J. Am. Chem. Soc., 1997, 119(35), 8350-8360, DOI:10.1021/ja970870p

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

Supplementary Text

Correlation of BDE's with changes in spin populations: invariance with

 respect to definition of atomic populations. Various schemes exist for calculating atomic electron populations, and from them atomic charges, using molecular wave functions. ${ }^{1}$ The most common is the Mulliken definition, ${ }^{2}$ although its shortcomings are well documented. ${ }^{3,4}$ The great variety of procedures available for defining atomic populations, and the wide disparity in the numerical results obtained from them, leads to some level of difficulty in drawing useful conclusions from such analyses. It is not unusual for the population of an atom to vary by an entire electron, or even more, depending on the particular definition of charge used to perform the calculation. However, the paragraphs below demonstrate that the correlation between B-H BDE and spin density delocalization described in the main body of the paper and illustrated graphically in Figure 6 is not an artifact of using a partcular definition of atomic population.Despite the large and well-documented inconsistencies between definitions, atomic populations derived for an entire series of molecules using a given procedure usually correlate very closely with those calculated for the same series of molecules using some other procedure. ${ }^{1}$ These correlations are not equally good for all pairs of definitions of charge, nor do the best fit lines generally have a slope of one or an intercept of zero. Nonetheless, differences in atomic populations, when assessed consistently using a single reasonable definition, are still likely to be meaningful. Using two quite different procedures and comparing the results provides an even greater degree of confidence if both approaches lead to the same conclusions.

Many of the procedures that yield atomic populations can equally well provide atomic spin density populations, and it is possible to quantify the earlier discussion of spin density distribution using such an approach. Two quite dissimilar definitions have been chosen for the present application: the Atoms in Molecules (AIM) approach of Bader ${ }^{5,6,7}$ and the Natural Population Analysis (NPA) of Weinhold. ${ }^{8,9}$ The former is based on a division of physical space according to
topological principles into regions belonging to the various atoms comprising a molecule, while the latter represents a modification of the Mulliken procedure that largely removes the problem of basis set dependence.

Table 4 lists both the AIM and NPA atomic spin density populations of the borane radicals, and shows that the B-H BDE is correlated with the delocalization of spin density, as described previously. The data are presented graphically in Figure 6, which plots the BDE against the fraction of alpha spin density found on atoms other than the BH_{2} fragment in each radical $\left(\mathrm{R}^{2}=\right.$ 0.96). Importantly, the correlation is demonstrated equally well using the NPA populations, as shown in Figure $A\left(R^{2}=0.97\right)$. The similarity results from the aforementioned fact that the NPA and AIM populations, while numerically very dissimilar, nonetheless often show an excellent correlation, as illustrated in Figure B (slope $=1.022$, correlation coefficient $=0.98$). This close correspondence suggests that the foregoing discussion is not invalidated by the unavoidably arbitrary nature of all definitions of atomic charge.

Correlation of BDE's with changes in atomic population. Interestingly, the correlation between electron population and BDE extends to the total populations as well as the spin densities, if one considers the change in the electronic population of the BH_{n} fragment that takes place upon hydrogen atom abstraction. This change is defined simply as the population of the BH_{2} fragment in the radical minus that of the BH_{3} fragment in the parent complex. Figure C shows the relationship between this population difference and the BDE for the hydrogen abstraction process. The excellent correlation $\left(\mathrm{R}^{2}=0.97\right)$ mirrors that in Figure 6 (BDE versus spin density). Once again, the AIM and NPA procedures for defining electronic population yield the same qualitative result; a plot of the population difference computed via NPA versus that computed via AIM yields a best fit line with a correlation coefficient of 0.998 and a slope of 0.79 . The changes are consistently $\sim 25 \%$ larger with AIM than with NPA, but are related in a rigorously linear fashion.

Demonstration that geometric constraints do not significantly complicate the interpretation of difference densities for complexation. Figures 9 and 10 illustrate the reorganization of charge density that occurs as the result of complexation of various Lewis bases with borane. A complication arises in their interpretation because of the changes in geometry that occur during complexation. To avoid artifacts associated with the movement of atoms, the geometries of the "isolated" molecules in the subtraction procedure must be identical to the geometries used in the complexes. For instance, in the calculation for $\mathrm{BH}_{3} \cdot \mathrm{NH}_{3}$, the BH_{3} and NH_{3} wave functions were those for BH_{3} and NH_{3} at the exact geometries they hold in the $\mathrm{BH}_{3} \cdot \mathrm{NH}_{3}$ complex.

As the changes in molecular geometry that accompany complexation can be quite substantial, there is some ambiguity in the interpretation of the difference density distributions. ${ }^{10}$ How much of the charge redistribution derives from complexation, and how much from geometric change within the fragments? In order to answer this question, NPA atomic populations were computed for the isolated component molecules both at their equilibrium geometries and also at their geometries in the complexes. The resulting differences, which are listed in Table C , were taken to indicate the amount of charge redistribution directly related to the changes in geometry. The calculated differences were generally much smaller than the charge redistribution resulting from complexation, with a mean absolute value of 0.010 electrons, and a maximal value of 0.070 electrons for the case of $\mathrm{BH}_{2} \cdot \mathrm{OCH}_{2}$. Consequently, the charge density perturbations depicted in Figures 9 and 10 mostly reflect the complexation process itself, and are only modestly "contaminated" by the associated geometry changes.

