

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Copyright © 1997 American Chemical Society

S.T. Drig. JA9716145-134 **REVISED MANUSCRIPT** RECEIVED

Supplementary Information for:

PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY

501 -9 1997

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

Chiral Recognition of Dicarboxylate Anions by Sapphyrin-Based Receptors

Jonathan L. Sessler*, Andrei Andrievsky, Vladimír Král, and Vincent Lynch

Contribution from the Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712

Tables of positional and thermal parameters, bond lengths, angles and torsion angles, and figures for the $[1a \cdot H]^+ \cdot (C_6H_5CO_2)^- \cdot (C_4H_8O)$ complex (21 pages).

Supplementary Table 1. Crystallographic Data^a for $(C_{40}H_{50}N_5)^{1+}$ $(C_6H_5CO_2)^{1-}$ (C_4H_8O) .

Supplementary Table 2. Fractional coordinates and equivalent isotropic thermal parameters (Å²) for the non-hydrogen atoms of $(C_{40}H_{50}N_5)^{1+}$ ($C_6H_5CO_2$)¹⁻ (C_4H_8O).

Supplementary Table 3. Anisotropic thermal parameters for the non-hydrogen atoms of $(C_{40}H_{50}N_5)^{1+}$ ($C_6H_5CO_2$)¹⁻ (C_4H_8O).

Supplementary Table 4. Fractional coordinates and isotropic thermal parameters (Å²) for the hydrogen atoms of $(C_{40}H_{50}N_5)^{1+}$ ($C_6H_5CO_2$)¹⁻ (C_4H_8O).

Supplementary Table 5. Bond Lengths (Å) and Angles (⁰) for the non-hydrogen atoms of $(C_{40}H_{50}N_5)^{1+}$ ($C_6H_5CO_2$)¹⁻ (C_4H_8O).

Supplementary Table 6. Bond Lengths (Å) and Angles (⁰) for the hydrogen atoms of $(C_{40}H_{50}N_5)^{1+}$ ($C_6H_5CO_2$)¹⁻ (C_4H_8O).

Supplementary Table 7. Torsion angles (°) for the non-hydrogen atoms of (C₄₀H₅₀N₅)¹⁺ (C₆H₅CO₂)¹⁻ (C₄H₈O).

Supplementary Table 8. Observed and calculated structure factor amplitudes for $(C_{40}H_{50}N_5)^{1+}(C_6H_5CO_2)^{1-}(C_4H_8O)$. Values for Fo, Fc and σ (Fo) have been multiplied by 10.

Supplementary Figure 1. View of $(C_{40}H_{50}N_5)^{1+}$ showing the atom labeling scheme. Thermal ellipsoids are scaled to the 30% probability level. Hydrogen atoms are drawn to an arbitrary scale. All hydrogens bound to nitrogen were observed in a ΔF map and refined without constraints.

Supplementary Figure 2. Unit cell packing diagram for $(C_{40}H_{50}N_5)^{1+}$ $(C_6H_5CO_2)^{1-}$ (C_4H_8O) . The view is approximately perpendicular to the plane through the macrocycle.

Supplementary Table 1. Crystallographic Data^a for $(C_{40}H_{50}N_5)^{1+}(C_6H_5CO_2)^{1-}(C_4H_8O)$.

Formula	C51H63N5O3
fw	794.06
a, Å	13.210(1)
b, Å	13.936(1)
c, Å	14.960(2)
α, °	99.258(8)
β, °	111.011(8)
γ, °	110.480(8)
V, Å3	2275.7(4)
Z	2
F(000)	856
Crystal System	Triclinic
Space Group	ΡĪ
T, ℃	-85
2θ range (°)	4 - 50
Scan speed (°/min) (1.0° ω scan)	4 - 8
Pcalc, g/cc	1.16
Reflections measured	8567
Unique reflections	7725
Decay Correction	0.9934 - 1.019

Supplementary Table 1. Crystallographic Data (continued).

R_{int} (F ²)	0.069
μ, cm-1	0.72
Crystal size, mm	0.14x0.21x0.54
Transmission factor range	N/A
R _w (F ²) ^b	0.195
R(F) ^c	0.0821
Goodness of fit, S ^d	1.047
Parameters	549
Max IΔ/σI	<0.1
Min, max peaks (e ⁻ /Å ³)	-0.36, 0.46

^a Data were collected on a Siemens P4 diffractometer, equipped with a Nicolet LT-2 low-temperature device and using graphite monochromatized Mo K α radiation ($\lambda = 0.71073$ Å). Data were collected using ω scans with a scan range of 1° in ω . Lattice parameters were obtained from the least-squares refinement of 33 reflections with 16.6 < 20 < 23.9°.

 $k_w = \{ \Sigma w (|F_0|^2 - |F_c|^2)^2 / \Sigma w (|F_0|)^4 \}^{1/2}$ and where the weight, w, is defined as follows: $w = 1/\{ \sigma^2 (|F_0|^2) + (a^*P)^2 + b^*P \}; P = [1/3^* (Maximum of (0 \text{ or } |F_0|^2) + 2/3^* |F_c|^2].$ The parameters a and b were suggested during refinement and are 0.0359 and 3.6261, respectively.

^c The conventional R index based on F where the 3900 observed reflections have $F_0>4(\sigma(F_0))$.

 $dS = [\Sigma w(|F_0|^2 - |F_c|^2)^2/(n - p)]^{1/2}$, where n is the number of reflections and p is the number of refined parameters.

