J. Am. Chem. Soc., 1997, 119(41), 9641-9651, DOI:10.1021/ja9713035

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

General method for the preparation of tetramic acids 25b-e. To a stirred solution of 23 (47.4 mmol , 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(95 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a solution of ethyl hydrogen malonate ($6.26 \mathrm{~g}, 47.4 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(38 \mathrm{~mL})$, followed by a solution of 1,3 -dicyclohexylcarbodiimide ($9.9 \mathrm{~g}, 48.0 \mathrm{mmol}, 1.01$ equiv) and DMAP ($290 \mathrm{mg}, 2.37 \mathrm{mmol}, 0.05$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~mL}\right.$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min and allowed to warm to ambient temperature while stirring for an additional 2 h . After this time the solid urea by-product was removed by filtration. The filtrate was washed with $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and evaporated to a yellow semi-solid. To this was added acetone (30 mL) and the insoluble precipitate again removed via filtration. The filtrate was concentrated in vacuo to a yellow oil and used in the next step without further purification.

To a solution of $\mathrm{NaOEt} / \mathrm{EtOH}$ prepared from sodium metal ($1.09 \mathrm{~g}, 47.4 \mathrm{mmol}$) and absolute $\mathrm{EtOH}(31 \mathrm{~mL})$ was added a solution of the crude diester in benzene (200 mL) over 5 min . The resulting mixture was brought to reflux for 6.5 h . The reaction mixture was allowed to cool to room temperature and then diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The layers were separated and the benzene layer further extracted with $\mathrm{H}_{2} \mathrm{O}$ (2×80 mL). The aqueous layers were combined and residual EtOH was removed in vacuo, followed by careful acidification to pH 1 with conc. HCl at $0^{\circ} \mathrm{C}$. The resultant white precipitate was filtered and dried with a slow stream of N_{2} gas to give lactams $\mathbf{2 5 b}-\mathbf{e}$ as white powders.

25b. The above procedure was followed using $\mathbf{2 3 b}$ (7.54 g) to afford $\mathbf{2 4 b}$ ($7.53 \mathrm{~g}, 70 \%$ yield): mp $155-157{ }^{\circ} \mathrm{C}$ (dec., $\mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film $/ \mathrm{NaCl}$) $2973.8(\mathrm{br} \mathrm{m}), 2933.0(\mathrm{~m}), 2526.6(\mathrm{br} \mathrm{m}), 1707.4(\mathrm{~s}), 1590.3$ (s), 1429.7 (s), 1388.7 (m), 1222.3 (m), 1179.3 (w), $1052.1(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d $\left.{ }_{6}, 315 \mathrm{~K}\right) \delta 4.12(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 1.33$ (s, 9 H) , $1.20\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{6}, 305 \mathrm{~K}$) $\delta 177.8,167.6$, $162.5,98.3,58.9,52.9,47.9,27.5,14.2$; high resolution mass spectrum (EI) m / z
227.1155 [calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right) 227.1158$]; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{4}$: C , 58.14; H, 7.54; N, 6.16; found: C, 58.08 ; H, 7.50; N, 6.23.

25c. The above procedure was followed using $\mathbf{2 4 c}(12.00 \mathrm{~g})$ to afford $\mathbf{2 5 c}$
($12.6 \mathrm{~g}, 83 \%$ yield): $\mathrm{mp} 154-156^{\circ} \mathrm{C}\left(\mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film $/ \mathrm{NaCl}$) $\mathrm{CO}_{2} \mathrm{Et} 2937.5$ (br m), 2839.5 (w), 2612.4 (br w), 1704.0 (s), 1611.8 (s), 1514.9 (s), 1418.9 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta 6.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.79(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=1.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d $_{6}$) $\delta 178.8,167.3,162.0,148.8,148.0,130.0,119.8,111.9,111.5$, 97.8, 59.0, 55.5, 55.4, 49.0, 44.1, 14.3; high resolution mass spectrum (EI) m / z 321.1209 [calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{6}\left(\mathrm{M}^{+}\right)$321.121.2]; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{6}$: C, 59.81; H, 5.96; N, 4.46; found: C, 59.93; H, 5.92; N, 4.36.

25d. The above procedure was followed using $\mathbf{2 4 d}(10.6 \mathrm{~g})$ to afford $\mathbf{2 5 d}$ ($11.1 \mathrm{~g}, 80 \%$ yield): $\mathrm{mp} 198-200{ }^{\circ} \mathrm{C}$ (dec., $\mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film $/ \mathrm{NaCl}$) 2982.1 (m), 2925.0 (m), 2841.1 (w), 2593.8 (br w), 1703.9 (s), 1609.7 (s), $1512.0(\mathrm{~m}), 1447.1(\mathrm{~s}), 1247.0(\mathrm{~s}), 1038.6(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO $_{6}$) $\delta 7.12$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $6.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.37 ($\mathrm{s}, 2 \mathrm{H}$), 4.13 (q, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.79 (s, 2H), 3.72 (s, 3H), $1.20(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 178.7,167.3,162.0,158.4,129.6,128.9,114.0,97.8,59.0$, $55.0,48.9,43.7,14.3$; high resolution mass spectrum (EI) $m / z 291.1107$ [calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right)$291.1107]; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{5}: \mathrm{C}, 61.85 ; \mathrm{H}, 5.88 ; \mathrm{N}, 4.81 ;$ found: C, 61.70; H, 5.86; N, 4.73.