Correlation of strength of association with orbital energies. In so far as the complexation of borane to Lewis bases can be described in terms of frontier molecular orbital interactions (HOMO on the Lewis base, LUMO on the borane), one might expect the strength of coordination to correlate with the HOMO-LUMO energy gap. Since the LUMO is the same in all cases -- the empty p orbital on boron -- one might predict a correlation between the HOMO
energy of the Lewis base and the complexation enthalpy. The LUMO energies are listed in Table D. However, plotting the HF/6-311++G**(6d)//MP2/6-31G* HOMO energy against the dissociation enthalpy yields a correlation coefficient of only 0.49.

It is likely that not only the energy but also the spatial orientation and diffuseness of the HOMO influences its interaction with the LUMO on boron. A diffuse lone pair orbital cannot overlap with the LUMO as effectively as a compact one. It might be possible to compensate for this effect in at least an approximate fashion by using localized MO's instead of the canonical MO's, since the localized MO's ought in general to have shapes and orientations optimal for intermolecular interaction. The optimization process might minimize differences in lone pair "availability" from one species to the next.

The NBO procedure of Weinhold and Reed ${ }^{8,9,11}$ that is included in the Gaussian 94 ab initio package ${ }^{12}$ yields localized MO's that can be used for this purpose. The use of localized orbitals substantially improved the correlation of HOMO-LUMO gap with complexation enthalpy, raising the correlation coefficient to 0.84 , but still did not provide a truly convincing quantitative relationship. Use of QCISD orbital energies instead of HF energies made essentially no difference at all. The absence of a strong correlation probably results from the dependence of interaction strength on not only orbital energy but also the extent of orbital overlap, for which the localization procedure does not adequately compensate. The orbital energies relevant to the above discussion are provided in Table D.

Notes and References.

1

2

Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 3.1.
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; AlLaham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94 (Revision C.2); Gaussian, Inc., Pittsburgh PA, 1995.

Table A. G-2 and CBS-4 total enthalpies (Hartrees).