<u>Atom</u>	X	y	Z	U
N1	0.6814(3)	0.6243(3)	0.2833(3)	0.035(2)
N2	0.8668(4)	0.8532(3)	0.3296(3)	0.037(2)
N3	0.7274(3)	0.9427(3)	0.1291(3)	0.030(2)
N4	0.4621(3)	0.7423(3)	-0.0149(3)	0.028(2)
N5	0.4707(3)	0.5624(3)	0.1079(3)	0.030(2)
C1	0.5806(5)	0.5343(4)	0.2612(3)	0.035(3)
C2	0.5911(5)	0.4970(4)	0.3483(4)	0.040(3)
C3	0.7047(5)	0.5653(4)	0.4226(4)	0.045(3)
C4	0.7592(5)	0.6440(4)	0.3807(3)	0.038(3)
C5	0.8739(5)	0.7291(4)	0.4313(4)	0.045(3)
C6	0.9267(5)	0.8189(4)	0.4051(3)	0.042(3)
C7	1.0515(5)	0.8927(4)	0.4523(3)	0.043(3)
C8	1.0659(5)	0.9712(4)	0.4074(4)	0.045(3)
C9	0.9493(5)	0.9478(4)	0.3304(3)	0.040(3)
C10	0.9337(5)	1.0161(4)	0.2730(4)	0.044(3)
CII	0.8454(4)	1.0184(4)	0.1893(3)	0.038(3)
C12	0.8681(5)	1.1034(4)	0.1460(4)	0.046(3)
CI3	0.7661(4)	1.0779(4)	0.0617(4)	0.038(3)
C14	0.6754(4)	0.9770(3)	0.0507(3)	0.028(2)
CIS	0.5601(4)	0.9242(3)	-0.0281(3)	0.031(2)
C16	0.4660(4)	0.8205(3)	-0.0607(3)	0.028(2)
C17	0.3614(4)	0.7712(4)	-0.1574(3)	0.028(2)
C18	0.2985(4)	0.6651(4)	-0.1678(3)	0.030(2)
C19 C20	0.3615(4)	0.6459(3)	-0.0778(3)	0.029(2)
C20	0.3281(4)	0.5456(4)	-0.0637(3)	0.032(2)
C_{21}	0.3/49(4)	0.5067(4)	0.0137(3)	0.030(2)
C22	0.3243(4)	0.3956(3)	0.0084(3)	0.032(2)
C_{23}	0.3884(4)	0.3884(4)	0.1009(3)	0.032(2)
C24 C25	0.4814(4) 0.4010(5)	0.4941(4)	0.1634(3)	0.032(2)
C25 C26	0.4919(5) 0.7625(6)	0.4131(4)	0.3399(4)	0.054(3)
C20	0.7023(0)	0.5045(5)	0.5291(4)	0.061(3)
C_{2}	0.0431(0) 1 1496(5)	0.3082(0)	0.5417(5)	0.087(4)
C_{20}	1.1400(3) 1.1929(5)	0.8813(3)	0.3330(4)	0.060(3)
C29	1.1030(3) 1.2272(6)	1.0389(5)	0.4258(4)	0.057(3)
C31	1.2275(0)	1.0000(0)	0.3492(5)	0.081(4)
C32	1.782(7)	1,2005(3) 1,1007(7)	0.1910(5) 0.1625(7)	0.081(4)
C32	1.0783(7)	1.1007(7) 1.1272(4)	0.1055(7)	0.127(0)
C34	0.7500(5)	1.1372(4) 1.0012(5)	-0.0144(4)	0.040(3)
C35	0.7099(0) 0.3320(4)	1.0913(3)	-0.1023(4)	0.009(4)
C36	0.3320(4) 0.3010(5)	0.0230(4) 0.8150(4)	-0.2337(3)	0.030(3)
C37	0.3910(3) 0.1857(4)	0.0137(4) 0.5817(A)	-0.2040(4)	0.048(3)
C38	0.1057(4)	0.3017(4)	-0.2374(3)	0.040(3)
C30	0.22 + + (+) 0.0007(5)	0.3033(4)	-0.0039(4)	0.040(3)
C40	0.3691(5)	0.2720(0) 0.2851(4)	-0.0929(J) 0.1252(A)	0.000(4)
040	0.5071(5)	0.2031(4)	0.1233(4)	0.042(3)

Supplementary Table 2. Fractional coordinates and equivalent isotropic thermal parameters (Å²) for the nonhydrogen atoms of $(C_{40}H_{50}N_5)^{1+}$ (C₆H₅CO₂)¹⁻ (C₄H₈O).

<u>Atom</u>	X	y	Z	U
O1A	0.5965(3)	0.7987(2)	0.2000(2)	0.033(2)
C2A	0.5458(4)	0.8516(4)	0.2311(3)	0.031(2)
O3A	0.5197(3)	0.9183(3)	0.1947(3)	0.050(2)
C4A	0.5135(4)	0.8273(4)	0.3147(3)	0.033(2)
C5A	0.4600(5)	0.8816(5)	0.3524(4)	0.052(3)
C6A	0.4268(6)	0.8568(5)	0.4271(5)	0.072(4)
C7A	0.4473(6)	0.7781(5)	0.4643(4)	0.063(4)
C8A	0.5020(5)	0.7251(5)	0.4285(4)	0.055(3)
C9A	0.5350(5)	0.7495(4)	0.3537(3)	0.041(3)
O1B	0.0846(9)	0.4730(7)	0.1846(8)	0.197(6)
C2B	0.0780(13)	0.5701(13)	0.1986(11)	0.210(8)
C3B	0.1509(12)	0.6354(10)	0.1544(10)	0.187(7)
C4B	0.2084(11)	0.5781(11)	0.1311(10)	0.168(7)
C5B	0.1987(14)	0.5042(12)	0.1893(11)	0.204(8)

Supplementary Table 2. (continued).