25e. The above procedure was followed using $\mathbf{2 4 e}(9.15 \mathrm{~g})$ to afford $\mathbf{2 5 e}$ ($8.79 \mathrm{~g}, 71 \%$ yield): mp $152-154{ }^{\circ} \mathrm{C}$ (dec., $\mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film $/ \mathrm{NaCl}$) $2980.0(\mathrm{~m}), 2929.8(\mathrm{~m}), 1707.3(\mathrm{~s}), 1447.1(\mathrm{~s}), 1255.0(\mathrm{~m})$, $1139.4(\mathrm{~m}), 1045.4(\mathrm{~m}), 933.6(\mathrm{w}), 797.0(\mathrm{~m}), 703.0(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 7.18-7.33$ (comp m, 5 H), 4.45 ($\mathrm{s}, 2 \mathrm{H}$), 4.12 ($\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.81(\mathrm{~s}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) $\delta 179.4,167.7$,
162.1, $137.8,128.6,127.1,97.4,58.9,49.4,44.3$; high resolution mass spectrum (EI) $m / z 261.0997$ [calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right) 261.1101$]; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}$: C , 64.36 ; H, 5.79 ; N, 5.36 ; found: C, $64.18 ; \mathrm{H}, 5.75 ; \mathrm{N}, 5.44$.

Diazo lactams 17b-e. A solution of ester 25 ($33.5 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{H}_{2} \mathrm{O}$ (1 mL) was heated to reflux in $\mathrm{CH}_{3} \mathrm{CN}\left(1.5 \mathrm{~L}\right.$) for 2 h . The volume of $\mathrm{CH}_{3} \mathrm{CN}$ was reduced to approximately 35% the original volume (ca. 560 mL) in vacuo. The solution was cooled to $0^{\circ} \mathrm{C}$ and treated sequentially with $\mathrm{MsN}_{3}(8.12 \mathrm{~g}, 67.0 \mathrm{mmol}$, 2.0 equiv) in $\mathrm{CH}_{3} \mathrm{CN}\left(168 \mathrm{~mL}\right.$) via addition funnel followed by $\mathrm{Et}_{3} \mathrm{~N}$ ($9.34 \mathrm{~mL}, 67.0$ mmol, 2.0 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(96 \mathrm{~mL})$. After 15 min the ice bath was removed and the dark orange solution was allowed to warm to $25^{\circ} \mathrm{C}$, stirred for an additional 2 h , and concentrated in vacuo. The dark orange residue was dissolved in a minimum of EtOAc and filtered through a pad of silica gel (EtOAc eluent). The filtrate was washed once with 1 N NaOH solution, dried over MgSO_{4}, filtered and concentrated to give 17b-e as yellow solids, which were recrystallized from acetone/hexanes.

17b. The above procedure was followed using $25 b(7.60 \mathrm{~g})$ to afford $\mathbf{1 7 b}$ ($4.85 \mathrm{~g}, 80 \%$ yield): $\mathrm{mp} 83-85{ }^{\circ} \mathrm{C}$ (dec.); IR ($\left.\mathrm{CCl}_{4}\right) 2980.8$ (s$), 2123.4$ (s), $1718.8(\mathrm{~m}), 1689.4(\mathrm{~s}), 1441.6(\mathrm{~m}), 1390.5(\mathrm{~s}), 1347.9(\mathrm{~m}), 1262.6$ (w), $1224.3(\mathrm{~s}), 1177.3(\mathrm{~m}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.88(\mathrm{~s}, 2 \mathrm{H}), 1.47$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 185.7,161.7,66.7,55.7,53.3,28.0$; high resolution mass spectrum (CI) $m / z 182.0929$ [calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})$ 182.0930]; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 53.03 ; H, 6.12 ; $\mathrm{N}, 23.19$; found: C, 53.06 ; H, 6.15; N, 23.17.
 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.79(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $185.7,161.7,149.5,149.0,127.7,120.8,111.3,111.2,66.0,56.0,55.9,53.9,46.5$;
high resolution mass spectrum (CI) $m / z 276.0981$ [calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})$ 276.0984]; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 56.72 ; H, 4.76; $\mathrm{N}, 15.27$; found: C, 56.81; H, 4.81; N, 15.36.

PMB $\quad \begin{gathered}\text { 17d. The above procedure was followed using 25d }(9.75 \mathrm{~g}) \text { to afford } \mathbf{1 7 d} \\ \left(7.22 \mathrm{~g}, 88 \% \text { yield): } \mathrm{mp} 91-93{ }^{\circ} \mathrm{C}(\mathrm{EtOAc}) ; \mathrm{IR}\left(\mathrm{CCl}_{4}\right) 2926.3(\mathrm{br} \mathrm{w}), 2841.5\right.\end{gathered}$
$\mathrm{N}_{2}(\mathrm{w}), 2129.8(\mathrm{~s}), 1693.9(\mathrm{~s}), 1613.3(\mathrm{w}), 1511.7(\mathrm{~m}), 1458.8(\mathrm{~m}), 1401.9(\mathrm{~s})$, $1361.2(\mathrm{~m}), 1243.4(\mathrm{~m}), 1223.0(\mathrm{~m}), 1174.1(\mathrm{~m}), 1040.0(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 185.7,161.6,159.4,129.6$, $127.2,114.3,65.9,55.2,53.8,46.0$; high resolution mass spectrum (CI) m / z 246.0885 [calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H}) 246.0879$].
 (comp m, 5H), $4.60(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 185.5,161.7$, $135.1,128.9,128.1,128.1,65.8,53.8,46.5$; high resolution mass spectrum (CI) m / z 219.0779 [calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H}) 216.0773$]; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 61.39; H, 4.21; N, 19.53; found: C, 61.47; H, 4.27; N, 19.53.