Structure	Symmetry	State	$0 \mathrm{~K}^{\text {a }}$		0 K to $298 \mathrm{~K} \mathrm{Increment}{ }^{\text {b }}$	
			G-2	CBS-4	G-2	CBS-4
H	K_{h}	2	-0.50000	-0.50335	0.00236	0.00236
BH_{2}	$\mathrm{C}_{2 \mathrm{v}}$	2	$-25.85726^{\text {c }}$	-25.86744	0.00381	0.00381
BH_{3}	D_{3}	1	-26.52486 ${ }^{\text {c }}$	-26.53660	0.00384	0.00384
$\mathrm{B}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{2 \mathrm{v}}$	2	-52.44782	-52.47117	0.00482	0.00476
$\mathrm{B}_{2} \mathrm{H}_{6}$	$\mathrm{D}_{2 \mathrm{~h}}$	1	-53.10751	-53.13182	0.00456	0.00451
NH_{3}	$\mathrm{C}_{3 \mathrm{v}}$	1	-56.45865	-56.47365	0.00381	0.00386
$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}_{2 v}$	1	-76.33205	-76.34858	0.00379	0.00379
PH_{3}	C_{3}	1	-342.67903	-342.68642	0.00385	0.00384
$\mathrm{H}_{2} \mathrm{C}$	$\mathrm{C}_{2 v}$	1	-398.93070	-398.93532	0.00379	0.00379
CO .	$\mathrm{C}_{\text {cov }}$	1	-113.17750	-113.18898	0.00330	0.00331
$\mathrm{H}_{2} \mathrm{CO}$	$\mathrm{C}_{2 \mathrm{v}}$	1	-114.33892	-114.35829	0.00381	0.00381
HCN	$\mathrm{C}_{\mathrm{ovv}}$	1	-93.28489	-93.29258	0.00346	0.00341
HNC	$\mathrm{C}_{\text {cov }}$,	-93.26210	-93.27309	0.00378	0.00357
$\mathrm{CH}_{3} \mathrm{OCH}_{3}$	$\mathrm{C}_{2 \mathrm{v}}$	1		-154.78280		0.00535
$\mathrm{CH}_{3} \mathrm{CN}$ $\mathrm{CH}_{3} \mathrm{SCH}_{3}$	$\mathrm{C}_{3 \mathrm{v}}$	1		-132.54562		0.00442
$\mathrm{CH}_{3} \mathrm{SCH}_{3}$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$	$\mathrm{C}_{2 v}$	1		-477.40125		0.00583
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$ $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$	$\mathrm{C}_{2 v}$	1		-192.85938		0.00627
$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$ $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$	$\mathrm{C}_{3 \mathrm{v}}$	1		-174.15521		0.00654
${ }_{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}}$	C_{5}	1		-460.41718		0.00757 0.00650
THF	C_{2}	1		-232.07369		0.00590
pyridine	$\mathrm{C}_{2 \mathrm{v}}$	1		-247.88073		0.00510
$\mathrm{BH}_{2} \mathrm{NH}_{3}$	C_{5}	1	-82.36231	-82.38843	0.00492	0.00486
$\mathrm{BH}_{3} \mathrm{NH}_{3}$	C_{3}	1	-83.02505	-83.05293	0.00495	0.00486
$\mathrm{BH}_{2} \mathrm{OH}_{2}$	C_{1}	2	-102.20693	-102.23145	0.00538	0.00527
$\mathrm{BH}_{3} \mathrm{OH}_{2}$	$\mathrm{C}_{\text {s }}$	1	-102.87330	-102.89892	0.00547	0.00525
$\mathrm{BH}_{2} \mathrm{PH}_{3}$	$\mathrm{C}_{\text {s }}$	2	-368.58897	-368.61216	0.00542	0.00541
$\mathrm{BH}_{3} \mathrm{PH}_{3}$ $\mathrm{BH}_{2} \mathrm{SH}$	C_{3}	1	-369.23661	-369.25969	0.00565	0.00557
$\mathrm{BH}_{2} \mathrm{SH}_{2}$ $\mathrm{BH}_{3} \mathrm{SH}$	C_{s}	2	-424.82515	-424.83979	0.00698	0.00686
$\mathrm{BH}_{3} \mathrm{SH}_{2}$ $\mathrm{BH}_{2} \mathrm{CO}$	C_{s}	1	-425.47471	-425.48169	0.00657	0.00630
$\mathrm{BH}_{3} \mathrm{CO}$	$\mathrm{C}_{3} \mathrm{v}$	1	-139.11144	-139.13684	0.00473 0.00508	0.00462 0.00493
$\mathrm{BH}_{2} \mathrm{COH}$	$\mathrm{C}_{\text {s }}$	1	-139.64708	-139.67048	0.00528	0.00500
$\mathrm{BH}_{2} \mathrm{CHO}$	$\mathrm{C}_{\text {s }}$	1	-139.69483	-139.72013	0.00523	0.00538
$\mathrm{BH}_{2} \mathrm{OC}$	$\mathrm{C}_{2 \mathrm{v}}$	2	-139.03573	-139.05168	0.00545	0.00514
$\mathrm{BH}_{3} \mathrm{OC}$	$\mathrm{C}_{3 \mathrm{v}}$	1	-139.70374	-139.72506	0.00754	0.00668
$\mathrm{BH}_{2} \mathrm{OCH}$	$\mathrm{C}_{\text {s }}$	1	-139.64784	-139.66299	0.00502	0.00546
$\mathrm{BH}_{2} \mathrm{OCH}_{2}$	C_{1}	2	-140.29401	-140.32278	0.00537	0.00547
$\mathrm{BH}_{3} \mathrm{OCH}_{2}$	$\mathrm{C}_{\text {s }}$	1	-140.88347	-140.91223	0.00589	0.00565
$\mathrm{BH}_{2} \mathrm{OCH}_{3}$	$\mathrm{C}_{\text {s }}$	1	-140.95150	-140.98178	0.00538	0.00536
$\mathrm{BH}_{2} \mathrm{NCH}$ $\mathrm{BH}_{3} \mathrm{NCH}$	$\mathrm{C}_{\text {s }}$	2	-119.21832	-119.24398	0.00502	0.00491
$\mathrm{BH}_{3} \mathrm{NCH}$	$\mathrm{C}_{3 \mathrm{v}}$	1	-119.83433	-119.85332	0.00543	0.00536
$\mathrm{BH}_{2} \mathrm{NCH}_{2}$	$\mathrm{C}_{2 v}$	1	-119.86778	-119.89399	0.00517	0.00500
$\mathrm{BH}_{2} \mathrm{BH}_{3} \mathrm{CNH}$	$\mathrm{C}_{\text {s }}$	2	-119.21424	-119.23856	0.00504	0.00497
$\mathrm{BH}_{3} \mathrm{CNH}$	$\mathrm{C}_{3 \mathrm{v}}$	1	-119.83411	-119.85834	0.00549	0.00515

$\mathrm{BH}_{2} \mathrm{CNH}_{2}$	$\mathrm{C}_{2 v}$	1	-119.80878	-119.83586	0.00528	0.00501
$\mathrm{BH}_{2} \mathrm{CHNH}$	C_{s}	1	-119.82235	-119.84674	0.00509	0.00494
$\mathrm{BH}_{2} \mathrm{O}\left(\mathrm{CH}_{3}\right)_{2}$	C_{1}	2		-180.67987		0.00755
$\mathrm{BH}_{3} \mathrm{O}\left(\mathrm{CH}_{3}\right)_{2}$	C_{s}	1	-181.34638		0.00743	
$\mathrm{BH}_{2} \mathrm{NCCH}_{3}$	C_{s}	2	-158.49385		0.00643	
$\mathrm{BH}_{3} \mathrm{NCCH}_{3}$	$\mathrm{C}_{3 v}$	1	-159.11238		0.00703	
$\mathrm{BH}_{2} \mathrm{~S}\left(\mathrm{CH}_{3}\right)_{2}$	C_{1}	2	-503.32159	0.00808		
$\mathrm{BH}_{3} \mathrm{~S}\left(\mathrm{CH}_{3}\right)_{2}$	C_{1}	2	-503.97478	0.00817		
$\mathrm{BH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}$	C_{s}	1	-218.81399	0.00822		
$\mathrm{BH}_{3} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}$	C_{s}	2	-219.41957	0.00841		
$\mathrm{BH}_{2}{\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}}^{\mathrm{BH}_{3} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}}$	C_{3}	1	-200.08546	0.00790		
$\mathrm{BH}_{2} \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$	2	-200.75000	0.00790			
$\mathrm{BH}_{3} \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$	$\mathrm{C}_{3 v}$	1	-486.36736	0.01001		
$\mathrm{BH}_{2} \mathrm{OS}\left(\mathrm{CH}_{3}\right)_{2}$	C_{1}	2	-487.01613	0.00995		
$\mathrm{BH}_{3} \mathrm{OS}\left(\mathrm{CH}_{3}\right)_{2}$	C_{1}	1	-578.43472	0.00877		
$\mathrm{BH}_{2}-\mathrm{THF}$	C_{1}	2	-579.09587	0.00881		
$\mathrm{BH}_{3}-\mathrm{THF}$	C_{1}	1	-257.97436	0.00826		
$\mathrm{BH}_{2}-$ pyridine	$\mathrm{C}_{2 v}$	2	-258.64017	0.00822		
$\mathrm{BH}_{3}-$ pyridine	C_{s}	1	-273.85723	0.00698		
		-274.46831	0.00736			