For anisotropic atoms, the U value is U_{eq} , calculated as $U_{eq} = 1/3 \sum_i \sum_j U_{ij} a_i^* a_j^* A_{ij}$ where A_{ij} is the dot product of the ith and jth direct space unit cell vectors.

Supplementary Table 3. Anisotropic thermal parameters for the non-hydrogen atoms of

$(C_{40}H_{50}N_5)^{1+}(C_6H_5CO_2)^{1-}(C_4H_8O).$

<u>Atom</u>	<u> </u>	U22	<u>U33</u>	<u>U12</u>	<u>U13</u>	<u>U23</u>
N1	0.045(3)	0.037(2)	0.026(2)	0.023(2)	0.013(2)	0.014(2)
N2	0.034(3)	0.044(3)	0.028(2)	0.020(2)	0.008(2)	0.012(2)
N3	0.034(2)	0.029(2)	0.031(2)	0.014(2)	0.016(2)	0.015(2)
N4	0.033(2)	0.032(2)	0.021(2)	0.015(2)	0.011(2)	0.013(2)
N5	0.037(2)	0.028(2)	0.028(2)	0.016(2)	0.014(2)	0.012(2)
C1	0.048(3)	0.037(3)	0.037(3)	0.029(3)	0.024(3)	0.021(2)
C2	0.052(3)	0.044(3)	0.037(3)	0.028(3)	0.024(3)	0.021(3)
C3	0.061(4)	0.051(3)	0.035(3)	0.034(3)	0.022(3)	0.024(3)
C4 C5	0.048(3)	0.041(3)	0.032(3)	0.020(3)	0.017(3)	0.013(2) 0.017(3)
	0.052(4)	0.055(5)	0.029(3)	0.052(5)	0.009(3)	0.017(3)
$\mathcal{C}_{\mathcal{C}}$	0.048(3)	0.049(3)	0.027(3)	0.020(3)	0.012(3)	0.013(2)
	0.043(3)	0.032(3)	0.020(3)	0.023(3)	0.003(2)	0.000(3)
\mathcal{C}_{0}	0.030(3)	0.034(3)	0.030(3)	0.019(3)	0.008(2)	0.011(3)
C_{10}	0.042(3)	0.046(3)	0.029(3)	0.021(3)	0.013(2) 0.014(3)	0.011(2) 0.016(3)
C10	0.030(3)	0.040(3)	0.042(3)	0.014(3)	0.017(3)	0.010(3)
C12	0.037(3)	0.042(3)	0.057(3)	0.017(3)	0.017(3)	0.019(2) 0.024(3)
C12	0.037(3)	0.041(3) 0.038(3)	0.033(3)	0.012(3)	0.020(3)	0.020(2)
C13	0.041(3) 0.035(3)	0.031(3)	0.041(3)	0.019(2)	0.022(3)	0.013(2)
C15	0.033(3)	0.032(3)	0.029(3)	0.024(2)	0.019(2)	0.016(2)
C16	0.037(3)	0.030(3)	0.028(3)	0.021(2)	0.018(2)	0.014(2)
Č17	0.037(3)	0.036(3)	0.024(2)	0.023(2)	0.016(2)	0.014(2)
Č18	0.031(3)	0.039(3)	0.028(3)	0.021(2)	0.014(2)	0.014(2)
C19	0.030(3)	0.029(3)	0.028(3)	0.013(2)	0.014(2)	0.011(2)
C20	0.030(3)	0.033(3)	0.027(3)	0.011(2)	0.011(2)	0.009(2)
C21	0.037(3)	0.033(3)	0.029(3)	0.018(2)	0.018(2)	0.014(2)
C22	0.037(3)	0.029(3)	0.036(3)	0.016(2)	0.020(2)	0.013(2)
C23	0.040(3)	0.032(3)	0.039(3)	0.020(2)	0.026(2)	0.019(2)
C24	0.042(3)	0.035(3)	0.034(3)	0.023(2)	0.022(2)	0.021(2)
C25	0.072(4)	0.058(4)	0.048(3)	0.032(3)	0.036(3)	0.030(3)
C26	0.076(4)	0.073(4)	0.039(3)	0.036(4)	0.021(3)	0.031(3)
C27	0.094(5)	0.109(6)	0.055(4)	0.055(5)	0.012(4)	0.048(4)
C28	0.050(4)	0.074(4)	0.045(3)	0.031(3)	0.006(3)	0.022(3)
C29	0.039(3)	0.072(4)	0.048(3)	0.021(3)	0.009(3)	0.019(3)
C30	0.055(4)	0.101(6)	0.095(5)	0.036(4)	0.040(4)	0.035(4)
C31	0.047(4)	0.080(5)	0.095(5)	0.010(4)	0.015(4)	0.055(4)
C32	0.059(5)	0.178(9)	0.154(8)	0.038(6)	0.053(5)	0.102(7)
C33	0.045(3)	0.044(3)	0.053(3)	0.017(3)	0.022(3)	0.031(3)
C34	0.078(5)	0.094(5)	0.074(4)	0.047(4)	0.054(4)	0.056(4)
C35	0.046(3)	0.045(3)	0.031(3)	0.029(3)	0.017(2)	0.022(2)
C36	0.070(4)	0.060(4)	0.040(3)	0.043(3)	0.033(3)	0.029(3)
C37	0.042(3)	0.051(3)	0.039(3)	0.020(3)	0.009(3)	0.020(3)
C38	0.052(3)	0.032(3)	0.044(3)	0.020(3)	0.02/(3)	0.01/(2)
C39	0.045(4)	0.095(5)	0.073(5)	0.006(4)	0.016(4)	-0.004(4)
C40	0.052(3)	0.037(3)	0.047(3)	0.024(3)	0.025(3)	0.022(2)

