{\circ} \mathrm{C}$ for 14.5 h and was allowed to warm to 15 ${ }^{\circ} \mathrm{C}$ over 6 h . Then, water (1.68 mL) was cautiously added, followed by $3 \mathrm{~N}-\mathrm{NaOH}(3.36 \mathrm{~mL})$ and aqueous $35 \% \mathrm{H}_{2} \mathrm{O}_{2}(3.36 \mathrm{~mL})$ with occasional cooling. The heterogeneous mixture was stirred at room temperature for 1.5 h . Extractive workup with ether-hexane (1:1) gave an organic phase, which was washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and finally chromatographed on silica gel to furnish the starting material ($221 \mathrm{mg}, 19 \%$ recovery), the pure title compound ($0.58 \mathrm{~g}, 47 \%$ or 58% based on conversion) as a colorless oil, and regioisomeric 3-[[(tert-butyl)dimethylsiloxy]methyl]-5-hexen-1-ol (97) ($91 \mathrm{mg}, 97: 90=8: 2$). ${ }^{1} \mathrm{H}$ NMR $\delta 0.03$ (s, 6 $\mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.45-1.70(\mathrm{~m}, 3 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{dd}$, $J=7.5,9 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=6,9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{~m}, 2 \mathrm{H}), 5.61$ ($\mathrm{m}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta-5.51,18.21,25.79,26.69,30.12,46.26,62.96,66.55,115.82,140.08$; IR (neat) 3350 (br), 3080, 2960, 2930, 2890, 2860, 1640, 1470, 1250, 1100, 1060, 910, 840, $770 \mathrm{~cm}^{-1} .[\alpha] \mathrm{D}^{23}+13.6\left(c 2.1, \mathrm{CHCl}_{3}\right)$ for a sample of 80% ee. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 63.88 ; \mathrm{H}, 11.54$. Found: $\mathrm{C}, 63.93 ; \mathrm{H}, 11.59$.
(S)-4-[[(tert-Butyl)dimethylsiloxy]methyl]-5-hexenal. To a mixture of the alcohol $90(0.55 \mathrm{~g}, 2.25 \mathrm{mmol})$, DMSO ($3.2 \mathrm{~mL}, 45 \mathrm{mmol}$), and NEt3 ($3.15 \mathrm{~mL}, 22.5 \mathrm{mmol}$) in 3.3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{SO}_{3}{ }^{\circ}$ pyridine ($2.16 \mathrm{~g}, 13.6 \mathrm{mmol}$) in portions at $0^{\circ} \mathrm{C}$. The cooling bath was removed and the mixture was stirred at room temperature for 15 min . After the reaction mixture was diluted with dry ether-hexane (1:1), the reaction was terminated by the addition of ice
and water. The organic layer was separated, washed twice with 1 N HCl and twice with aqueous NaHCO_{3} solution, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated to leave a crude oil of the title aldehyde $(0.531 \mathrm{~g})$, which was directly used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\delta 0.02$ $(\mathrm{s}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{ddd}, J=1.5,8,16$ $\mathrm{Hz}, 1 \mathrm{H}), 2.48(\mathrm{ddd}, J=1.5,8,16 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=6,9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=5,9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.04(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{ddd}, J=7.5,9,16.5 \mathrm{~Hz}, 1 \mathrm{H})$, $9.76(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$.
(S)-1,1-Dibromo-4-[[(tert-butyl)dimethylsiloxy]methyl]-1,6-heptadiene. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution $(1.9 \mathrm{~mL})$ of $\mathrm{CBr} 4(1.50 \mathrm{~g}, 4.5 \mathrm{mmol})$ was added a solution of $\mathrm{PPh} 3(2.36 \mathrm{~g}$, $9.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 15 min , the mixture was cooled to $-78^{\circ} \mathrm{C}$ and the above crude aldehyde (0.531 g) in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. After the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , it was allowed to come to room temperature over 20 min and was diluted with hexane. Celite and a small amount of powdered NaHCO_{3} were added, and the suspension was filtered. The combined filtrate and hexane washings were concentrated and chromatographed on silica gel to afford the title compound ($685 \mathrm{mg}, 76 \%$ overall yield from the alcohol) as a pale yellow oil, which was immediately used in the next step. ${ }^{1}$ H NMR $\delta 0.04$ (s, 6 H), $0.88(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.22(\mathrm{~m}, 3 \mathrm{H}), 3.49(\mathrm{dd}, J=7.5,10.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=6.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1$ $\mathrm{H}), 5.61(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$.