Notes: (a) Enthalpies at absolute zero, in Hartrees. (b) Increments in enthalpies on going from absolute zero to 298 K , in Hartrees. (c) These values are taken from Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221-7230 and are reproduced here only for the reader's convenience.

Table B. Atomic charges, QCISD/6-311+G**(6D).

Table C. Differences in atomic charges resulting from difference density geometry modifications (based on QCISD/6-311+G**(6D)//MP2/6-31G* NPA charges).

Notes: a. Average value for slightly different hydrogen atoms.

Table D. HOMO energies of Lewis bases (Hartrees). ${ }^{\text {a }}$

Lewis Base	HF^{b}	HF/NBO	
$\mathrm{H}_{3} \mathrm{~N}$	0.09852	-0.52359	QCISD/NBO
$\mathrm{H}_{2} \mathrm{O}^{\mathrm{c}, \mathrm{d}}$	-0.52187		
$\mathrm{H}_{3} \mathrm{P}$	0.14267	-0.71688	-0.71662
OC^{f}	0.06317	-0.55901	-0.56928
CO^{g}	0.07838	-0.66950	-0.67398
$\mathrm{H}_{2} \mathrm{CO}$	0.07838	-1.04540	-.05222
HCN	0.06553	-0.72953	-0.73361
HNC	0.06008	-0.75520	-0.76160
	0.06230	-0.60309	-0.60654

Notes:

a. All calculations were performed at the MP2/6-31G* optimized geometries.
b. Hartree-Fock calculations performed using the $6-311+G(3 \mathrm{df}, 2 \mathrm{p})$ basis set.
c. NBO implies orbitals were localized according to the NBO procedure of Weinhold.
d. QCISD calculations performed using the $6-311+\mathrm{G}^{* *}(6 \mathrm{D})$ basis set.
e. The average energy of the two lone pairs on oxygen was used for the localized (NBO) orbital energies.
f. Lone pair on the carbon end.
g. Lone pair on the oxygen end.

Figure \mathbf{A}
Figure A. Plot of calculated B-H bond dissociation enthalpy versus spin density delocalization calculated via the NPA procedure. The enthalpies were calculated via the G2 procedure and correspond to absolute zero. The spin density populations were computed using QCISD/6-311+G**(6D) wave functions at the MP2/6-31G* optimized geometries. The spin density delocalization is defined here as the total quantity of α spin density on atoms other than the BH_{2} fragment. Correlation coefficient $=0.97$.

Figure B

Figure B. Plot of NPA spin density versus AIM spin density. The spin density populations are for the BH_{2} fragments and were computed using QCISD/6-311+G**(6D) wave functions at the MP2/6-31G* optimized geometries. Best fit equation: NPA $=1.022$ * $\mathrm{AIM}+0.080$; correlation coefficient $=0.98$.

Figure C
Figure C. Plot of calculated B-H bond dissociation enthalpy versus change in BH_{n} population upon hydrogen abstraction. The enthalpies were calculated via the G 2 procedure and correspond to absolute zero. The atomic populations were computed using the AIM procedure and QCISD/6-311+G** 6 D) wave functions at the MP2/6-31G* optimized geometries. The population difference is defined here as the BH_{3} population in the closed-shell complex minus the BH_{2} population in the corresponding radical obtained by abstraction of a single hydrogen atom from boron. Correlation coefficient $=0.97$.

Figure D

Figure D. Plot of B-H bond dissociation enthalpy versus sharing index difference. The BDE's were calculated via the G2 procedure and correspond to absolute zero. The sharing indices were computed using QCISD/6-311+G**(6D) wave functions at the MP2/6-31G* optimized geometries. The sharing index difference is defined as the $\mathrm{B}-\mathrm{X}$ sharing index in the closed-shell complex minus the $\mathrm{B}-\mathrm{X}$ sharing index in the corresponding radical obtained by abstraction of a single hydrogen atom from boron. Correlation coefficient $=$ 0.53 .