<u>Atom</u>	<u>U11</u>	<u> </u>	<u>U33</u>	U12	<u>U13</u>	<u>U23</u>
01A C2A O3A C4A C5A C6A C7A C8A C9A O1B C2B	$\begin{array}{c} 0.040(2) \\ 0.033(3) \\ 0.071(3) \\ 0.037(3) \\ 0.069(4) \\ 0.106(6) \\ 0.088(5) \\ 0.087(5) \\ 0.059(4) \\ 0.186(7) \\ 0.216(9) \end{array}$	$\begin{array}{c} 0.035(2)\\ 0.030(3)\\ 0.053(2)\\ 0.031(3)\\ 0.063(4)\\ 0.096(5)\\ 0.081(5)\\ 0.054(4)\\ 0.042(3)\\ 0.144(6)\\ 0.229(10) \end{array}$	$\begin{array}{c} 0.030(2)\\ 0.026(2)\\ 0.056(2)\\ 0.031(3)\\ 0.053(3)\\ 0.072(4)\\ 0.057(4)\\ 0.052(4)\\ 0.037(3)\\ 0.270(8)\\ 0.259(10) \end{array}$	$\begin{array}{c} 0.018(2)\\ 0.012(2)\\ 0.042(2)\\ 0.016(2)\\ 0.045(3)\\ 0.070(5)\\ 0.047(4)\\ 0.039(3)\\ 0.027(3)\\ 0.051(5)\\ 0.121(8) \end{array}$	$\begin{array}{c} 0.019(2)\\ 0.011(2)\\ 0.038(2)\\ 0.015(2)\\ 0.038(3)\\ 0.070(4)\\ 0.052(4)\\ 0.045(3)\\ 0.029(3)\\ 0.124(6)\\ 0.150(8) \end{array}$	$\begin{array}{c} 0.0150(15)\\ 0.011(2)\\ 0.036(2)\\ 0.012(2)\\ 0.029(3)\\ 0.044(4)\\ 0.040(4)\\ 0.033(3)\\ 0.018(2)\\ 0.090(6)\\ 0.106(8) \end{array}$
C3B C4B C5B	0.182(8) 0.158(8) 0.189(9)	0.177(9) 0.194(9) 0.209(10)	0.245(9) 0.194(9) 0.233(10)	0.066(6) 0.083(7) 0.118(8)	0.138(7) 0.128(7) 0.079(7)	0.110(7) 0.037(6) 0.088(8)

Supplementary Table 3. (continued).

The Uij are the mean-square amplitudes of vibration in ${\rm \AA}^2$ from the general temperature factor expression

 $\exp[-2\pi^{2}(h^{2}a^{*2}U11 + k^{2}b^{*2}U22 + l^{2}c^{*2}U33 + 2hka^{*}b^{*}U12 + 2hla^{*}c^{*}U13 + 2klb^{*}c^{*}U23)]$

		$(C_{40}H_{50}N_5)^{1+}(C_6H_5CO_2)^{1-}(C_4H_8O).$			
Atom	X	<u> y </u>	Z	U	
H5	0.9250	0.7259	0.4941	0.053	
H10	1.0060	1.0831	0.3012	0.052	
H15	0.5401	0.9671	-0.0694	0.037	
H20	0.2569	0.4897	-0.1211	0.038	
HZSA	0.5256	0.4045	0.4249	0.080	
H25B	0.4310	0.4370	0.3557	0.080	
H25C	0.4564	0.3449	0.3075	0.080	
H26A	0.7006	0.5284	0.5478	0.074	
H26B	0.8099	0.6379	0.5743	0.074	
HZ/A	0.8815	0.5086	0.6101	0.13	
HZ/B	0.7971	0.4347	0.4968	0.13	
	0.9072	0.5449	0.5235	0.13	
LIZON	1.2255	0.9411	0.5552	0.089	
	1.1318	0.8811	0.5923	0.089	
	1.1300	0.814/	0.5098	0.089	
1129A 1120D	1.2454	1.0/19	0.4922	0.069	
П29D Ц20л	1.1739	1.1247	0.4242	0.069	
1130A 1120D	1.3034	1.08/0	0.3034	0.12	
H30C	1.2339	0.9047	0.3313	0.12	
	1.10/9	1.01/9	0.2830	0.12	
1131A 1121D	1.0109	1.2291	0.2040	0.097	
H37A	1 1 5 2 0	1.2029	0.1088	0.097	
H32R	1.1323	1.2337	0.1930	0.19	
H32C	1.0928	1.1524	0.1070	0.19	
H33A	0.8074	1 2123	0.0910	0.19	
H33B	0.6702	1 1320	-0.0302	0.050	
H34A	0.7591	1 1201	-0.0392	0.050	
H34B	0.8501	1.0964	-0.1308	0.10	
H34C	0.7119	1.0204	-0.0775	0.10	
H35A	0.3581	0.9009	-0.1540	0.10	
H35B	0.2460	0.7928	-0.2020	0.044	
H36A	0.3718	0.8511	-0.2700	0.072	
H36B	0.4769	0.8495	-0.2633	0.072	
H36C	0.3640	0.0195	-0.3386	0.072	
H37A	0.1603	0.6139	-0.3082	0.072	
H37B	0.2012	0.5241	-0.2846	0.069	
H37C	0.1232	0.5532	-0 2371	0.002	
H38A	0.2402	0.2409	-0.0878	0.009	
H38B	0.2252	0.3229	-0.1444	0.048	
H39A	0.0400	0.2130	-0.1540	0.13	
H39B	0.0978	0.2508	-0.0353	0.13	
H39C	0.0827	0.3336	-0.0925	0.13	
H40A	0.2992	0.2259	0.0696	0.063	