Ethyl (S)-6-[[(tert-butyl)dimethylsiloxy]methyl]-7-octen-2-ynoate (86). To the above dibromide ($685 \mathrm{mg}, 1.71 \mathrm{mmol}$) in 20 mL of THF was added $\mathrm{BuLi}(1.57 \mathrm{~mL}$ of a 2.40 M hexane solution, 3.76 mmol) at $-78^{\circ} \mathrm{C}$. After the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , ethyl chloroformate ($0.213 \mathrm{~mL}, 2.22 \mathrm{mmol}$) was injected. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min , allowed to warm to room temperature over 20 min , and was further stirred for 30 min at the same temperature. The reaction was terminated by the addition of aqueous NaHCO_{3} solution. The organic layer was separated and the aqueous layer was extracted with ether. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give an oil, which was purified on silica gel to afford the title compound (0.536 g , quant.) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 0.03(\mathrm{~s}, 6 \mathrm{H}), 0.88$ (s, $9 \mathrm{H}), 1.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.45(\mathrm{~m}, 3 \mathrm{H}), 3.49(\mathrm{dd}, J=$
$7.3,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=5.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.08(\mathrm{~d}, J=11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{dt}, J=15,11 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta-5.72,-5.68$, $13.77,16.16,17.99,25.63,28.58,45.39,61.19,65.91,73.14,88.56,116.49,138.25$, 153.31; IR (neat) $3080,2960,2930,2900,2860,2240,1715,1470,1365,1250,1110,1080$, 1010, 920, 840, 780, $750 \mathrm{~cm}^{-1} .[\alpha] \mathrm{D}^{23}+22.8\left(\mathrm{c} 2.1, \mathrm{CHCl}_{3}\right)$ for a sample of 80% ee. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 65.76 ; \mathrm{H}, 9.74$. Found: $\mathrm{C}, 65.56 ; \mathrm{H}, 9.68$. The enantiopurity of this sample (80% ee) was determined by the derivatization to a cyclic product 98 followed by chiral shift study on ${ }^{1} \mathrm{H}$ NMR spectroscopy (vide infra).

Determination of the enantiomeric excess of 86. 2-[(Ethoxycarbonyl)-methylene]-5-vinyl-2H-tetrahydropyran (98).

The TBS ether $86(10 \mathrm{mg}, 0.032 \mathrm{mmol})$ was treated with TBAF $(0.035 \mathrm{~mL}$ of a 1 M solution in THF, 0.035 mmol) in THF (1 mL) at room temperature for 1.5 h . Usual workup and purification afforded the cyclization product ($4 \mathrm{mg}, 63 \%$) virtually as a single olefinic stereoisomer. We have not attempted to assign its stereochemistry. ${ }^{1} \mathrm{H}$ NMR $\delta 1.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.95$ (br dd, J $=9,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{br} \mathrm{dt}, J=16.5,4.5,1 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.66(\mathrm{t}, J=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ (ddd, $J=1.5,3.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.68$ (dd, $J=$ $3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{ddd}, J=6.8,10,17$ $\mathrm{Hz}, 1 \mathrm{H})$. Chiral shift study was performed with $(+)-\mathrm{Eu}(\mathrm{hfc}) 3$. The terminal olefinic protons were separated as follows: $100 \mathrm{~mol} \%$ of Eu: major enantiomer: $\delta 5.165$ (ddd, $J=1.2,1.4,10.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.256(\mathrm{dt}, J=17,1.4 \mathrm{~Hz}, 1 \mathrm{H})$; minor enantiomer: $\delta 5.15$ (ddd, $J=1.2,1.4,10.6 \mathrm{~Hz}$, 1 H), 5.243 (dt, $J=17,1.4 \mathrm{~Hz}, 1 \mathrm{H}$). $120 \mathrm{~mol} \%$ of Eu: major enantiomer: $\delta 5.176$ (ddd, $J=$ $1.2,1.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.274 (dt, $J=17,1.4 \mathrm{~Hz}, 1 \mathrm{H}$); minor enantiomer: $\delta 5.158$ (ddd, $J=$ $1.2,1.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.258(\mathrm{dt}, J=17,1.4 \mathrm{~Hz}, 1 \mathrm{H}$). The integration of these peaks at 120 $\mathrm{mol} \%$ of the Eu reagent determined the enantiopurity of $\mathbf{9 8}$, hence that of $\mathbf{8 6}$, to be 80% ee.