Figure E

Figure E. Plot of calculated complexation enthalpy of borane radical with various Lewis bases versus the calculated sharing index for the B-X bond. The enthalpies were calculated via the G2 procedure and correspond to absolute zero. The sharing indices were computed using QCISD/6-311+G**(6D) wave functions at the MP2/6-31G* optimized geometries. Correlation coefficient $=0.27$.

MP2/6-31G* Optimized Geometries (G-2 calculations):

$+++$

BH2

```
-------------------------
```

Molecule:

-------	BH2 (2)
Stoichiometry	$=0$
Charge	$=2$
Multiplicity	$=4$
Alpha Electrons	$=3$
Alpha Valence	$=3$
Beta Electrons	$=3$
Beta Valence	$=2$
Z-matrix: MP2	
--	
O 2	
B	
H	1

rbh = 1.188294
$a=127.651137$

BH3 D3H G2 calculation

Molecule:

Stoichiometry	$=$ BH3
Charge	$=0$
Multiplicity	$=1$
Alpha Electrons	$=4$
Alpha Valence	$=3$
Beta Electrons	$=4$
Beta Valence	$=3$

Z-matrix: MP2

Diborane radical (B2H5) C2V symmetry G2 calculation						
Molecule:						
Stoichiometry $=$ B2H5 (2)						
Charge $=0$						
Multiplicity $=2$						
Alpha Electrons $=8$						
Alpha Valence $=6$						
Beta Electrons = 7						
Beta Valence $=5$						
Z-matrix: MP2						
02						
X						
H	1.		-			
$\mathrm{B} \quad 2$	rbh1	1	a1			
$\mathrm{B} \quad 2$	rbh1	1	a. 1	3	180	0
X	1.	2	90.	1	0.	0
H	rbh2	2	a2	5	t1	0
H	rbh2	2	a2	5	-t1	0
X	1.	2	90.	1	0.	0
H	rbh2	2	a2	8	t1	0
H	rbh2	2	-a2	8	-t1	0
rbh1 $=1.322885$						
rbh2 $=1.186729$						
$t 1=73.504535$						
$a 1=138.270464$ -						
$\mathrm{a} 2=111.356457$						
Diborane (B2H6) D2H symmetry G-2 calculation						
Molecule:						
Stoichiometry $\quad=\mathrm{B} 2 \mathrm{H} 6$						
Charge $=0$						
Multiplicity $\quad=1$						
Alpha Electrons $=8$						
Alpha Valence $=6$						
Beta Electrons $=8$						
Beta Valence $=6$						
Z-matrix: MP2						
01						
X						
$X \quad 1$	1.					
B I	rbx	2	90.			
B 1	rbx	2	90.	3	180	0

C1997 American Chemical Society J. Am. Chem. Soc. V119 Page8350 Rablen Supplemental Page 18

-

Water C2V G2

Molecule:

Stoichiometry	$=\mathrm{H} 2 \mathrm{O}$
Charge	$=0$
Multiplicity	$=1$
Alpha Electrons	$=5$
Beta Electrons	$=5$

Z-matrix:
\qquad

0	1			
0				
H	1	r	2	a

```
r=0.968580
a = 103.961947
```



```
    Phosphine C3V G2
```

Molecule:
stoichiometry $=$ H3P
Charge $=0$
Multiplicity $=1$
Alpha Electrons $=9$
Beta Electrons $=9$
Z-matrix:

H2S C2V G2

Molecule:
Stoichiometry $=\mathrm{H} 2 \mathrm{~S}$
Charge $=0$
Multiplicity $=1$
Alpha Electrons $=9$
Beta Electrons $=9$
Z-matrix:
$0 \quad 1$
S
H 1
$\begin{array}{lllll}\mathrm{H} & 1 & \mathrm{r} & 2 & \text { a }\end{array}$
$r=1.339462$
$a=93.332139$

$+++++++++++++++++++++++++$
Carbon monoxide C*V G2
©1997 American Chemical Society J. Am. Chem. Soc. V119 Page8350 Rablen Supplemental Page 20

```
Stoichiometry = CO
Charge = 0
Multiplicity = 1
Alpha Electrons = 7
Beta Electrons = 7
Z-matrix:
-------------------------------------------------------------------------------------
0 1
C
0 1 r
r = 1.150245
--------------------------------------------------------------------------------------
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    Formaldehyde C2V G2
Molecule:
Stoichiometry = CH2O
Charge = 0
Multiplicity = 1
Alpha Electrons = 8
Beta Electrons = 8
Z-matrix:
```


-------------------------------------1
Hydrogen cyanide C*V MP2/6-31G*
Molecule:

Stoichiometry $=$ CHN
Charge $=0$
Multiplicity $=1$
Alpha Electrons $=7$
Beta Electrons $=7$
Z-matrix:

H	2	$m n h 1$	1	$a 2$	3	$t 2$	0
H	2	$\operatorname{mh} 2$	1	$a 3$	6	$t 3$	0
H	2	$m n h 2$	1	$a 3$	6	$-t 3$	0

$\mathrm{rbh}=1.199728$
$\operatorname{rnh} 1=1.024204$
$\operatorname{rnh} 2=1.019853$
$\mathrm{rbn}=1.636639$
$\mathrm{t} 1=113.020002$
$t 3=120.499437$
$a 1=108.465339$
$\mathrm{a} 2=113.155903$
$a 3=110.481636$
$t 2=180.000000$