Supplementary Table 4. Fractional coordinates and isotropic thermal parameters (Å²) for the hydrogen atoms of

<u>Atom</u>	X	y	Z	U
H40B	0.4389	0.2726	0.1365	0.063
H40C	0.3571	0.2906	0.1852	0.063
H5A	0.4475	0.9370	0.3259	0.062
H6A	0.3896	0.8950	0.4524	0.086
H7A	0.4250	0.7608	0.5162	0.076
H8A	0.5156	0.6692	0.4535	0.066
H9A	0.5741	0.7131	0.3288	0.050
H2BA	0.1167	0.6092	0.2699	0.25
H2BB	-0.0036	0.5614	0.1698	0.25
H3BA	0.2100	0.7073	0.1987	0.22
H3BB	0.0966	0.6404	0.0942	0.22
H4BA	0.2900	0.6244	0.1461	0.20
H4BB	0.1652	0.5358	0.0604	0.20
H5BA	0.2075	0.4422	0.1617	0.25
H5BB	0.2612	0.5426	0.2576	0.25
H2N	0.787(5)	0.825(4)	0.298(4)	0.05(2)
H3N	0.680(4)	0.888(4)	0.149(4)	0.06(2)
H4N	0.509(3)	0.758(3)	0.052(3)	0.019(11)
H5N	0.521(4)	0.635(4)	0.140(3)	0.043(14)

•

Supplementary Table 4. (continued).

Supplementary Table 5. Bond Lengths (Å) and Angles (⁰) for the non-hydrogen atoms of $(C_{40}H_{50}N_5)^{1+}$ (C₆H₅CO₂)¹⁻ (C₄H₈O).

			1-2	1-2-3
C1	N1 N1	C4	1.355(6)	105.4(4)
C6 C9	N2 N2	C9	1.388(7)	108.9(4)
C11 C14	N3 N3	C14	1.375(5) 1.382(7)	109.1(4)
C16 C19	N4 N4	C19	1.373(7) 1.380(4)	110.0(4)
C21 C24	N5 N5	C24	1.368(5) 1.371(7)	110.5(4)
C2 C2	C1 C1	C24 N1	1.458(8)	129.9(4) 111.7(4)
Č24	Č1	N1	1.422(6)	118.4(5)
C3	C2	C25	1.363(6)	126.6(5)
C3 C25	C_2	Cl	1 507(0)	105.3(5)
C25 C4	C_{2}	C26	1.507(8)	127.4(4) 125.7(4)
C4 C4	C3	C20	1.452(0)	125.7(4) 106 5(5)
Č26	Č3	Č2	1.504(8)	127.7(5)
C5	C4	N1	1.381(6)	123.3(5)
C5	C4	C3		125.6(5)
N1	C4	C3	1 20 (())	111.1(4)
C6	CS	C4	1.396(8)	129.9(5)
\mathcal{C}'		INZ C5	1.421(7)	107.7(5) 126.0(5)
N2	C6	C5		120.0(3) 126 3(4)
C8	Č7	C28	1.365(9)	120.9(1) 127.4(5)
Č8	Č7	C6		108.1(5)
C28	C7	C6	1.506(8)	124.5(5)
C9	C8	C29	1.436(7)	125.2(5)
C9	C8	C7	1 (00 m)	108.1(4)
C29	C8	C7	1.499(7)	126.3(5)
C10	<u> </u>	INZ C8	1.400(8)	131.0(4)
N2	C_{9}			121.8(5)
C11	C_{10}	C9	1 386(7)	139 8(4)
C12	C11	N3	1.432(8)	107.1(4)
C12	Č11	C10	1.102(0)	123.2(4)
N3	C11	C10		129.6(5)
C13	C12	C31	1.354(7)	127.0(6)
C13	C12	C11		108.5(4)
C31	C12	C11	1.525(7)	124.5(5)
C14	C13	C33	1.430(7)	124.3(4)
C14	CI3	C12	1 500/01	107.8(5)
C33	C13	CI2 N2	1.309(8)	12/.0(3)
C15	C14 C14	C13	1.576(5)	120.1(4) 124.4(5)

Supplementary Table 5. (continued).

