

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Copyright © 1997 American Chemical Society

	$\Delta_{\rm f} H^{\circ}$	$\Delta H_{\rm H2}$	$\Delta H_{\rm H2}$	Steric	$\Delta H_{\rm H2}$	
	(Pedley) ^a	(Pedley) ^{<i>v</i>}	(Rogers) ^c	Energy	(SEcorr) ^e	
Propene	+4.78			+0.25		
		-29.80			-31.05	
Propane	-25.02			+1.50		
1-Butene	0.00			+1.48		
		-30.02			-30.71	
<i>n</i> -Butane	-30.02			+2.17		
1-Pentene	-5.09			+1.48		
· · · · · · · · · · · · · · · · · · ·		-30.02			-30.69	
<i>n</i> -Pentane	-35.11			+2.82		
3-MeButene-1	-6.60			+2.49		
		-30.14			-31.28	
2-MeButane1	-36.74			+3.63		
Hexene-1	-10.40			+2.80		
		-29.54	-30.28		[–30.95]	
<i>n</i> -Hexane	-39.94			+3.47		
3-MePentene-1	-11.83			+4.50		
		(–29.30)	-29.78		[–30.80]	
3-MePentane	-41.13			+5.52		
4-MePentene-1	-12.26			+3.47		
		-29.52	-30.28		[-31.11]	
4-MePentane	-41.78			+4.30		
3,3-DiMeButene-1	-14.46			+3.29		
		-30.02	-30.07		-31.74	
2,2-DiMeButane	-44.48			+5.01		
Heptene-1	-14.90			+3.44		
		-29.96	-29.92		-30.63	
<i>n</i> -Heptane	-44.86			+4.11		

Table S1. Heats of Hydrogenation from Pedley et al.⁵ and D. W. Rogers²⁰ of Monosubstituted Ethenes

3-MeHexene-1	[-15,96]		1	+4 74		
			-29.76		[-31,23]	
3-MeHexane	-45.72	-		+6.21		
			(-29.33)		[-30.22]	
4-MeHexene-1	[-16.39]			+5.32		
5-MeHexene-1	-15.70			+4.23		
		-29.91	-29.76		-30.60	
2-MeHexane	-45.61			+4.92		
4,4-DiMePentene-1	-19.50			+4.22		
		-29.71			-31.20	
4,4-DiMePentane	-49.21			+5.71		
		-29.81 ±	-29.90 ±		-30.94 ±	
		0.26 (11)	0.32 (8) ^g		0.39 (13) ^h	
		-29.91 ± ().22 (17)		•	

^{*a*} Heats of formation from Pedley et al.⁵ ^{*b*} Derived heats of hydrogenation. Values in parenthesis are excluded from the grand mean (in bold face). ^{*c*} Heats of hydrogenation from Rogers.²⁰ ^{*d*} Steric energies (SE) as produced by the Allinger MM2 program contained in CSC Chem 3D Pro[™]. ^{*e*} Heats of hydrogenation derived by subtraction of SE values from Pedley values or Rogers values [in brackets]. ^{*f*} Mean of all values from Pedley et al.⁵ ^{*g*} Mean of all Rogers' values.²⁰ ^{*h*} Mean of all SE-corrected values. ^{*i*} Mean of all values not excluded in parentheses.

	$\Delta_{\rm f} H^{\circ}$	$\Delta H_{\rm H2}$	$\Delta H_{\rm H2}$	Steric	$\Delta H_{\rm H2 (SE}$	
	(Pealey)	(Pealey)	(Hogers)	Energy	corr)	
2-MePropene	-4.04			-0.03		
		-28.03			-30.00	
2-MePropane	-32.07			+1.94		
2-MeButene-1	-8.44			+1.84		
		-28.30			-30.09	
2-MeButane	-36.74			+3.63		
2-MePentene-1	[–13.98]			+2.50		
		-27.58	-27.80		[-29.60]	
2-MePentane	-41.78			+4.30		
2,3-DiMeButene-1	[–14.81]			+3.70		
		-27.65	-27.80		[–29.89]	
2,3-DiMeButane	-42.61			+5.79		
2,4-DiMePentene-1	-20.05			+3.20		
		-28.20			-30.62	
2,4-DiMePentane	-48.25			+5.62		
2-EtButene-1	-13.38			+3.82		
		-27.75	-27.68		-29.45	
3-MePentane	-41.13			+5.52		
2-MeHexene-1	[-17.93]			+3.12		
			-27.68		[-29.48]	
2-MeHexane	-45.61			+4.92		
2-Et-3-MeButene-1	-19.00			+6.12		
		(-28.54)			-30.61	
2,3-DiMePentane	-47.54			+8.19		
2,3,3-TriMeButene-1	-20.43			+6.47		
		-28.45			-30.24	
2,2,3-TriMeButane	-48.88			+8.26		
		-28.06 ±	-27.74 ±		-30.00 ±	
		0.37 (8)	0.07 (4)		0.44 (9)	
		-27.90 ± 0.30 (11)				

Table S2. Heats of Hydrogenation from Pedley et al.⁵ and D. W. Rogers²⁰ of 1,1-Disubstituted Ethenes

	$\Delta_{\rm f} H^{\circ}$	$\Delta H_{\rm H2}$	$\Delta H_{\rm H2}$	Steric	$\Delta H_{\rm H2}$	$\Delta_{\rm f} H^{\circ}({\rm KBW})$
	(Pedley)	(Pedley)	(Rogers)	Energy	(SEcorr)	(hydration)
<i>trans-</i> Butene	-2.72			+0.14		
		-27.30			-29.33	
<i>n</i> -Butane	-30.02			+2.17		
trans-Pentene	-7.62			+1.34		-7.68
		-27.49			-28.97	-27.43
<i>n</i> -Pentane	-35.11			+2.82		
trans-Hexene-2	-12.88			+2.01		-13.00
		-27.06	-27.45		-28.91	-26.94
<i>n</i> -Hexane	-39.94			+3.47		
		-26.94	(-28.18)		-29.14	-27.20
trans-Hexene-3	-13.00			+2.51		-12.74
trans-4-Me-Pentene-2	-14.70			+2.31		
		-27.08	-27.29		-29.07	
2-Me-Pentane	-41.78			+4.30		
trans-4,4-DiMe-Penten2	-21.22			+4.04		
		(-27.99)			-29.66	
2,2-DiMe-Pentane	-49.21			+5.71		
trans-Heptene-2	[–17.59]			+2.64		-17.56
			-27.27		-28.74	-27.30
<i>n</i> -Heptane	-44.86			+4.11		
			-27.41		-28.34	-27.40
trans-Heptene-3	[-17.45]			+3.18		-17.46
trans-4-Me-Hexene-2	[-19.14]			+3.75		
			(-26.58)		-29.04	
3-Me-Hexane	-45.72			+6.21		

Table S3. Heats of Hydrogenation from Pedley et al.,⁵ D. W. Rogers²⁰ and K. B. Wiberg²¹ of *trans*-1,2-Disubstituted Ethenes

trans-5-Me-Hexene-2	[-18.75]			+2.77		
			-26.86		-29.01	
2-Me-Hexane	-45.61			+4.92		
			-27.56		-29.02	
trans-2-Me-Hexene-3	[–18.05]			+3.46		
		-27.31 ±	-27.20 ±		<i>–29.02</i> ±	–27.25 ±
		0.39 (6)	0.33 (8)		<i>0.33</i> (11)	0.20 (5)
		-27.25 ± 0.21 (16)				

	$\Delta_{\rm f} H^{\circ}$	$\Delta H_{\rm H2}$	$\Delta H_{\rm H2}$	Steric	$\Delta H_{\rm H2}$	$\Delta_{\rm f} H^{\circ}$ (KBW)
	(Pedley)	(Pedley)	(Rogers)	energy	(SEcorr)	(hydration)
<i>cis-</i> Butene	_1.70			+1.55		
		-28.32			-28.94	
<i>n</i> -Butane	-30.02			+2.17		
<i>cis-</i> Pentene	-6.60			+2.66		-6.75
		-28.51	-28.56		-28.67	-28.36
<i>n</i> -Pentane	-35.11			+2.82		
<i>cis-</i> Hexene-2	[–11.38]			+3.22		-12.26
		(-27.44)	-28.56		[-28.80]	(27.68)
<i>n</i> -Hexane	-39.94			+3.47		
		-28.56	(-29.06)		-28.42	-28.17
<i>cis-</i> Hexene-3	-11.38			+3.61		-11.77
cis-4-Me-Pentene-2	-13.74			+3.31		
		-28.04	-27.94		-29.03	
2-Me-Pentane	-41.78			+4.30		
cis-4,4-DiMe-Pentene-2	-17.32			+9.15		
		(31.49)			-28.45	
2,2-DiMe-Pentane	-49.21			+5.71		
<i>cis-</i> Heptene-2	[-17.23]			+3.86		-16.51
			(-27.63)		(-27.88)	-28.35
<i>n</i> -Heptane	-44.86			+4.11		
			-28.32		-28.24	
cis-Heptene-3	[–16.54]			+4.19		-16.52
cis-4-Me-Hexene-2	[18.06]			+6.06		
			(27.63)		(-27.78)	
3-Me-Hexane	-45.72			+6.21		
<i>cis-</i> 5-Me-Hexene-2	[-17.81]			+3.92		
			-27.80		-28.80	
2-Me-Hexane	-45.61			+4.92		
			-28.27		-28.83	
cis-2-Me-Hexene-3	[-17.34]			+4.36		
		-28.73 ±	-28.20 ±		-28.61 ±	-28.21 ±

Table S4. Heats of Hydrogenation from Pedley et al.,⁵ D. W. Rogers²⁰ and K. B. Wiberg²¹ of cis-1,2-Disubstituted Ethenes

0.49 (9)

1.41 (6)

0.36(10)

-28.29 ± 0.23 (14)

0.27 (6)

	$\Delta_{\rm f} H^{\circ}$	$\Delta H_{\rm H2}$	$\Delta H_{\rm H2}$	Steric	ΔH_{H2}
	(Pedley)	(Pedley)	(Rogers)	Energy	(SE corr)
2-MeButene-2	-9.99			+1.72	
		-26.75			-28.66
2-MeButane	-36.74			+3.63	
2-MePentene-2	[-15.11]			+2.64	
		(–25.79)	-26.67		[–28.33]
2-MePentane	41.78			+4.30	
(E)-3-MePentene-2	-15.08			+3.66	
		-26.05			-27.91
3-MePentane	41.13			+5.52	
·····		-26.24			-28.58
(Z)-3-MePentene-2	-14.89			+3.18	
2-MeHexene-2	[–19.61]			+3.22	
			-26.00		-27.70
2-MeHexane	-45.61			+4.92	
(Z)-3-MeHexene-2	[-20.05]			+3.73	
			-25.67		-28.15
3-MeHexane	-45.72			+6.21	
(Z)-3-MeHexene-3	[—19.57]			+4.51	
		(-27.36)	-26.15		[–27.85]
3-MeHexane	-45.72			+6.21	
		-26.74	-26.43		-28.82
(<i>E</i>)-3-MeHexene-3	-18.98			+4.13	
2,4-DiMePentene-2	-21.20			+5.26	
		-27.05			-27.41
2,4-DiMePentane	-48.25			+5.62	
		-26.57 ±	-26.18 ±		-28.15 ±
		0.56 (7)	0.39 (5)		0.47 (9)
		–26.38 ±	0.43 (10)	1	

Table S5. Heats of Hydrogenation from Pedley et al.⁵ and D. W. Rogers²⁰ of 1,1,2-Trisubstituted Ethenes

Supplnf Table Series 1: Data from Equilibrations at Various Temperatures given as Natural Logarithms of the Ratios of Concentrations of Individual Isomers to the Sum of All Concentrations in % (Temperature in Kelvin)

<i>Т</i> (К)	$K^{-1} \times 10^3$	1a(<i>E</i>)	1b(<i>E</i>)	1a(<i>Z</i>)	1b(<i>Z</i>)				
Series 1: 1-Phenyl-butenes: KOt-Bu/HMPT									
273.2	3.661	4.576	0.647	-0.094					
273.2	3.661	4.575	0.688	-0.051					
294.2	3.400	4.567	0.896	0.239					
335.4	2.982	4.532	1.581	0.811					
354.0	2.825		1.753	0.982					
354.0	2.825	4.517	1.747	1.008					
361.4	2.767	4.508	1.841	1.089					
	Serie	es 1: 1-Phenyl	-butenes: RuH	/C ₆ H ₆					
334.7	2.988	4.508	1.701	0.828	0.392				
335.2	2.984	4.508	1.701	0.842	0.365				
354.2	2.824	4.489	1.883	0.993	0.548				
353.7	2.828	4.486	1.866	1.026	0.673				
371.1	2.695	4.469	2.026	1.109	0.742				
370.2	2.702	4.468	1.993	1.154	0.829				
384.2	2.603	4.448	2.105	1.286	1.008				
384.4	2.602	4.442	2.123	1.356	1.026				

Supplnf Table Series 2. Data from Equilibrations at Various Temperatures given as Natural Logarithms of the Ratios of Concentrations of Individual Isomers to the Sum of All Concentrations in % (Temperature in Kelvin)

<i>T</i> (K)	$K^{-1} \times 10^3$	2a(<i>E</i>)	2 b	2a(<i>Z</i>)	2c				
Series 2: 1-Phenyl-3-methyl-butenes: KOt-Bu/HMPT									
273.2	3.661	4.317	3.148	-0.830	0.611				
291.2	3.428	4.259	3.289	-0.743	0.940				
334.1	2.994	4.134	3.510	-0.337	1.440				
334.1	2.994	4.137	3.508	-0.270	1.391				
353.8	2.827	4.080	3.579	-0.104	1.597				
370.2	2.702	4.033	3.623	0.005	1.797				
370.3	2.701	4.038	3.625	-0.039	1.740				

Supplnf Table Series 3. Data from Equilibrations at Various Temperatures given as Natural Logarithms of the Ratios of Concentrations of Individual Isomers to the Sum of All Concentrations in % (Temperature in Kelvin)

<i>T</i> (K)	$K^{-1} \times 10^3$	3a(<i>E</i>)	3 b	3a(<i>Z</i>)	3 c	3 d				
	Series 3: 2-Phenyl-5-methyl-hexenes: KOt-Bu/HMPT									
354.0	2.825	4.065	3.183	2.482	0.997	0.918				
360.2	2.777	4.056	3.195	2.477	1.038	0.979				
370.9	2.697	4.032	3.212	2.516	1.102	1.070				
381.7	2.620	4.015	3.239	2.507	1.162	1.144				
383.2	2.610	4.010	3.240	2.520	1.152	1.176				
384.3	2.603	4.009	3.237	2.527	1.158	1.176				
384.2	2.603	4.002	3.243	2.540	1.181	1.170				
391.3	2.556	3.989	3.255	2.545	1.221	1.235				
405.2	2.468	3.962	3.260	2.576		1.282				
426.9	2.343	3.926	3.305	2.588	1.397	1.427				

SupInfo Figure 2 for Scheme 1. The natural logarithm of the quotient of the concentration at equilibrium of one isomer and the sum of all isomers (ln%) is plotted against 10^{3} K⁻¹ for the series 1 of β -ethylstyrenes: 1a(E), \blacksquare ; 1a(Z), \blacklozenge , 1b(E), \blacktriangledown . Differences between any pair of " ΔH " are $\Delta \Delta_{f}H$ in kcal/mol and any pair of " ΔS " are $\Delta \Delta_{f}S$ in cal·mol⁻¹·K⁻¹, these latter values being shown in Chart 1, Series 1.

concentration at equilibrium of one isomer and the sum of all isomers (In%) is plotted against 10^{3} K⁻¹ for the series 2 of β -isopropylstyrenes: 2a(*E*), +; 2b, \forall ; 2c, \blacksquare ; 2a(*Z*), •. Differences between any pair of " ΔH " are $\Delta \Delta_{\rm f} H$ in kcal/mol and any pair of " ΔS " are $\Delta\Delta_{\rm f}S$ in cal·mol⁻¹·K⁻¹, these latter values being shown in Chart 1, Series **2**.

SupInfo Figure 4 for Scheme 3. The natural logarithm of the quotient of the concentration at equilibrium of one isomer and the sum of all isomers (ln%) is plotted against 10^{3} K⁻¹ for the series 3 of β -ethylstyrenes: 3a(E), +; 3b, \bigtriangledown , 3a(Z), \diamondsuit , 3d, \blacktriangle , 3c, \blacksquare . Differences between any pair of " ΔH " are $\Delta \Delta_{f}H$ in kcal/mol and any pair of " ΔS " are $\Delta \Delta_{f}S$ in cal·mol⁻¹·K⁻¹; these latter values are shown in Chart 1, Series 3.

SupInfo Figure 5. NMR chemical shifts of the vinyl hydrogen atoms in styrene, omethyl and 2',4',6'-trimethylstyrene emphasize the change in order of the β -hydrogen atoms. Isomerization of 8b(E), catalysed by potassium t-butyloxide in hexamethylphosphoric triamideand interrupted before equilibration, affords 8a(E) as the major product, but, after equilibration, 8a(Z) appears as the more stable isomer. The values of NMR chemical shifts are shown. Methyl groups in the mesityl moiety and at the α -position are unaffected by configuration, whereas hydrogens of the ethyl groups are. In one isomer, vinyl hydrogen is at higher field while its congeneric methylene and methyl groups are at lower field, whereas in the second, the reverse is true. Based on the strong presumption that the ortho methyl groups at 2' and 6' have forced the olefinic group toward an orthogonal orientation and that some groups then occupy space closer to the Karplus cone, the (Z) configuration is assigned to the first isomer, (E) to the second. These assignments accord with the expectation that kinetically controlled isomerization of 8b(E) generates the less hindered anionic intermediate shown and thus favors 8a(E), whereas at equilibrium 8a(Z) is the major product.