$+++$

Aminoborane complex (BH3NH3) C3V G-2 calculation

Molecule:

Stoichiometry	$=\mathrm{BH} 6 \mathrm{~N}$
Charge	$=0$
Multiplicity	$=1$
Alpha Electrons	$=9$
Alpha Valence	$=7$
Beta Electrons	$=9$
Beta Valence	$=7$

Z-matrix: MP2

Water-borane complex radical (BH2OH2) C1 G2

Molecule:


```
roh = 0.974797
a1 = 102.698909
a2 = 101.124266
a3 = 107.175455
t1 = 119.922892
t2 = 56.779612
---------------------------------------------------------------------------------
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    PH3-Borane radical complex (BH2PH3) Cs G-2 calculation
```

Molecule:

Stoichiometry	$=\mathrm{BH} 5 \mathrm{P}(2)$
Charge	$=0$
Multiplicity	$=2$
Alpha Electrons	$=13$
Alpha Valence	$=7$
Beta Electrons	$=12$
Beta Valence	$=6$

Z-matrix: MP2
$0 \quad 2$
B

P	1	$r b p$					
X	1	1.	2	90.			
H	1	$r b h$	2	$a 1$	3	$t 1$	0
H	1	$r b h$	2	$a 1$	3	$-t 1$	0
H	2	rph1	1	$a 2$	3	180	0
H	2	$r p h 2$	1	$a 3$	6	$t 3$	0
H	2	$r p h 2$	1	$a 3$	6	$-t 3$	0

$r b p=1.860631$
$\mathrm{rbh}=1.189449$
rph1 $=1.425028$
$r p h 2=1.404788$
$\mathrm{a} 1=115.990033$
$\mathrm{a} 2=124.957454$
$a 3=114.875221$
t1 $=96.401992$
$t 3=120.867553$

PH3-Borane complex (BH3PH3) C3V G-2 calculation
Molecule:

Stoichiometry	$=$ BH6P
Charge	$=0$
Multiplicity	$=1$
Alpha Electrons	$=13$
Alpha Valence	$=7$
Beta Electrons	$=13$

Molecule:

Stoichiometry	$=$ BH4S (2)
Charge	$=0$
Multiplicity	$=2$
Alpha Electrons	$=13$
Beta Electrons	$=12$
Z-matrix:	

0	2						
B							
S	1	rbs					
H	1	rbh1	2	a1			
H	1	rbh2	2	$a 2$	3	180.	0
H	2	$r s h 1$	1	$a 3$	3	0.	180.

```
rbs = 1.771663
rbh1 = 1.189049
rbh2 = 1.189240
rsh1 = 4.213782
rsh2 = 1.341380
a1 = 116.325009
a2 = 121.178907
a3 = 175.404365
a4 = 99.230979
```

```
---------------------------
```


H2S-Borane complex Cs G2

Molecule:								
Stoichiometry = BH5S								
Charge $=0$								
Multiplicity $=1$								
Alpha Electrons $=13$								
Beta Electrons $=13$								
Z-matrix:								
$\begin{array}{ll}0 & 1\end{array}$								
B								
S (1	rbc							
H 1	rbh1	2	a1					
H	rbh2	2	a2		3		t1	0
$\mathrm{H} \quad 1$	rbh2	2	a2		3		-t1	0
$\mathrm{H} \quad 2$	rsh	1	a3		3		t2	0
$\mathrm{H} \quad 2$	rsh	1	a3		3		-t2	0
$\mathrm{rbc}=2.565319$								
$\mathrm{rbh} 1=1.191423$								
$\mathrm{rbh} 2=1.191076$								
$\mathrm{rsh}=1.325632$								
$a 1=95.643804$								
$a 2=94.500289$								
$\mathrm{a} 3=100.614505$								
t1 $=120.069061$								
$\mathrm{t} 2=48.439348$								
++t++++++t+++t+++++++++								
CO-Borane radical complex (BH2CO) C2V G-2 calculation								
Molecule:								
Stoichiometry $=$ CH2BO(2)								
Charge $=0$								
Multiplicity = 2								
Alpha Electrons $=11$								
Alpha Valence $=8$								
Beta Electrons $=10$								
Beta Valence $=7$								
z-matrix: MP2								
02								
B								
C 1	rbc							
H	rbh	2	a1					
H	rbh	2	a1	3		180.		
$0 \quad 1$	rbo	3	a1	2		0.		
$\mathrm{rbc}=1.481726$								

```
rbh = 1.187798
rbo = 2.647800
a1 = 116.890727
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-----------------------------------------------------
    CO-Borane complex (BH3CO) C3V G-2 calculation
```

Molecule:

$r b c=1.546843$
$\mathrm{rbh}=1.205734$
rbo $=2.694923$
$a 1=104.138721$

++++++++++++++++
$\mathrm{BH} 2-\mathrm{C}=\mathrm{OH} \mathrm{Cs} \mathrm{G} 2$
Molecule:
Stoichiometry $=\mathrm{CH} 3 \mathrm{BO}$
Charge $=0$
Multiplicity $=1$
Alpha Electrons $=11$
Beta Electrons $=11$
Z-matrix:

0	1						
B							
C	1	r1					
X	2	1.	1	90.			
0	2	r2	3	a1	1	180.	0
H	1	r3	2	a2	3	t1	0
H	1	r3	2	a2	3	-t1	0