1		3	<u> </u>	1-2-3
NO	014	010		107 4(4)
N3	C14 015	CI3	1 209(6)	107.4(4)
C10		CI4	1.398(6)	133.1(5)
C17		IN4 015	1.434(5)	107.0(3)
UI/		C15		124.8(5) 127.8(4)
C18		C15 C25	1 269(7)	127.0(4) 126.6(2)
C_{18}	C17	C33 C16	1.508(7)	120.0(5) 108.0(4)
C35	C17	C16	1 506(8)	100.0(4) 125 3(4)
C19	C18	C37	1.300(3)	123.3(4) 124.9(4)
C19	C18	C17	1.450(7)	108 1(3)
C37	C18	C17	1.491(5)	126.9(5)
C20	C19	N4	1.388(7)	128.6(4)
C20	C19	C18		124.4(3)
N4	C19	C18		106.9(4)
C21	C20	C19	1.392(7)	134.9(3)
C22	C21	N5	1.431(7)	106.5(4)
C22	C21	C20		124.2(3)
N5	C21	C20		129.3(4)
C23	C22	C38	1.380(7)	127.1(4)
C23	C22	C21		108.2(3)
C38	C22	C21	1.510(5)	124.6(4)
C24	C23	C40	1.422(5)	127.2(4)
C24	C23	C22		107.3(4)
C40	C23	C22	1.500(8)	125.2(3)
N5	C24	CI		119.6(4)
N5	C24	C23		107.4(4)
C1	C24	C23	1.500(10)	132.7(5)
C_{20}	C20	C3	1.529(12)	112.0(0)
C_{20}	C29 C21		1.314(11) 1.405(14)	115.0(4)
C34	C31	C12	1.495(14)	111.9(0)
C34	C35	C13	1.520(10)	112.1(5)
C30	C38	C_{22}	1.516(9)	112.1(3) 114.4(5)
C_{2A}	014	C24	1.308(9)	114.4(3)
O3A	C2A	C4A	1.291(7) 1 238(7)	118 6(5)
03A	C2A	O1A	1.250(7)	123 9(5)
C4A	C2A	O1A	1.510(8)	123.5(3) 117 5(5)
C5A	C4A	C9A	1.382(10)	118.9(6)
C5A	C4A	C2A	1.502(10)	120.5(5)
C9A	C4A	C2A	1.377(8)	120.6(6)
C6A	C5A	C4A	1.389(10)	120.5(6)
C7A	C6A	C5A	1.370(11)	120.0(8)
C8A	C7A	C6A	1.370(12)	119.9(7)
C9A	C8A	C7A	1.389(9)	120.3(6)
C4A	C9A	C8A	• •	120.5(6)
C2B	O1B	C5B	1.37(2)	101.2(12)
C5B	O1B		1.39(2)	
C3B	C2B	O1B	1.49(2)	107.(2)

(1997 American Chemical Society J. Am. Chem. Soc. V119 Page9385 Sessier Supplemental Page 13

Supplementary Table 5. (continued).

1	2	3	1-2	1-2-3
C4B C5B O1B	C3B C4B C5B	C2B C3B C4B	1.37(2) 1.45(2)	105.0(14) 103.(2) 105.4(14)

Supplementary Table 6.	Bond Lengths (Å	A) and Angles	(°) for the hydroge	en atoms of
(C	$L_{40}H_{50}N_5)^{1+}$ (C ₆ H	$H_5CO_2)^{1-}(C_4)$	H8 O).	

1	_2	3	<u> </u>	1-2-3
H2N	N2	C6	0.89(5)	121.(4)
H2N	N2	C9		128.(4)
H3N	N3	C11	0.97(6)	125.(3)
H3N	N3	C14		122.(3)
H4N	N4	C16	0.90(4)	123.(3)
H4N	N4	C19		126.(3)
H5N	N5	C21	0.92(4)	132(3)
H5N	N5	C24	0.72(1)	118(3)
H5	C5	ČĠ	0.96	115.2(5)
H5	Č5	$\widetilde{C4}$	0.20	114.8(6)
H10	$\tilde{C10}$	C11	0.96	109.8(6)
H10	C10	Č9	0.70	110.4(6)
HIS	C15	C16	0.06	113.1(4)
H15	C15	C14	0.70	113.1(+) 113.7(5)
H20	C_{20}	C^{21}	0.96	112 6(5)
H20	C_{20}	C10	0.70	112.0(5)
H25A	C25	H25B	0.06	100 5(0)
H25A	C25	H25C	0.90	109.5(9)
H25A	C_{25}	C^2		109.5(8)
1125A 1125B	C25	U25C	0.06	100.9(3) 100.5(7)
H25B	C_{25}	C^2	0.90	109.3(7) 100.2(7)
H256	C25	C_2	0.06	109.2(7)
1123C	C25	U26D	0.90	110.3(7) 109.2(0)
H20A	C_{20}	FIZOD	0.90	108.3(9)
HZOA LIDEA	C20	C_2^{\prime}		109.1(8)
HZOA HJGD	C_{20}	C_{3}	0.06	109.4(0)
1120D 1126D	C20	C_2^{\prime}	0.90	108.4(7) 100.0(7)
	C20		0.06	109.0(7)
	C_{27}	H2/B	• 0.90	109.5(10)
	C_{27}	H2/C		109.5(8)
	027	C20	0.07	111.6(9)
HZ/B	027	H2/C	0.96	109.5(10)
HZ/B	C27	C26	0.07	108.0(8)
HZ/C	C27	C26	0.96	108.8(9)
H28A	C28	H28B	0.96	109.5(6)
H28A	C28	H28C		109.5(9)
H28A	C28	<u>C7</u>		109.5(7)
H28B	C28	H28C	0.96	109.5(9)
H28B	C28	C7		110.0(7)
H28C	C28	C7	0.96	109.0(5)
H29A	C29	H29B	0.96	108.2(7)
H29A	C29	C30		108.8(8)
H29A	C29	C8		108.2(7)
H29B	C29	C30	0.96	108.9(7)
H29B	C29	C8		109.7(7)
H30A	C30	H30B	0.96	109.5(10)
H30A	C30	H30C		109.4(10)

Supplementary Table 6. (continued).

1		3	1-2	1-2-3
H30A	C30	C29		111.2(7)
H30B	C30	H30C	0.96	109.5(8)
H30B	C30	C29		108.7(9)
H30C	C30	C29	0.96	108.5(9)
H31A	C31	H31B	0.96	108.3(9)
H31A	C31	C32		108.8(8)
H31A	C31	C12		108.9(8)
H31B	C31	C32	0.96	109.2(9)
H31B	C31	C12		109.7(6)
H32A	C32	H32B	0.96	109.5(11)
H32A	C32	H32C		109.4(13)
H32A	C32	C31		111.3(11)
H32B	C32	H32C	0.96	109.5(13)
H32B	C32	C31		108.8(11)
H32C	C32	C31	0.96	108.3(9)
H33A	C33	H33B	0.96	108.3(8)
H33A	C33	C34		107.8(7)
H33A	C33	C13		109.8(5)
H33B	C33	C34	0.96	109.8(6)
H33B	C33	C13		109.2(7)
H34A	C34	H34B	0.96	109.5(10)
H34A	C34	H34C		109.5(7)
H34A	C34	C33		111.5(9)
H34B	C34	H34C	0.96	109.5(10)
H34B	C34	C33		109.5(6)
H34C	C34	C33	0.96	107.4(8)
H35A	C35	H35B	0.96	108.3(8)
H35A	C35	C36		109.7(6)
H35A	C35	C17		109.1(5)
H35B	C35	C36	0.96	108.2(5)
H35B	C35	C17		109.3(6)
H36A	C36	H36B	0.96	109.5(7)
H36A	C36	H36C		109.5(6)
H36A	C36	C35		111.4(8)
H36B	C36	H36C	0.96	109.5(9)
H36B	C36	C35		107.8(6)
H36C	C36	C35	0.96	109.3(7)
H37A	C37	H37B	0.96	109.5(7)
H37A	C37	H37C		109.5(8)
H37A	C37	C18		109.7(5)
H37B	C37	H37C	0.96	109.5(7)
H37B	C37	C18		109.1(6)
H37C	C37	C18	0.96	109.6(5)
H38A	C38	H38B	0.96	107.8(8)
H38A	C38	C39		108.4(6)
H38A	C38	C22		108.6(5)
H38B	C38	C39	0.96	108.5(6)
H38B	C38	C22		108.9(5)

Supplementary 7	Table 6.	(continued).
-----------------	----------	--------------

			1-2	1-2-3
H39A	C39	H39B	0.96	109.5(9)
H39A	C39	H39C		109.5(9)
H39A	C39	C38		110.7(9)
H39B	C39	H39C	0.96	109.5(11)
H39B	C39	C38		108.9(7)
H39C	C39	C38	0.96	108.8(7)
H40A	C40	H40B	0.96	109.5(7)
H40A	C40	H40C		109.5(7)
H40A	C40	C23	0.07	109.5(6)
H40B	C40	H40C	0.96	109.5(7)
H40B	C40	C23		109.0(6)
H40C	C40	C23	0.96	109.9(6)
H5A	C5A	C6A	0.96	121.4(9)
H5A	C5A	C4A		118.1(8)
H6A	C6A	C7A	0.96	120.3(9)
H6A	C6A	C5A		119.6(9)
H7A	C7A	C8A	0.96	119.6(9)
H7A	C7A	C6A		120.6(10)
H8A	C8A	C9A	0.96	119.4(9)
H8A	C8A	C7A		120.4(8)
H9A	C9A	C4A	0.96	118.8(7)
H9A	C9A	C8A		120.7(7)
H2BA	C2B	H2BB	0.96	109.(3)
H2BA	C2B	C3B		107.(2)
H2BA	C2B	O1B		109.(2)
H2BB	C2B	C3B	0.96	112.(2)
H2BB	C2B	O1B		113.(2)
H3BA	C3B	H3BB	0.96	109.(2)
H3BA	C3B	C4B		109.(2)
H3BA	C3B	C2B		115.(2)
H3BB	C3B	C4B	0.96	111.(2)
H3BB	C3B	C2B		108.(2)
H4BA	C4B	H4BB	0.96	109.(2)
H4BA	C4B	C5B		114.(2)
H4BA	C4B	C3B		112.(2)
H4BB	C4B	C5B	0.96	108.2(15)
H4BB	C4B	C3B		110.(2)
H5BA	C5B	H5BB	0.96	109.(2)
H5BA	C5B	O1B		111.(2)
H5BA	C5B	C4B		112.(2)
H5BB	C5B	O1B	0.96	112.(2)
H5BB	C5B	C4B		108.(2)

Supplementary Tabl	le 7. Torsion	n Angles (⁰)	for the non-	hydrogen	atoms of
(0	'40H50N5) ¹⁺	+ (C ₆ H ₅ CO ₂) ¹⁻ (C ₄ H ₈ O)).	

		3	4	1-2-3-4
C1 C1 C4 C4 C6 C6 C6 C9	N1 N1 N1 N2 N2 N2 N2	C4 C4 C1 C1 C9 C9 C9 C9 C6	C3 C5 C2 C24 C8 C10 C5	-1.4(7) 179.2(7) 2.5(7) 179.4(6) 2.0(7) -176.8(7) 177.1(6)
C9 C11 C11 C14 C14 C16 C16 C16 C19 C19	N2 N3 N3 N3 N4 N4 N4 N4	C6 C14 C14 C11 C11 C19 C19 C16 C16	C7 C13 C15 C10 C12 C18 C20 C15 C17	$\begin{array}{r} -2.0(7) \\ 1.2(7) \\ 178.1(6) \\ -176.4(7) \\ -0.5(7) \\ -0.4(7) \\ 175.3(6) \\ -171.3(6) \\ 0.8(7) \end{array}$
C21 C21 C24 C24 C24 C2 C2 C2 C24 C24 C24 N1	N4 N5 N5 N5 C1 C1 C1 C1 C1	C16 C24 C24 C21 C21 C24 C24 C2 C2 C2 C2	C17 C1 C23 C20 C22 N5 C23 C3 C25 C3	$\begin{array}{r} 0.8(7) \\ 175.6(6) \\ 0.8(7) \\ 175.8(6) \\ -2.0(7) \\ 153.8(7) \\ -33.1(12) \\ -179.1(7) \\ -8.1(11) \\ -2.7(8) \end{array}$
N1 N1 C25 C25 C1 C1 C4 C26 C26	C1 C1 C2 C2 C2 C2 C2 C2 C2 C2 C3 C3 C3	C2 C24 C24 C3 C3 C3 C3 C3 C26 C4	C25 N5 C23 C4 C26 C4 C26 C27 N1	168.2(6) -22.3(9) 150.8(7) -169.4(6) 8.0(12) 1.7(8) 179.1(7) -84.3(8) -177.7(7)
C26 C2 C2 C2 N1 C3 C4 C4 C4 N2	C3 C3 C3 C4 C4 C4 C5 C5 C5 C6	C4 C4 C26 C5 C5 C6 C6 C7	C5 N1 C5 C27 C6 C6 N2 C7 C8	$\begin{array}{r} 1.7(12) \\ -0.3(9) \\ 179.1(7) \\ 98.9(9) \\ 11.8(12) \\ -167.5(7) \\ 12.8(12) \\ -168.3(7) \\ 1.2(7) \end{array}$
N2 C5 C5 C28	C6 C6 C6 C7	C7 C7 C7 C8	C28 C8 C28 C9	-177.1(6) -177.8(6) 3.8(10) 178.2(6)

1 2 3 4 1-2-3-4 C8 C8 C28 C7 C29 5.0(11) **C**6 C7 C9 0.0(6)C6 C9 Č7 C8 C8 C29 Č29 -173.3(6) C30 -76.8(9) C2 C9 C9 C9 C9 C9 C29 C29 C8 C8 N2 172.2(6) -8.9(10) -1.2(7) C10 C7 C7 C7 C7 N2 C8 C8 N2 C10 177.8(6) C29 **C**8 C30 95.3(8) C9 C10 C11 -10.0(14)C8 C9 C9 C10 C11 Č11 N3 **C**9 171.3(8) **C**10 1.2(14)C11 C12 C10 -174.2(8)N3 C11 C12 C13 -0.4(8)C12 C12 C31 C13 N3 C11 177.4(6) C10 Č11 175.8(6) C10 C11 C12 C31 C13 C13 C13 C13 C13 C31 -6.4(11)C13 C12 C32 -99.7(9) C31 C31 C11 C12 C14 -176.6(7) C12 C12 C33 8.5(12) C14 1.1(8) C11 C33 C12 -173.7(6) C31 C33 82.9(9) -81.2(7) C11 C12 C32 C14 C33 C13 C13 C34 C14 N3 173.6(6) C13 C33 C14 C15 -3.4(10) Č13 C12 N3 C15 C14 -1.5(7) C12 C12 C13 C13 C14 C33 -178.5(6) C34 92.8(7) N3 C13 C15 C16 C14 -7.5(11) C14 C15 C16 168.9(6) C14 C14 C15 C16 N4 5.2(11)C15 C17 C18 C16 -165.6(7) C16 Č17 N4 -0.8(7)C35 C18 C35 N4 C16 C17 -177.0(6) C15 C15 C16 C16 C17 C17 171.6(6) -4.6(10) C18 C35 C35 C36 C17 -88.8(7) C19 C17 C18 176.7(6) C35 C16 C17 C17 C18 C18 C37 -1.9(10)C19 0.6(7)C16 C16 C18 C17 C37 -178.0(6) C35 C19 C17 C36 86.7(6) C18 C18 C18 C37 C37 N4 178.5(6) C19 C20 2.6(10)C17 Č19 N4 -0.1(5)C17 C18 C19 C20 -176.0(6) N4 C19 C20 C21 3.1(12)

Supplementary Table 7. (continued).

_1		3	4	1-2-3-4
 C18 C19 C19 N5 N5 C20 C20 C20 C23 C38	2 C19 C20 C20 C21 C21 C21 C21 C21 C22 C22 C22	3 C20 C21 C21 C22 C22 C22 C22 C22 C38 C23 C23	 C21 N5 C22 C23 C38 C23 C38 C39 C24	$\begin{array}{r} 1-2-3-4\\ 178.1(7)\\ 5.0(12)\\ -177.6(7)\\ 2.3(7)\\ -173.8(6)\\ -175.5(6)\\ 8.3(10)\\ 88.4(8)\\ 174.2(6)\end{array}$
C38 C21 C21 C40 C40 C40 C22 C22 O3A O3A	C22 C22 C22 C23 C23 C23 C23 C23 C23 C23	C23 C23 C38 C24 C24 C24 C24 C24 C24 C24 C24 C24 C24	C40 C24 C40 C39 N5 C1 N5 C1 C5A C9A	$\begin{array}{r} -0.3(11) \\ -1.8(7) \\ -176.3(6) \\ -96.2(7) \\ 175.0(6) \\ 1.3(12) \\ 0.7(8) \\ -173.1(7) \\ -2.5(5) \\ 176.5(3) \end{array}$
01A 01A C5A C9A C2A C2A C2A C4A C5A C6A	C2A C2A C4A C4A C4A C4A C5A C5A C6A C7A	C4A C4A C9A C5A C5A C9A C6A C7A C8A	C5A C9A C8A C6A C6A C8A C7A C8A C9A	$\begin{array}{r} 179.4(3) \\ -1.6(5) \\ 0.9(6) \\ -1.0(6) \\ 178.0(4) \\ -178.1(4) \\ 0.1(10) \\ 0.9(7) \\ -10(7) \end{array}$
C7A C2B C5B O1B C2B C3B	C8A O1B O1B C2B C3B C4B	C9A C5B C2B C3B C4B C5B	C4A C4B C3B C4B C5B O1B	-1.0(7) 0.1(8) -42.6(14) 31.2(13) -8.5(12) -17.1(11) 38.0(12)

Supplementary Table 7. (continued).