Indolocarbazoles 4a-e. Method A. A mixture of 2,2'-biindole (20) (200 mg, 0.86 $\mathrm{mmol}, 1.0$ equiv), diazo tetramic acid $17 \mathrm{a}-\mathrm{e}\left(2.2 \mathrm{mmol}, 2.5\right.$ equiv), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(38 \mathrm{mg}$, $0.086 \mathrm{mmol}, 0.1$ equiv) and pinacolone (8.6 mL) in a pressure tube fitted with a rubber septum was degassed with a stream of N_{2} for 1 h . The septum was removed and the tube was flushed with N_{2}, sealed, and placed into a pre-heated sand bath (120 ${ }^{\circ} \mathrm{C}$). After 6 h the tube was removed from the sand bath, allowed to cool to room temperature, and carefully opened. After removing the solvent in vacuo, the residue was dissolved in EtOAc (15 mL), washed with $1 \mathrm{~N} \mathrm{NaOH} \mathrm{(} 15 \mathrm{~mL}$) solution, and dried
over MgSO_{4}. Filtration and removal of the solvent was followed by flash chromatography (1:1 EtOAc:hexanes eluent) to provide 4a-e as pale yellow solids.

4a. The above procedure was followed using $17 \mathbf{a}(275 \mathrm{mg})$ to afford 4a (67 mg, 25\% yield): mp $>330{ }^{\circ} \mathrm{C}$ (dec., EtOAc/hexanes); IR (thin film $/ \mathrm{NaCl}$) 3343.7 (m), 3306.5 (w), 1645.7 (s), 1454.1 (s), 1389.3 (m), 1348.5 (m), 1329.9 (m), 1316.6 (w), 1277.0 (m), 1260.7 (w), 1050.7 (m) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 11.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), 11.20 (br s, 1 H), 9.23 ($\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 8.35 (br s, 1H), $8.03(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 1 H), 7.47 (app.t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42 (app.t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30 (app.t, $J=7.4 \mathrm{~Hz}$, 1 H), 7.22 (app.t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.95(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d ${ }_{6}$) δ $172.4,139.2,139.1,132.9,127.8,125.4,125.2,125.0,125.0,122.8,122.6,121.1$, $119.9,118.9,118.9,115.6,114.1,111.9,111.3,45.3$; high resolution mass spectrum (EI) $m / z 311.1061$ [calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}\left(\mathrm{M}^{+}\right) 311.1059$].

4b. The above procedure was followed using 17 b (400 mg) to afford 4b (126 mg, 40\% yield): mp $>300{ }^{\circ} \mathrm{C}$ (dec., EtOAc/hexanes); IR (thin film $/ \mathrm{NaCl}$) 3485.3 (br m), 3456.0 (br m), 3343.1 (br s), 3249.7 (br m), 2979.7 (m), 1654.4 (w), 1600.5 (s$), 1578.2(\mathrm{~s}), 1465.8(\mathrm{w}), 1446.5(\mathrm{~m}), 1385.0(\mathrm{~s}), 1364.0(\mathrm{~m})$, 1335.9 (w), 1225.3 (s) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 11.45$ ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), 11.29 (br s, 1H), $9.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 (app.t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41 (app.t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30 (app.t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.21 (app.t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.13 (s, 2H), $1.65(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (62.5 MHz, DMSO-d $_{6}$) $\delta 169.9,139.2,139.0,129.9,127.6,125.4,125.3,124.9$, $122.7,122.4,122.0,121.2,119.7,118.8,115.1,113.6,111.8,111.2,101.9,53.6,48.1$, 27.8; high resolution mass spectrum (FAB) $m / z 368.1764$ [calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{1}$ $(\mathrm{M}+\mathrm{H}) 368.1763]$.

4c. The above procedure was followed using $17 \mathrm{c}(605 \mathrm{mg})$ to afford $4 \mathbf{c}$ ($257 \mathrm{mg}, 62 \%$ yield): $\mathrm{mp}>202^{\circ} \mathrm{C}$ (dec., EtOAc); IR (thin film $/ \mathrm{NaCl}$) 3487.5 (br s), 3352.0 (br s), 3232.0 (br s), 3022.3 (m), 1579.1 (s), 1571.2 (s), 1517.7 (s), 1462.9 (s) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d $_{6}$) $\delta 11.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 11.35$ (br s, $1 \mathrm{H}), 9.28$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45 (app.t, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.44 (app.t, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.26 (app.t, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25($ app.t, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 2 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H})$, $4.82(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.5 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 169.2,148.9$, $148.1,139.1,139.0,130.6,130.0,127.7,125.3,124.9,124.9,124.8,122.6,122.3$, $120.7,119.9,119.7,118.8,118.2,115.4,113.8,112.3,112.1,111.7,111.1,55.5,49.3$, 45.4 ; high resolution mass spectrum (FAB) $m / z 462.1813$ [calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}$ $(\mathrm{M}+\mathrm{H}) 462.1818]$.

4d. The above procedure was followed using 17 d (539 mg) to afford 4 d ($204 \mathrm{mg}, 55 \%$ yield): $\mathrm{mp} 190-200^{\circ} \mathrm{C}$ (dec., acetone); IR (thin film $/ \mathrm{NaCl}$) 3429.3 (br s), 3351.3 (br s), 2912.4 (m), 1609.7 (s), 1580.3 (s), 1512.0 (s), 1465.5 (s), 1402.1 (w), 1250.6 (s), 1238.4 (s), 1177.3 (m), 1030.8 (w), 748.9 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d ${ }_{6}$) $\delta 11.53$ (br s, 1H), 11.37 (br s, 1 H), 9.28 ($\mathrm{d}, ~ J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.99(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (app.t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45 (app.t, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ (app.t, $J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.26 (app.t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 4.83(\mathrm{~s}$, $2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{DMSO}^{2}$ - ${ }_{6}$) $\delta 169.2,158.4,139.1,139.0,130.0$, $129.9,128.9,127.7,125.3,124.9,124.8,122.6,122.2,120.7,119.7,118.8,118.2$, $115.4,113.9,113.8,111.7,111.1,54.9,49.2,45.0$; high resolution mass spectrum (FAB) $m / z 432.1699$ [calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H}) 432.1712$].

4e. The above procedure was followed using $17 \mathrm{e}(473 \mathrm{mg})$ to afford $\mathbf{4 e}(200 \mathrm{mg}, 58 \%$ yield).

Triol 42. To a cooled ($0^{\circ} \mathrm{C}$) solution of (+)-40 ($1.56 \mathrm{~g}, 8.38 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (84 mL) was added DIBAL-H ($6.72 \mathrm{~mL}, 37.69 \mathrm{mmol}$, 4.5 equiv) in a dropwise fashion over a period of 8 minutes. After stirring for 10 minutes at $0^{\circ} \mathrm{C}$ the ice bath was removed, the mixture warmed to $25^{\circ} \mathrm{C}$, and stirred for 30 minutes. The reaction was quenched with EtOAc (10 mL) followed by $\mathrm{MeOH}(5 \mathrm{~mL})$. A saturated solution of sodium potassium tartrate (80 mL) was added and the mixture was stirred vigorously for 1.5 hours. The phases were separated and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with saturated NaCl solution and dried over MgSO_{4}. After removal of the solvent, a crude oil (845 mg) was obtained and used in the next step without further purification.

To a cooled solution $\left(0^{\circ} \mathrm{C}\right)$ of the above oil (845 mg) in THF (74 mL) was added a solution of $\mathrm{H}_{5} \mathrm{IO}_{6}(1.20 \mathrm{~g}, 5.26 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$. After 20 minutes at $0^{\circ} \mathrm{C}$, the reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$ and stirred for 40 minutes. An excess of NaBH_{4} ($250 \mathrm{mg}, 6.6 \mathrm{mmol}, 5.0$ equiv) was added followed by $1 \mathrm{M} \mathrm{HCl}(3 \mathrm{~mL})$. After the vigorous reaction had ceased, the reaction mixture was extracted with EtOAc and the organic layers dried with MgSO_{4}. Evaporation of the filtrate produced a colorless oil which was filtered through silica gel ($5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ eluent) to afford an oil (349 mg) which was used in the subsequent reaction without further purification.

A solution of the derived oil (349 mg) in a cooled ($-78{ }^{\circ} \mathrm{C}$) mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL) and $\mathrm{MeOH}(3 \mathrm{~mL})$ was treated with O_{3} until the solution turned a pale blue (5-6 minutes). The mixture was purged with argon before an excess of NaBH_{4} (250 mg ,
$6.6 \mathrm{mmol}, 5.0$ equiv) was added at $-78^{\circ} \mathrm{C}$. After warming to ambient temperature the mixture was concentrated in vacuo. Flash chromatography ($10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ eluent) provided triol (R)-46 ($245 \mathrm{mg}, 25 \%$ yield over 3 steps).

Ester (-)-44. To a solution of (-)-41b (382 mg, $2.05 \mathrm{mmol}, 1.0$ equiv) in ethylvinylether (1.4 mL) at $0^{\circ} \mathrm{C}$ was added $2,2,2-$ trifluoroacetic acid $(8.7 \mu \mathrm{~L})$. The mixture was warmed to reflux for 24 hours. During that time ethylvinylether (1.4 mL) was added twice to replace evaporated solvent. The reaction mixture was cooled to $25^{\circ} \mathrm{C}$ and quenched by adding $\mathrm{Et}_{3} \mathrm{~N}(45 \mu \mathrm{~L})$. The mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ (4 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{~mL})$. The organic layer was separated and washed with $\mathrm{H}_{2} \mathrm{O}(0.5$ mL), saturated NaCl solution (0.5 mL), dried over MgSO_{4}, and concentrated to afford an oil (538 mg) which was used in the next step without further purification.

To a cooled solution ($0^{\circ} \mathrm{C}$) of the derived oil (538 mg) in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added NaBH_{4} ($58 \mathrm{mg}, 6.1 \mathrm{mmol}$). The reaction mixture was stirred for 2 hours at 0 ${ }^{\circ} \mathrm{C}$, quenched by addition of $\mathrm{H}_{2} \mathrm{O}(136 \mu \mathrm{~L})$ and then partitioned between $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and concentrated to provide an oil (490 mg) which was used without further purification.

To a cooled solution ($-78^{\circ} \mathrm{C}$) of the derived oil (490 mg) in THF (17.8 mL) was added $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}(9.4 \mathrm{~mL}, 0.4 \mathrm{M}$ in toluene, 3.8 mmol$)$. The mixture was stirred for 5 minutes and treated with $\mathrm{CS}_{2}(1.2 \mathrm{~mL}, 20.0 \mathrm{mmol})$ followed by iodomethane $(1.2 \mathrm{~mL}$, 20.0 mmol). After 10 minutes at $-78^{\circ} \mathrm{C}$ the reaction was warmed to $0^{\circ} \mathrm{C}$, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (15 mL), and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL}$). The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL}$), saturated NaCl solution (30 mL), dried over MgSO_{4}, and concentrated in vacuo to afford an oil (659 mg) that was used without further purification.

A solution of $n-\mathrm{Bu}_{3} \mathrm{SnH}(1.53 \mathrm{~mL}, 5.69 \mathrm{mmol})$ and $\mathrm{AIBN}(62 \mathrm{mg}, 0.39 \mathrm{mmol})$ in benzene (22.3 mL) was heated to reflux and treated dropwise with a solution of the crude oil obtained above (659 mg) in benzene (3.7 mL) over 10 min . The reflux was
continued for an additional hour, then allowed to cool to room temperature. The solvent was evaporated and the residue filtered through silica gel $(0 \rightarrow 5 \%$ EtOAc/hexanes gradient eluent) to provide an oil (469 mg).

A solution of the derived oil (469 mg) in THF (20 mL) was treated with 1 N HCl $(2 \mathrm{~mL})$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 15 minutes, the solvent was evaporated, and the residue partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(133 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(67 \mathrm{~mL})$. The aqueous layer was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 67 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo to provide a yellow oil which was purified by flash chromatography ($5 \% \mathrm{EtOAc} / \mathrm{hexanes}$ eluent) to provide (-)-44 as a pale yellow oil ($153 \mathrm{mg}, 44 \%$ yield over 5 steps): $[\alpha]^{20}{ }_{\mathrm{D}}-8.53$ (c 1.06, CHCl_{3}); IR (thin film $/ \mathrm{NaCl}$) 3530.1 (w), 3028.8 (w), 2962.2 (m), 2955.8 (m), 2936.6 (m), 2922.8 (m), 2880.7 (w), 2855.8 (w), 1733.9 (s , 1459.2 (m), 1378.4 (w), 1339.5 (w), 1293.4 (w), 1243.1 (s), 1211.6 (s , 1152.5 (s$), 1068.7$ (m), 1019.8 (m), 970.7 (m), 871.4 (w), 805.1 (w), $749.2(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.83(\mathrm{~m}$, $1 \mathrm{H}), 5.37(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=7.3,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J$ $=7.1,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.6,129.6,124.7,78.0,52.4,42.4,31.6$, $18.0,7.8$; high resolution mass spectrum (CI) $m / z 173.1177$ [calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}_{3}$ ($\mathrm{M}+\mathrm{H}$) 173.1178$]$.

Diester (-)-45. A cooled solution ($-78^{\circ} \mathrm{C}$) of (-)-44 (153 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.3 \mathrm{~mL})$ and $2.5 \mathrm{~N} \mathrm{NaOH}(1.2 \mathrm{~mL})$ in MeOH , was treated with O_{3} until the solution turned pale blue. Diethylether (14 mL) and $\mathrm{H}_{2} \mathrm{O}$ (14 mL) were added and the reaction mixture was allowed to warm to 25 ${ }^{\circ} \mathrm{C}$ followed by extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 60 \mathrm{~mL})$. After evaporation of the solvent the crude product was filtered through a pad of silica gel (20% EtOAc/hexanes) to afford (-)-45 as a colorless oil ($74 \mathrm{mg}, 44 \%$ yield, $[\alpha]^{20}{ }_{\mathrm{D}}-13.88$ (c $1.03, \mathrm{CHCl}_{3}$)

X-RAY CRYSTALLOGRAPHY REPORT FOR FURANOSE (\pm)-30a

A. Crystal Data
Empirical Formula $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{7}$
Formula Weight 262.26
Crystal Color/Habit colorless plate
Crystal Dimensions (mm) $0.10 \times 0.18 \times 0.22$
Crystal System monoclinic
No. Reflections Used for Unit
Cell Determination (2_range) 25(15.4-20.7º
Omega Scan Peak Width
at Half-height 0.21
Lattice Parameters:
a 7.752 (5) \AA
b 21.447 (4) \AA
c. 8.243 (3)Å
B $104.88(4)^{\circ}$
V $1325(1) \AA^{3}$
Space Group P21/a (\#14)
Z value 4
Dcalc $1.315 \mathrm{~g} / \mathrm{cm}^{3}$
F000 560
$\mu(\mathrm{MoK} \alpha)$ $1.03 \mathrm{~cm}-1$
B. Intensity Measurements
Diffractometer Rigaku AFC5S
Radiation $\operatorname{MoK} \alpha(\lambda=0.71069 \AA)$
Temperature $23^{\circ} \mathrm{C}$
Attenuators Zr foil (factors: $2.3,5.3,11.7$)
Take-off Angle 6.0°
Detector Aperture 6.0 mm hor. $/ 6.0 \mathrm{~mm}$ vert.
Crystal to Detector Distance 285 mm
Scan Type $\omega-2 \theta$
Scan Rate 6.0% min in ω (2 rescans)
Scan Width $(1.57+0.30 \tan \theta)^{\circ}$
2өmax 50.0°
No. of Reflections Measured:
Total: 2599
Unique: $2417($ Rint $=.046)$
Corrections Lorentz-polarizationDecay (-7.60% decline)
C. Structure Solution and Refinement
Structure Solution Direct Methods
Refinement Full-matrix least-squares
Function Minimized $\Sigma w(\text { Fol- Fc })^{2}$Least-squares Weights$4 \mathrm{Fo}^{2} / \mathrm{s}^{2}\left(\mathrm{Fo}^{2}\right)$
p-factor 0.03
Anomalous Dispersion All non-hydrogen atoms
No. Observations (l>3.00s(l)) 884
No. Variables 163
Reflection/Parameter Ratio 5.42
Residuals: R; Rw 0.042; 0.046
Goodness of Fit Indicator 1.38
Max Shift/Error in Final Cycle 0.00Maximum Peak in Final Diff. Map
\qquad 0.16 e-/Å3
Minimum Peak in Final Diff. Map -0.16 e-/Å3

Positional parameters and $B(e q)$ for furanos $(\pm)-\mathbf{3 0 a}$

atom	x	y	z	$B(e q)$
01	$0.1039(4)$	0.0971(1)	0.1315(4)	3.7(1)
O 2	0.3557(4)	0.0683(1)	0.0421(4)	4.1 (2)
O3	0.3498(4)	0.1393(2)	0.4305(4)	3.6(1)
O4	0.5196(5)	0.2250(2)	0.4962(4)	5.5(2)
O5	0.6482(4)	0.1639(2)	$0.1791(4)$	$5.1(2)$
06	0.6719(4)	$0.1021(2)$	0.4028(4)	4.2(2)
O7	0.0336(4)	0.1724(2)	-0.0825(4)	4.9(2)
C1	0.2843(6)	0.0780(2)	$0.1818(6)$	3.5(2)
C2	$0.3819(6)$	0.1380(2)	$0.2645(5)$	3.0(2)
C3	0.2792(6)	0.1884(2)	0.1527(6)	4.0(2)
C4	0.0924(6)	0.1625(2)	0.0902(6)	3.6(2)
C5	0.2976(7)	0.0211(2)	0.2917(6)	4.8(3)
C6	$0.2607(8)$	0.0251(3)	-0.0811(7)	6.2(3)
C7	$0.4271(7)$	0.1864(3)	0.5341 (6)	4.2(3)
C8	$0.3765(7)$	0.1817(3)	0.6978(7)	5.9(3)
C9	0.5822(6)	0.1373(2)	0.2758(6)	3.6(2)
C10	$0.8639(6)$	0.1001(3)	0.4247(7)	5.6(3)
C11	-0.1523(8)	0.1593(3)	-0.1459(7)	6.0(3)
H1	0.2780	0.2258	0.2144	4.7
H2	0.3300	0.1965	0.0615	4.7
H3	0.0145	0.1827	0.1455	4.4

H4	0.2582	0.0312	0.3885	5.8
H5	0.2248	-0.0112	0.2309	5.8
H6	0.4181	0.0074	0.3248	5.8
H7	0.1411	0.0389	-0.1229	7.4
H8	0.3167	0.0227	-0.1708	7.4
H9	0.2614	-0.0149	-0.0313	7.4
H10	0.4296	0.2150	0.7692	7.0
H11	0.2504	0.1840	0.6776	7.0
H12	0.4174	0.1431	0.7502	7.0
H13	0.9167	0.0739	0.5169	6.7
H14	0.8891	0.0842	0.3257	6.7
H15	0.9115	0.1410	0.4459	6.7
H16	-0.2195	0.1867	-0.0954	7.2
H17	-0.1857	0.1651	-0.2642	7.2
H18	-0.1753	0.1174	-0.1204	7.2

X-RAY CRYSTALLOGRAPHY REPORT FOR FURANOSE (\pm)-30b

A. Crystal Data

Empirical Formula $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{7}$
Formula Weight 262.26
Crystal Color/Habit colorless cut block
Crystal Dimensions (mm) $0.38 \times 0.40 \times 0.45$
Crystal System monoclinic
No. Reflections Used for Unit
Cell Determination (2_range). $.8\left(16.7-21.8^{\circ}\right)$
Omega Scan Peak Width
at Half-height 0.20
Lattice Parameters:
a 8.625 (3) \AA
b 22.44 (1) \AA
c. 8.157 (2) \AA
B $118.87(2)^{\circ}$
V $1382(2) \AA^{3}$
Space Group P2 $1 / \mathrm{a}(\# 14)$
Z value 4
Dcalc $1.260 \mathrm{~g} / \mathrm{cm}^{3}$
F000 560
$\mu(\mathrm{MoK} \alpha)$ $0.99 \mathrm{~cm}-1$
B. Intensity MeasurementsDiffractometerRigaku AFC5S
Radiation $\operatorname{MoKa}(\lambda=0.71069 \AA)$
Temperature $23^{\circ} \mathrm{C}$
Attenuators Zr foil (factors: $2.3,5.3,11.7$)
Take-off Angle 6.0°
Detector Aperture 6.0 mm hor. $/ 6.0 \mathrm{~mm}$ vert.
Crystal to Detector Distance 285 mm
Scan Type $\omega-2 \theta$
Scan Rate. 8.0% min in ω (2 rescans)
Scan Width $(1.68+0.30 \tan \theta)^{\circ}$
$2 \theta \max$ 49.8°
No. of Reflections Measured:
Total 4006
Unique: $1914($ Rint $=.060)$
Corrections Lorentz-polarizationDecay (-55.00\% decline)
C. Structure Solution and Refinement
Structure Solution Direct Methods
Refinement Full-matrix least-squares
Function Minimized $\sum w\left(\text { Fo } \mid-F_{c}\right)^{2}$
Least-squares Weights $4 \mathrm{Fo}^{2} / \sigma^{2}\left(\mathrm{Fo}^{2}\right)$
p-factor 0.03
Anomalous Dispersion All non-hydrogen atoms
No. Observations (l>3.00s(l)) 1136
No. Variables 163
Reflection/Parameter Ratio 6.97
Residuals: R; Rw 0.055; 0.065
Goodness of Fit Indicator. 2.36
Max Shift/Error in Final Cycle 0.00Maximum Peak in Final Diff. Map$0.40 \mathrm{e}-/ \AA^{3}$
Minimum Peak in Final Diff. Map -0.28 e-/ \AA^{3}

Positional parameters and $\mathrm{B}(\mathrm{eq})$ for $(\pm) \mathbf{3 0 b}$

atom	x	y	z	$B(e q)$
O1	0.1799(3)	0.6087(1)	-0.0760(4)	3.9(1)
O2	0.4497(4)	0.5739(1)	0.1627(3)	3.9(1)
O3	0.3938(3)	0.6817(1)	-0.1812(4)	3.8(1)
O4	0.5464(5)	0.6648(2)	-0.3393(5)	5.5(2)
O 5	0.7139(4)	0.5665(2)	0.0072(5)	5.6(2)
O6	0.7313(4)	0.6623(2)	0.0910(4)	5.0(1)
O7	0.0270(4)	0.5902(1)	-0.3940(4)	4.7(1)
C1	0.3606(5)	0.6218(2)	0.0424(5)	3.5(2)
C 2	0.4416(5)	0.6238(2)	-0.0935(5)	$3.1(2)$
C3	$0.3411(6)$	0.5735(2)	-0.2282(5)	3.8(2)
C4	$0.1643(5)$	0.5702(2)	-0.2242(6)	3.6(2)
C5	$0.3740(7)$	0.5531(2)	0.2766(6)	5.3(2)
C6	$0.3716(6)$	0.6785(2)	0.1480(6)	4.8(2)
C7	$0.4575(6)$	0.6972(2)	-0.3007(6)	4.3(2)
C8	$0.4014(8)$	0.7593(3)	-0.3736(7)	6.2(3)
C9	0.6452(6)	0.6134(2)	0.0049(6)	4.1(2)
C10	$0.9274(7)$	0.6539(3)	0.1758(8)	7.4(3)
C11	-0.1452(7)	0.5760(3)	-0.4187(7)	7.3(3)
H1	0.3213	0.5824	-0.3507	4.6
H2	0.4043	0.5371	-0.1871	4.6
H3	0.1422	0.5304	-0.2012	4.3

H4	0.3736	0.5847	0.3539	6.4
H5	0.2560	0.5400	0.1979	6.4
H6	0.4426	0.5210	0.3529	6.4
H7	0.4923	0.6881	0.2289	5.7
H8	0.3165	0.7101	0.0615	5.7
H9	0.3129	0.6728	0.2199	5.7
H10	0.4461	0.7865	-0.2717	7.5
H11	0.4467	0.7692	-0.4556	7.5
H12	0.2758	0.7615	-0.4396	7.5
H13	0.9642	0.6224	0.2646	8.8
H14	0.9561	0.6443	0.0802	8.8
H15	0.9861	0.6896	0.2364	8.8
H16	-0.1584	0.5929	-0.3194	8.8
H17	-0.2333	0.5917	-0.5347	8.8
H18	-0.1578	0.5339	-0.4184	8.8

X-RAY CRYSTALLOGRAPHY REPORT FOR C(2')epi-9a.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula
$\mathrm{C}_{9} \mathrm{O}_{6} \mathrm{H}_{16}$
Formula Weight 220.22
Crystal Color/Habit colorless cut block
Crystal Dimensions (mm) $0.34 \times 0.44 \times 0.48$
Crystal System triclinic
No. Reflections Used for Unit
Cell Determination (2θ range) $25\left(17.3-33.8^{\circ}\right)$
Omega Scan Peak Width at Half-height. 0.22
Lattice Parameters:
a 7.619 (8)Å
b $9.66(1) \AA ̊$
c. 7.595 (8) \AA
α $91.3(1)^{\circ}$
B $98.6(1)^{\circ}$
γ. $99.24(9)^{\circ}$
V 545 (2) \AA^{3}
Space Group P-1 (\#2)
Z value 2
Dcalc $1.342 \mathrm{~g} / \mathrm{cm}^{3}$
F000 236
$\mu(\operatorname{MoK} \alpha)$ $1.06 \mathrm{~cm}-1$
Diffractometer Rigaku AFC5S
Radiation MoK $\alpha(\lambda=0.71069 \AA$)
Temperature $23^{\circ} \mathrm{C}$
Attenuators Zr foil (factors: $2.3,5.3,11.7$)
Take-off Angle 6.0°
Detector Aperture 6.0 mm hor. $/ 6.0 \mathrm{~mm}$ vert.
Crystal to Detector Distance 285 mm
Scan Type $\omega-2 \theta$
Scan Rate 8.0% min in ω (2 rescans)
Scan Width $(1.68+0.30 \tan \theta)^{\circ}$
2日max 50.0°
No. of Reflections Measured
Total: 2069
Unique: $1912($ Rint $=.036)$
Corrections. Lorentz-polarization
Decay (-15.00\% decline)
C. Structure Solution and Refinement
Structure Solution Direct Methods
Refinement Full-matrix least-squares
Function Minimized $\sum w\left(\right.$ Fol-Fc $\|^{2}$
Least-squares Weights $4 \mathrm{Fo}^{2} / \sigma^{2}\left(\mathrm{Fo}^{2}\right)$
p-factor 0.02
Anomalous Dispersion All non-hydrogen atoms
No. Observations (l>3.00s(I)) 1377
No. Variables 200
Reflection/Parameter Ratio 6.89
Residuals: R; Rw 0.038; 0.043Goodness of Fit Indicator.2.01
Max Shift/Error in Final Cycle 0.00
Maximum Peak in Final Diff. Map 0.18 e-/Å3
Minimum Peak in Final Diff. Map -0.18 e-/Å3

Positional parameters and $B(e q)$ for $C\left(2^{\prime}\right)$-epi-9a.

atom	x	y	z	$\mathrm{B}(\mathrm{eq})$
O1	$0.7759(2)$	$0.7060(1)$	$0.2591(2)$	$3.15(6)$
O2	$0.8680(2)$	$0.9476(1)$	$0.2391(2)$	$3.46(6)$
O3	$1.2136(2)$	$0.9218(2)$	$0.2951(2)$	$4.19(7)$
O4	$1.1137(2)$	$0.5579(2)$	$0.2443(2)$	$4.83(8)$
O5	$1.2615(2)$	$0.7218(2)$	$0.0928(2)$	$4.18(7)$
O6	$0.7471(2)$	$0.7810(2)$	$0.5486(2)$	$4.21(7)$
C1	$0.8948(3)$	$0.8113(2)$	$0.1882(3)$	$2.91(8)$
C2	$1.0833(3)$	$0.7997(2)$	$0.2951(3)$	$3.10(8)$
C3	$1.0350(3)$	$0.7611(3)$	$0.4778(3)$	$3.9(1)$
C4	$0.8369(3)$	$0.7002(3)$	$0.4472(3)$	$3.5(1)$
C5	$0.6925(4)$	$0.9798(3)$	$0.1801(5)$	$4.8(1)$
C6	$0.8694(4)$	$0.7869(3)$	$-0.0111(3)$	$3.7(1)$
C7	$1.1541(3)$	$0.6786(2)$	$0.2101(3)$	$3.3(1)$
C8	$1.3270(5)$	$0.6127(4)$	$-0.0001(5)$	$5.6(1)$
C9	$0.5627(5)$	$0.7261(5)$	$0.5454(5)$	$6.5(2)$
H1	$1.114(3)$	$0.698(2)$	$0.539(3)$	$4.1(5)$
H2	$1.055(3)$	$0.845(2)$	$0.555(3)$	$3.6(5)$

H3	$0.807(3)$	$0.599(2)$	$0.473(3)$	$4.0(5)$
H4	$0.679(4)$	$1.009(3)$	$0.068(5)$	$8(1)$
H5	$0.596(4)$	$0.909(3)$	$0.191(4)$	$7.2(8)$
H6	$0.676(4)$	$1.052(4)$	$0.256(4)$	$9(1)$
H7	$0.960(3)$	$0.853(2)$	$-0.060(3)$	$4.2(5)$
H8	$0.894(3)$	$0.691(3)$	$-0.047(3)$	$4.3(5)$
H9	$0.745(3)$	$0.797(2)$	$-0.060(3)$	$4.4(5)$
H10	$1.166(4)$	$0.984(3)$	$0.332(4)$	$6.7(8)$
H11	$1.219(4)$	$0.557(3)$	$-0.071(4)$	$7.3(8)$
H12	$1.409(5)$	$0.660(4)$	$-0.079(5)$	$11(1)$
H13	$1.391(6)$	$0.564(5)$	$0.086(6)$	$13(1)$
H14	$0.512(5)$	$0.786(4)$	$0.618(5)$	$10(1)$
H15	$0.497(5)$	$0.707(4)$	$0.429(6)$	$10(1)$
H16	$0.555(5)$	$0.633(4)$	$0.583(5)$	$12(1)$