H	r4	2	a3	3	0.	0
$r 1=1.394057$						
$r 2=1.275671$						
$r 3=1.192757$						
$r 4=0.985796$						
$a 1=93.734817$						
$\mathrm{a} 2=117.530379$						
$\mathrm{a} 3=111.381199$						
t1 $=89.257564$						


```
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    BH2-CH=O Cs perpendicular G2
```

Molecule:
Stoichiometry $=$ CH3BO
Charge $=0$
Multiplicity $=1$
Alpha Electrons $=11$
Beta Electrons $=11$
Z-matrix:

0	1						
B	1	$r 1$					
C	1	$r 2$	1	a1			
0	2	$r 3$	2	a2	3	t1	0
H	1	$r 3$	2	a2	3	- t1	0
H	1	2	1	a3	3	180.	0

```
r1 = 1.590782
r2 = 1.197294
r3 = 1.186478
r4 = 1.100159
a1 = 120.196452
a2 = 119.683100
a3 = 120.373651
t1 = 89.695519
```

$+++$
OC-Borane complex radical (BH2-OC) C2V G2

Molecule:

```
Stoichiometry = CH2BO(2)
Charge = 0
Multiplicity = 2
Alpha Electrons = 11
Beta Electrons = 10
```

Z-matrix:

0	2						
B							
0	1	rbo					
H	1	rbh	2	a1			
H	1	rbh	2	a1	3	180.	0
C	1	rbc	3	a1	2	0.	0
rbo $=1.375479$							
$\mathrm{rbh}=1.185511$							
$a 1=116.156416$							

OC-Borane complex (BH 3 CO) C3V G2

Molecule:

	netr	CH3					
		0					
	ity	1					
	ctr						
	ror	11					
0	1						
B							
0	1	rbo					
H	1	rbh	2	a1			
H	1	rbh	2	a1	3	120.	0
H	1	rbh	2	a1	3	-120.	0
C	1	rbc	3	a1	2	0 .	0

rbo $=2.585920$
$r b h=1.191044$
$\mathrm{rbc}=3.736529$
$a 1=90.969066$

$$
\begin{aligned}
& +++ \\
& ----------------------- \\
& \text { BH2OCH Cs MP2/6-31G* fopt }
\end{aligned}
$$

Molecule:

```
Stoichiometry = CH3BO
Charge = 0
Multiplicity = 1
Alpha Electrons = 11
Beta Electrons = 11
```

Z-matrix:


```
七4 = 154.954996
++++++++++++++++t+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
----------------------------------------
    H2CO-Borane complex (BH3OCH2) Cs G2
```

Molecule:

Stoichiometry	$=$ CH5BO
Charge	$=0$
Multiplicity	$=1$
Alpha Electrons	$=12$
Beta Electrons	$=12$

Z-matrix:

0	1						
B							
O	1	rbo					
H	1	rbh1	2	$a 1$			
H	1	rbh2	2	$a 2$	3	t1	0
H	1	rbh2	2	$a 2$	3	- t1	0
C	2	rco	1	$a 3$	3	0.	0
H	6	rch1	2	$a 4$	1	0.	0
H	6	rch2	2	$a 5$	7	180.	0

rbo $=1.686060$
$\operatorname{rbh} 1=1.208547$
rbh2 $=1.201164$
rco $=1.233081$
rch1 $=1.092875$
$r \mathrm{ch} 2=1.091981$
$a 1=102.766828$
$a 2=101.256954$
$a 3=120.533239$
$a 4=120.851363$
$\mathrm{a} 5=118.829924$
$t 1=120.333538$

BH2-O-CH3 Cs G2

Molecule:

Stoichiometry	$=$ CH5BO
Charge	$=0$
Multiplicity	$=1$
Alpha Electrons	$=12$
Beta Electrons	$=12$

Z-matrix:
$0 \quad 1$


```
Molecule:
Stoichiometry = CH3BN(2)
Charge = 0
Multiplicity = 2
Alpha Electrons = 11
Beta Electrons = 10
```

Z-matrix:

0	2						
B							
N	1	$r 2$	1	a1			
C	2	$r 3$	2	a2	3	t1	0
H	1	$r 3$	2	a2	3	$-t 1$	0
H	1	$r 4$	2	a3	1	180.	0

$$
\begin{aligned}
& r 1=1.402691 \\
& r 2=1.194101 \\
& r 3=1.191373 \\
& r 4=1.096865 \\
& a 1=173.674751 \\
& a 2=118.288569 \\
& a 3=131.041125 \\
& t 1=90.496568
\end{aligned}
$$

$$
+++
$$

Molecule:

Stoichiometry		$=\mathrm{CH} 4 \mathrm{BN}$					
Charge $=0$							
Multiplicity $=1$							
Alpha Electrons $=11$							
Beta Electrons $=11$							
z-matrix:							
0	1						
B							
N	1	rbn					
H	1	rbh	2	a1			
H	1	rbh	2	a1	3	120.	0
H	1	rbh	2	a1	3	-120.	0
C	1	r3	3	al	2	0.	0
H	1	r4	3	a1	2	0 .	0

$\mathrm{rbn}=1.587458$
$r b h=1.205276$
$r 3=2.752305$
$r 4=3.821607$
$a 1=103.841613$

$+++++++++++++++++++$
BH2-N=CH2 C2V G2

Molecule:

Stoichiometry	$=$ CH4BN
Charge	$=0$
Multiplicity	$=1$
Alpha Electrons	$=11$
Beta Electrons	$=11$

Z-matrix:

0	1						
B							
N	1	r1					
X	2	1.	1	90.			
C	2	r2	3	90.	1	180.	0
H	1	r3	2	a1	3	0.	0
H	1	r3	2	al	3	180.	0
H	4	r4	2	a2	3	90.	0
H	4	r4	2	a2	3	-90.	0

$r 1=1.363306$
$r 2=1.256382$
$r 3=1.193875$
$r 4=1.093109$

```
a1 = 118.445843
a2 = 121.544017
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    HNC-borane radical complex (BH2CNH) Cs MP2/6-31G* fopt
Molecule:
\begin{tabular}{ll} 
Stoichiometry & \(=\) CH3BN (2) \\
Charge & \(=0\) \\
Multiplicity & \(=2\) \\
Alpha Electrons & \(=11\) \\
Beta Electrons & \(=10\) \\
Z-matrix: &
\end{tabular}
```



```
    HNC-borane complex (BH3CNH) C3V G2
Molecule:
```


©1997 American Chemical Society J. Am. Chem. Soc. V119 Page8350 Rablen Supplemental Page 36

0	1						
B							
C	1	r1					
N	2	r2	1	a1			
H	1	r3	2	a2	3	0.	0
H	1	r4	2	a3	4	180.	0
H	2	r5	1	a4	3	180.	0
H	3	r6	2	a5	1	0.	0
$r 1=1.578997$							
$r 2=1.264137$							
$r 3=1.190826$							
$r 4=1.188045$							
$r 5=1.083451$							
$r 6=1.008108$							
$a 1=124.176655$							
$\mathrm{a} 2=118.716346$							
$\mathrm{a} 3=121.437692$							
$\mathrm{a} 4=120.361189$							
a5	$=111.049915$						

HF/3-21G* Optimized Geometries (CBS-4 calculations):

 Borane radical (BH2) C2V HF/3-21G*
Borane radical (BH2) C2V HF/3-21G* fopt

Molecule:
Stoichiometry $=\mathrm{BH} 2(2)$
Charge $=0$
Multiplicity $=2$

Alpha Electrons $=4$
Beta Electrons $=3$
Z-matrix:

Molecule:

Stoichiometry	$=\mathrm{BH} 3$
Charge	$=0$

Charge $=0$

Multiplicity $=1$
Alpha Electrons $=4$
Beta Electrons $=4$
Z-matrix:

Diborane (B2H6) D2H HF/3-21G* fopt

Molecule:

Stoichiometry	$=\mathrm{B} 2 \mathrm{H} 6$
Charge	$=0$
Multiplicity	$=1$
Alpha Electrons	$=8$
Beta Electrons	$=8$

Z-matrix:

0	1						
X							
X	1	1.					
B	1	rbx	2	90.			
B	1	rbx	2	90.	3	180.	0
H	1	rhx	2	90.	3	90.	0
H	1	rhx	2	90.	3	-90.	0
H	3	rbh	1	al	2	0.	0
H	3	rbh	1	al	2	180.	0
H	4	rbh	1	al	2	0.	0
H	4	rbh	1	a1	2	180.	0

```
rbx = 0.892423
rhx = 0.965080
rbh = 1.182257
```

```
a1 = 118.832591
```



```
---------------------
    Ammonia C3V CBS-4
Molecule:
Stoichiometry = H3N
Charge = 0
Multiplicity = 1
Alpha Electrons = 5
Beta Electrons = 5
Z-matrix:
----------------------------------------------------------------------------
O I
N
H 1 r
H 1 r a 
H
r = 1.002587
a = 112.396114
---------------------------------------------------------------------------------------+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++
    Water C2V CBS-4
Molecule:
---------
Stoichiometry = H2O
Charge =0
Multiplicity = 1
Alpha Electrons = 5
Beta Electrons = 5
Z-matrix:
-------------------------------------------------------------------------------------
0 1
O
H 1 r
H 1 r r a
r = 0.966599
a = 107.691109
---------------------------------7-----------------------------------------------------+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++
    Phosphine C3V CBS-4
```

Molecule:

Stoichiometry	$=\mathrm{H} 3 \mathrm{P}$
Charge	$=0$
Multiplicity	$=1$
Alpha Electrons	$=9$
Beta Electrons	$=9$

z-matrix:

0	1						
P							
H	1	r		2	a		
H	1	r	2	a	3	a	

$r=1.402456$
$a=95.051350$
$++$
H2S C2V CBS 4

Molecule:

Stoichiometry	$=\mathrm{H} 2 \mathrm{~S}$
Charge	$=0$
Multiplicity	$=1$
Alpha Electrons	$=9$
Beta Electrons	$=9$

z-matrix:

0	1			
S				
H	1	r	2	a

$r=1.326863$
$a=94.202796$
$+++$

Carbon monoxide C*V CBS-4
Molecule:

Stoichiometry	$=c o$
Charge	$=0$
Multiplicity	$=1$
Alpha Electrons	$=7$
Beta Electrons	$=7$

Z-matrix:

