

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Copyright © 1997 American Chemical Society

Table S1. Triple Zeta Basis Sets and the Expansion Coefficients Used in DFT Calculations with a Frozen Core Approximation and with Core Orbitals Unfrozen

Iron		Cart	oon	Nitro	ogen	Oxy	gen	Hyd	rogen
2p fi	rozen	1s fi	rozen	1s fr	ozen	1s fr	ozen		
1S 2S 2P 3S 3S 3P 3D 3D 3D 3D 4S 4S 4S 4S	$19.55 \\ 9.45 \\ 10.90 \\ 3.50 \\ 5.45 \\ 3.15 \\ 5.15 \\ 1.40 \\ 3.05 \\ 6.40 \\ 0.90 \\ 1.40 \\ 2.30 \\ 1.39 $	1S 2S 2S 2P 2P 2P 3D	5.40 1.28 2.10 4.60 0.82 1.48 2.94 2.00	13 0.38 2S 1.50 2S 2.50 2S 5.15 2P 1.00 2P 1.88 2P 3.68 3D 2.00		1S 2S 2S 2P 2P 2P 3D	7.36 1.72 2.88 7.58 1.12 2.08 4.08 2.00	1S 1S 1S 2P	0.69 0.92 1.58 1.25
unfr	ozen	unfi	ozen	unfr	ozen	unfr	ozen		
1S 1S 2S 2P 2P 3S 3P 3D 3D 3D 4S 4S 4S 4P	$\begin{array}{c} 23.90\\ 30.45\\ 6.35\\ 10.05\\ 9.20\\ 14.60\\ 3.50\\ 5.45\\ 3.15\\ 5.15\\ 1.40\\ 3.05\\ 6.40\\ 0.90\\ 1.40\\ 2.30\\ 1.39\end{array}$	1S 1S 2S 2S 2P 2P 2P 3D	5.00 7.68 1.28 2.10 4.60 0.82 1.48 2.94 2.00	1S 1S 2S 2S 2S 2P 2P 2P 3D	5.90 8.74 1.50 2.50 5.15 1.00 1.88 3.68 2.00	1S 1S 2S 2S 2P 2P 2P 3D	6.80 9.80 1.72 2.88 7.58 1.12 2.08 4.08 2.00	1S 1S 1S 2S	0.69 0.92 1.58 1.25

MO	energy	occu	. primary contributors(%)	groi	ıp por	oulatio	n(%) c	overlap	popu	lation(%)
(α)	(EV)			Fe	0	Por	Im	Fe-O	Fe-Po	Fe-Im
21a''	-13.172	1.0	Fe dxy(17.7), N(Por) 2px(12.4), N(Por) 2py(12.4),	17.7	0.0	82.3	0.0	0.0	7.7	0.0
36a'	-13.097	1.0	Fe dz2(29.3), O 2pz(6.5), N(Por) 2px(5.3), N(Por) 2py(9.0), C8 2px(5.5), Im 2pz(19.9),	30.7	7.3	36.0	25.5	1.1	5.4	3.9
37a'	-13.031	1.0	N(Por) 2px(8.9), N(Por) 2py(6.7), Cα 2px(8.0), Cα 2py(7.0), Cβ 2px(6.1), Cβ 2py(6.8), Cm 2px(5.1), Cm 2py(5.5), Hβ 1s (15.6), Hm 1s (17.9).	3.6	0.2	95.3	0.9	0.0	1.9	0.0
22a''	-12.606	1.0	N(Por) 2py(9.7), Cα 2py(19.4), Cβ 2py(30.6), Hβ 1s (23.8),	1.2	1.1	97.0	0.7	0.3	0.8	0.1
38a'	-12.596	1.0	N(Por) 2px(9.5), Cα 2px(19.7), Cβ 2px(30.6), Hβ 1s (23.5),	1.4	1.5	97.0	0.0	0.4	0.8	0.0
23a''	-12.363	1.0	Ca 2px(16.4), Ca 2py(18.4), Cβ 2px(13.2), Cβ 2py(16.0), Hβ 1s (23.4),	0.0	0.0	99.9	0.0	0.0	0.0	0.0
24a''	-12.235	1.0	Fe dxy(15.0), Cα 2px(11.3), Cα 2py(9.1), Cβ 2px(21.2), Cβ 2py(18.5),	15.1	0.0	84.9	0.0	0.0	4.6	0.0
39a'	-12.003	1.0	Fe dxz(14.6), O 2px(26.0), N(Por) 2px(9.3), Ca 2px(10.6), C β 2px(8.5),	19.3	26.2	54.4	0.2	7.3	1.5	-0.1
25a''	-12.003	1.0	Fe dyz(20.9), O 2py(28.2), N(Por) 2py(6.7), Cα 2py(7.2), Cβ 2pz(5.1), Cβ 2py(5.7),	24.0	28.5	44.5	3.1	7.9	1.1	0.4
40a'	-11.923	1.0	$C_{\alpha} 2pz(45.7), Cm 2pz(44.6),$	0.2	0.6	98.3	0.8	0.0	0.0	0.0
									C	ont.

Table S2-a. Composition of The Molecular Orbitals for Model Compound I (${}^{4}A_{2u}$ state, α -spin)

26a''	-11.914	1.0	Fe dyz(8.0), N(Por) 2py(8.4), Cα 2py(7.8), Cβ 2py(5.6),	11.9	0.2	43.3	45.6	0.0	1.6	4.6
			Im 2py(43.6),							
41a'	-11.381	1.0	Fe dxz(23.1), O 2px(10.3), N(Por) 2px(13.5), N(Por) 2py(9.3),	25.7	12.2	60.3	1.4	2.3	5.1	-1.2
			Ca 2px(6.4),							
42a'	-11.224	1.0	Fe dz2(5.2), O 2pz(55.5), Im 2pz(15.6),	9.2	57.7	12.6	21.0	-1.6	-3.2	2.5
27a''	-10.895	1.0	Fe dyz(7.9), O 2py(8.9), N(Por) 2px(6.0), N(Por) 2py(7.3),	8.2	9.0	38.2	43.8	1.8	1.8	-3.1
			Ca 2pz(5.5), Cm 2pz(5.7), Im 2py(41.6),							
43a'	-10.801	1.0	Ca 2pz(36.9), Cβ 2pz(20.2), Cm 2pz(30.7),	1.2	1.6	96.7	0.5	0.2	0.0	0.0
28a''	-10.779	1.0	Ca 2pz(34.4), Cβ 2pz(19.1), Cm 2pz(27.0),	2.3	3.5	90.5	3.9	0.5	0.2	-0.4
29a''	-9.901	1.0	N(Por) 2pz(11.1), Cβ 2pz(23.7), Im 2py(57.8),	0.1	1.1	37.4	61.6	0.1	-0.1	0.0
44a'	-9.836	1.0	N(Por) 2pz(21.6), Cβ 2pz(65.6),	0.6	2.7	93.3	3.3	0.1	1.8	-2.2
30a''	-9.653	1.0	N(Por) 2pz(22.9), Cβ 2pz(37.5), Im 2py(33.4),	0.0	0.5	64.1	35.4	0.0	-0.1	0.0
45a'	-9.556	1.0	O 2px(15.2), N(Por) 2pz(29.7), Cβ 2pz(46.3),	1.0	15.1	83.7	0.2	1.2	-1.5	0.0
31a''	-9.537	1.0	O 2py(11.8), N(Por) 2pz(30.3), Cβ 2pz(47.3),	1.3	11.8	84.9	2.0	1.1	-1.6	0.1
46a'	-9.387	1.0	Fe dx2-y2(93.4),	93.4	0.0	6.5	0.0	0.1	-2.8	0.0
47a'	-8.985	1.0	N(Por) 2pz(26.2), Cβ 2pz(5.6), Cm 2pz(56.5),	0.4	0.9	96.5	1.5	0.0	1.5	-1.8
32a''	-8.709	1.0	Ca 2pz(72.8), Cβ 2pz(21.4),	0.0	0.0	99.8	0.1	0.0	0.0	0.0
48a'	-8.606	1.0	Fe dxz(52.3), O 2px(38.7),	52.8	38.7	7.9	0.6	-9.2	-5.3	0.0
33a''	-8.562	1.0	Fe dyz(51.9), O 2py(38.4),	52.4	38.4	6.2	3.0	-9.2	-4.6	-1.5
49a'	-6.671	0.0	N(Por) 2pz(9.3), Ca 2pz(31.3), Cβ 2pz(25.6), Cm 2pz(25.8),	1.3	0.0	98.6	0.1	0.1	-0.9	0.0
34a''	-6.659	0.0	N(Por) 2pz(9.9), Ca 2pz(30.5), Cβ 2pz(25.1), Cm 2pz(26.4),	1.4	0.0	98.5	0.1	0.1	-1.0	0.0
35a''	-6.412	0.0	Fe dxy(62.5), N(Por) 2s(8.3), N(Por) 2px(9.6), N(Por) 2py(9.6)), 62.5	0.0	37.4	0.1	0.0	-26.6	0.0
50a'	-5.664	0.0	Fe dz2(55.0), O 2pz(21.2),	56.3	21.4	13.2	8.2	-7.7	-7.2	-13.2
51a'	-5.187	0.0	Ca 2pz(11.6), Cβ 2pz(51.6), Cm 2pz(29.8),	0.0	0.0	100.0	0.0	0.0	0.0	0.0

MO	energy	occu	. primary contributors(%)	grou	p poj	oulatio	n(%) c	overlap	popu	lation(%)
(β)	(EV)			Fe	0	Por	Im	Fe-O	Fe-Por	Fe-Im
21a''	-13.066	1.0	Fe dxy(12.4), N(Por) 2px(11.6), N(Por) 2py(11.8), Cβ 2px(17.0), Cβ 2py(17.1), Hβ 1s(19.4),	, 12.4	0.0	87.6	0.0	0.0	6.5	0.0
36a'	-13.002	1.0	N(Por) 2px(6.7), N(Por) 2py(10.3), Cα 2px(6.7), Cα 2py(8.9), Cβ 2px(6.2), Cβ 2py(5.2), Cm 2px(5.7), Cm 2py(6.1), Hβ 1s(13.5), Hm 1s(21.0),	2.5	0.0	97.4	0.0	0.0	1.8	-0.1
37a'	-12.881	1.0	Fe dz2(24.5), N(Por) 2px(7.2), N(Por) 2py(5.3), Im 2pz(31.8),	26.1	4.8	27.9	40.6	0.7	5.0	5.0
22a''	-12.595	1.0	N(Por) 2py(8.8), Ca 2py(20.1), Cβ 2py(32.1), Hβ 1s (23.6),	0.8	0.2	98.2	0.8	0.1	0.7	0.1
38a'	-12.583	1.0	N(Por) 2px(8.5), Cα 2px(20.7), Cβ 2px(32.5), Cm 2px(5.4), Hβ 1s(23.4),	0.7	0.2	98.9	0.1	0.1	0.7	0.0
23a''	-12.362	1.0	Ca 2px(17.1), Ca 2py(18.1), Cβ 2px(13.9), Cβ 2py(15.2), Hβ 1s(23.1),	0.0	0.0	100.0	0.0	0.0	0.0	0.0
24a''	-12.116	1.0	Fe dxy(15.8), N(Por) 2px(7.1), N(Por) 2py(7.3), Cα 2px(10.5), Cα 2py(9.3), Cβ 2px(18.2), Cβ 2py(17.0),	15.8	0.0	84.1	0.0	0.0	6.3	0.0
25a''	-11.873	1.0	Fe 4py(5.2), N(Por) 2px(6.7), N(Por) 2py(14.6), Cα 2py(12.6), Cβ 2px(6.2), Cβ 2py(8.9), Im 2py(30.7),	6.0	0.8	61.8	32.2	0.3	3.0	2.7
39a'	-11.712	1.0	Fe 4px(6.1), N(Por) 2px(22.1), N(Por) 2py(12.4), Cα 2px(15.1), Cβ 2px(10.2), Cβ 2py(8.0),	7.3	3.7	88.8	0.0	1.4	5.7	-0.4
40a'	-11.701	1.0	$C_{\alpha} 2pz(47.2), Cm 2pz(38.0),$	0.6	0.5	98.1	0.8	0.1	0.3	0.0
									C	ont.

Table S2-b. Composition of the molecular orbitals for model compound I (${}^{4}A_{2u}$ state, β -spin)

26a''	-11.469	1.0	Fe dyz(8.5), O 2py(5.9), N(Por) 2px(5.2), N(Por) 2py(7.9),	9.9	6.0	37.2	47.2	2.2	2.4	1.0
			Cβ 2pz(5.0), Im 2py(45.1),							
41a'	-10.763	1.0	Fe dz2(8.5), O 2pz(61.4), Cβ 2pz(5.3), Im 2pz(9.2),	10.9	64.3	12.6	12.8	-1.9	-4.3	1.5
42a'	-10.685	1.0	N(Por) 2pz(8.3), Ca 2pz(39.7), Cβ 2pz(7.6), Cm 2pz(31.5),	4.5	2.6	92.1	0.7	0.9	0.6	-0.1
27a''	-10.634	1.0	Ca 2pz(44.3), Cβ 2pz(15.1), Cm 2pz(30.5),	0.3	0.1	98.5	0.8	0.1	0.0	-0.1
43a'	-10.467	1.0	Fe dxz(23.8), O 2px(15.7), N(Por) 2pz(9.3), Cβ 2pz(38.0),	23.8	16.1	59.0	1.0	4.9	3.7	-0.5
28a''	-10.299	1.0	Fe dyz(18.6), O 2py(14.8), N(Por) 2pz(11.8), Cβ 2pz(24.8),	18.6	15.0	44.7	21.6	4.5	3.0	-2.0
			Im 2py(20.2),							
29a''	-9.844	1.0	N(Por) 2pz(8.7), Cβ 2pz(18.0), Im 2py(65.1),	0.7	1.1	28.9	69.3	0.3	0.0	-0.2
44a'	-9.752	1.0	N(Por) 2pz(20.0), Cβ 2pz(64.0),	0.9	4.6	90.9	3.5	0.1	1.7	-2.4
30a''	-9.577	1.0	N(Por) 2pz(26.9), Cβ 2pz(43.6), Im 2py(23.7),	0.0	0.0	74.8	25.1	0.0	0.0	0.0
31a''	-9.010	1.0	Fe dyz(18.0), O 2py(24.5), N(Por) 2pz(17.3), Cβ 2pz(29.8),	18.2	24.6	56.7	0.5	6.7	-6.0	-0.1
45a'	-9.002	1.0	Fe dxz(18.2), O 2px(24.0), N(Por) 2pz(18.0), Cα 2pz(5.1),	18.3	24.0	57.5	0.2	6.6	-6.0	0.0
			Cβ 2pz(29.8),							
32a''	-8.752	1.0	Ca 2pz(73.2), Cβ 2pz(21.2),	0.0	0.0	99.8	0.2	0.0	0.0	0.0
46a'	-8.598	1.0	Fe dx2-y2(88.2),	88.3	0.1	11.5	0.1	0.1	-1.8	-0.2
47a'	-8.574	0.0	Fe dx2-y2(5.4), N(Por) 2pz(26.1), Cm 2pz(51.9),	5.9	0.9	91.4	1.1	0.0	1.3	-1.7
48a'	-6.883	0.0	Fe dxz(38.1), O 2px(47.0),	39.2	47.0	13.2	0.9	-8.4	-2.7	0.2
33a''	-6.878	0.0	Fe dyz(37.1), O 2py(45.6),	38.3	45.5	12.6	3.8	-8.1	-2.3	-0.5
49a'	-6.428	0.0	Fe dxz(10.5), N(Por) 2pz(10.9), Ca 2pz(22.7), C β 2pz(21.5),	10.6	2.0	87.2	0.0	-1.0	-3.4	0.0
			Cm 2pz(25.9),							
34a''	-6.405	0.0	Fe dyz(10.4), N(Por) 2pz(11.5), Cα 2pz(22.2), Cβ 2pz(21.2),	10.5	1.8	87.5	0.1	-1.0	-3.4	0.1
			Cm 2pz(26.4),							

35a''	-5.706	0.0	Fe dxy(67.6), N(Por) $2s(7.5)$, N(Por) $2px(7.8)$,	N(Por) 2py(7.8), 67.6	0.0	32.2	0.2	0.0	-27.9	-0.1	
50a'	-5.009	0.0	Ca 2pz(8.2), Cβ 2pz(53.9), Cm 2pz(30.3),	0.1	0.1	99 . 7	0.1	0.0	0.0	-0.1	
51a'	-4.888	0.0	Fe dz2(57.3), O 2pz(20.1),	59.1	20.4	12.0	7.4	-7.8	-8.4	-13.9	

MO	energy	occu	. primary contributors(%)	grot	up poj	pulatio	n(%) o	verlap	o popu	lation(%)
(α)	(EV)			Fe	0	Por	Im	Fe-O	Fe-Poi	Fe-Im
21a''	-13.135	1.0	Fe dxy(14.2), N(Por) 2px(11.1), N(Por) 2py(11.2), Cβ 2px(16.7), Cβ 2py(16.9), Hβ 1s(18.6), Hm 1s(15.9),	, 14.2	0.0	85.8	0.0	0.0	6.7	0.0
36a'	-12.952	1.0	Fe dz2(7.0), N(Por) 2py(14.4), Cα 2py(10.1), Cm 2px(7.3), Cm 2py(7.6), Hm 1s (21.4), Im 2pz(6.2),	9.5	2.0	80.5	7.8	0.3	2.4	1.2
37a'	-12.935	1.0	Fe dz2(23.7), O 2pz(6.6), N(Por) 2px(10.7), Cα 2px(5.8), Hm 1s(6.2), Im 2pz(23.7),	25.3	7.4	36.6	30.5	1.1	3.4	4.3
22a''	-12.693	1.0	N(Por) 2py(7.4), Cα 2py(21.2), Cβ 2py(33.7), Cm 2py(6.1), Hβ 1s(22.6),	0.8	0.6	98.1	0.5	0.2	0.6	0.0
38a'	-12.681	1.0	N(Por) 2px(7.2), Cα 2px(21.5), Cβ 2px(33.6), Cm 2px(6.3), Hβ 1s(22.3),	0.9	0.8	98.1	0.1	0.2	0.6	0.0
23a''	-12.489	1.0	Cα 2px(17.5), Cα 2py(18.4), Cβ 2px(13.8), Cβ 2py(15.0), Hβ 1s(22.5),	0.0	0.0	100.0	0.0	0.0	0.0	0.0
24a''	-12.227	1.0	Fe dxy(18.6), N(Por) 2px(6.7), N(Por) 2py(6.9), Cα 2px(10.3), Cα 2py(9.0), Cβ 2px(17.6), Cβ 2py(16.3),	18.6	0.0	81.3	0.0	0.0	6.4	0.0
39a'	-11.904	1.0	Fe dxz(12.2), Fe 4px(5.5), O 2px(24.6), N(Por) 2px(13.2), N(Por) 2py(5.5), Cα 2px(10.4), Cβ 2px(6.7), Cβ 2py(5.3),	17.9	24.8	57.2	0.0	6.9	2.8	-0.1
25a''	-11.903	1.0	Fe dyz(10.5), Fe 4py(5.9), O 2py(23.2), N(Por) 2px(5.9), N(Por) 2py(14.6), Cα 2py(11.1), Cβ 2px(5.7), Cβ 2py(7.0),	16.6	23.4	59.7	0.3	6.5	3.0	0.0

Table S2-c. Composition of The Molecular Orbitals for Model Compound I (${}^{4}A_{1u}$ cation, α spin)

40a'	-11.842	1.0	Ca 2pz(51.0), Cm 2pz(38.6),	0.2	0.5	98.4	0.8	0.0	0.0	0.0
26a''	-11.810	1.0	Fe dyz(17.9), O 2py(5.5), Cβ 2pz(6.4), Im 2py(47.4),	19.5	5.5	26.4	49.6	1.5	1.2	5.0
41a'	-11.240	1.0	Fe dxz(26.0), O 2px(13.7), N(Por) 2px(12.3), N(Por) 2py(8.8),	28.1	15.1	55.1	1.3	3.1	5.2	-1.3
			$C_{\alpha} 2px(5.0), C_{\beta} 2pz(6.1),$							
42a'	-11.038	1.0	Fe dz2(5.4), O 2pz(55.7), Im 2pz(14.9),	9.3	57.9	13.3	20.0	-1.7	-3.2	2.5
43a'	-10.804	1.0	Cα 2pz(43.1), Cβ 2pz(21.3), Cm 2pz(27.1),	0.4	0.6	98.4	0.6	0.0	0.1	0.0
27a''	-10.794	1.0	Cα 2pz(43.1), Cβ 2pz(15.2), Cm 2pz(26.8),	0.6	0.5	94.0	4.4	0.1	0.1	-0.3
28a''	-10.739	1.0	Fe dyz(9.7), O 2py(12.4), N(Por) 2px(6.0), N(Por) 2py(7.4),	10.0	12.4	34.5	43.1	2.3	2.0	-3.3
			Cβ 2pz(6.2), Im 2py(40.8),							
44a'	-9.871	1.0	N(Por) 2pz(19.1), Cβ 2pz(64.7),	0.5	3.7	91.8	4.0	0.1	1.5	-2.0
29a''	-9.859	1.0	N(Por) 2pz(18.7), Cβ 2pz(34.5), Im 2py(39.8),	0.1	0.8	56.7	42.5	0.1	-0.1	0.0
30a''	-9.604	1.0	N(Por) 2pz(16.7), Cβ 2pz(25.1), Im 2py(50.7),	0.0	1.0	45.3	53.7	0.1	-0.1	0.0
45a'	-9.517	1.0	O 2px(15.0), N(Por) 2pz(29.0), Cβ 2pz(43.9),	1.9	15.0	83.0	0.2	1.6	-2.0	0.0
31a''	-9.505	1.0	O 2py(11.6), N(Por) 2pz(29.3), Cβ 2pz(45.1),	2.1	11.6	83.9	2.5	1.4	-2.0	0.2
46a'	-9.067	1.0	Fe dx2-y2(93.7),	93.7	0.0	6.2	0.1	0.1	-2.4	0.0
32a''	-9.013	1.0	Ca 2pz(73.6), Cβ 2pz(20.8),	0.0	0.0	99.7	0.3	0.0	0.0	0.0
47a'	-8.586	1.0	N(Por) 2pz(29.7), Cm 2pz(54.1),	0.5	0.8	96.3	1.5	0.0	1.8	-2.0
48a'	-8.392	1.0	Fe dxz(52.4), O 2px(39.5),	52.9	39.5	7.0	0.6	-9.4	-4.7	0.0
33a''	-8.357	1.0	Fe dyz(52.0), O 2py(39.0),	52.5	39.0	5.5	3.1	-9.3	-4.0	-1.5
49a'	-6.625	0.0	N(Por) 2pz(12.6), Ca 2pz(25.4), Cβ 2pz(23.5), Cm 2pz(29.8),	1.9	0.0	98.0	0.1	0.1	-1.3	0.0
34a''	-6.602	0.0	N(Por) 2pz(13.3), Cα 2pz(24.6), Cβ 2pz(23.0), Cm 2pz(30.4),	1.9	0.0	98.0	0.1	0.1	-1.3	0.0
35a''	-6.157	0.0	Fe dxy(63.4), N(Por) 2s(8.5), N(Por) 2px(9.1), N(Por) 2py(9.1)	, 63.4	0.0	36.5	0.1	0.0	-26.8	0.0
50a'	-5.444	0.0	Fe dz2(55.1), O 2pz(20.9),	56.6	21.2	13.1	8.2	-7.8	-7.0	-13.5
51a'	-5.158	0.0	Ca 2pz(7.4), Cβ 2pz(53.8), Cm 2pz(31.3),	0.0	0.0	99.9	0.1	0.0	0.0	0.0

MΟ (β)	energy (EV)	000	cu. primary contributors(%)	grou Fe	ıp po O	pulatio Por	on(%) o Im	overlaj Fe-O	p pop Fe-Pc	ulation(%) or Fe-Im
21a''	-13.067	1.0	Fe dxy(10.0), N(Por) 2px(10.4), N(Por) 2py(10.6), Сβ 2px(18.2), Сβ 2py(18.5), Hβ 1s(19.0),	10.0	0.0	90.0	0.0	0.0	5.6	0.0
36a'	-12.933	1.0	N(Por) 2px(8.0), N(Por) 2py(10.7), Cα 2px(7.2), Cα 2py(8.9), Cm 2px(8.7), Cm 2py(9.4), Hβ 1s(7.0), Hm 1s(26.6).	2.3	0.0	97.6	0.0	0.0	1.6	-0.1
37a'	-12.754	1.0	Fe dz2(24.2), N(Por) 2px(5.6), Im 2pz(37.0),	25.8	5 2	21.1	17 2	07		
22a''	-12.662	1.0	N(Por) 2py(7.4), Ca 2py(21.3), CB 2py(33.5), Cm 2py(6.1)	0.6	0.2	21.1	47.3	0.7	4.2	5.6
			H β 1s(22.9),	0.0	0.2	98.7	0.5	0.0	0.6	0.0
38a'	-12.648	1.0	N(Por) 2px(7.2), Cα 2px(21.6), Cβ 2px(33.5), Cm 2px(6.4), Hβ 1s(22.4),	0.7	0.2	98.6	0.4	0.1	0.6	0.0
23a''	-12.447	1.0	Ca 2px(17.6), Ca 2py(18.2), Cβ 2px(14.0), Cβ 2py(14.8), Hβ 1s(22.5),	0.0	0.0	100.0	0.0	0.0	0.0	0.0
24a''	-12.088	1.0	Fe dxy(18.0), N(Por) 2px(9.1), N(Por) 2py(9.3), Cα 2px(9.7), 1 Cα 2py(8.8), Cβ 2px(15.8), Cβ 2py(15.0),	8.0	0.0	81.9	0.0	0.0	7.7	0.0
25a''	-11.809	1.0	Fe 4py(5.7), N(Por) 2px(8.2), N(Por) 2py(17.4), Cα 2py(12.4), Cβ 2px(6.3), Cβ 2py(7.8), Im 2py(26.7),	6.3	1.0	65.3	28.0	0.3	3.8	2.4
39a' -	-11.668	1.0	$C\alpha 2pz(45.9), Cm 2pz(40.0),$	0.5	04	002	0.0	0.1	0.0	
40a' -	11.656	1.0	Fe 4px(6.3), N(Por) 2px(23.9), N(Por) 2pv(13.6) C_{∞} 2pv(14.2)	7 1	0.4 2 (70.Z	0.8	0.1	0.3	0.0
				/.4	5.0	88.7	0.1	1.3	6.1	-0.5

Table S2-d. Composition of the molecular orbitals for model compound I (${}^{4}A_{1u}$, β -spin)

26a''	-11.371	1.0	Fe dyz(8.5), O 2py(5.4), N(Por) 2py(7.0), Cβ 2pz(6.0),	9.6	5.5	34.3	51.0	2.0	2.3	1.3
			Im 2py(48.7),							
41a'	-10.654	1.0	N(Por) 2pz(6.1), Ca 2pz(40.2), Cβ 2pz(11.2), Cm 2pz(34.0),	1.9	1.0	96.4	0.6	0.4	0.3	0.0
42a'	-10.617	1.0	Fe dz2(8.4), O 2pz(58.3), N(Por) 2pz(5.1), Cβ 2pz(8.6),	10.9	61.2	17.3	11.2	-1.8	-4.2	1.3
			Im 2pz(8.0),							
27a''	-10.617	1.0	Ca 2pz(42.0), Cβ 2pz(17.9), Cm 2pz(31.9),	0.1	0.0	99.3	0.4	0.0	0.0	0.0
43a'	-10.422	1.0	Fe dxz(22.4), O 2px(14.3), N(Por) 2pz(14.6), Cβ 2pz(38.9),	22.5	15.1	61.2	1.1	4.5	4.2	-0.5
28a''	-10.239	1.0	Fe dyz(15.5), O 2py(12.1), N(Por) 2pz(15.4), Cβ 2pz(26.3),	15.6	12.3	49.7	22.2	3.7	3.1	-1.9
			Im 2py(20.9),							
29a''	-9.814	1.0	N(Por) 2pz(19.2), Cβ 2pz(35.4), Im 2py(38.4),	0.4	0.6	58.0	41.0	0.2	0.1	-0.1
44a'	-9.799	1.0	O 2pz(7.5), N(Por) 2pz(17.8), Cβ 2pz(61.3),	1.1	7.4	86.8	4.7	0.1	1.3	-2.1
30a''	-9.577	1.0	N(Por) 2pz(17.4), Cβ 2pz(25.5), Im 2py(50.9),	0.0	0.1	45.9	53.9	0.0	-0.1	0.0
31a''	-8.946	1.0	Fe dyz(21.8), O 2py(27.9), N(Por) 2pz(14.6), Ca 2pz(5.5),	22.0	28.1	49.1	0.9	7.7	-6.2	-0.2
			Cβ 2pz(24.4),							
45a'	-8.937	1.0	Fe dxz(21.9), O 2px(27.3), N(Por) 2pz(15.5), Ca 2pz(5.6),	22.0	27.4	50.4	0.2	7.6	-6.2	-0.1
			Cβ 2pz(24.7),							
32a''	-8.669	0.0	Ca 2pz(71.7), Cβ 2pz(22.5),	0.0	0.0	99.8	0.2	0.0	0.0	0.0
46a'	-8.623	1.0	N(Por) 2pz(28.3), Cm 2pz(55.3),	0.5	1.2	96.0	1.4	0.1	1.5	-1.8
47a'	-8.425	1.0	Fe dx2-y2(93.7),	93.7	0.0	6.2	0.1	0.1	-1.8	0.0
33a''	-6.731	0.0	Fe dyz(29.9), O 2py(41.7), Cα 2pz(8.0), Cβ 2pz(6.1),	30.9	41.7	24.2	3.5	-6.8	-1.2	-0.5
			Cm 2pz(5.6),							
48a'	-6.729	0.0	Fe dxz(29.9), O 2px(42.0), Cα 2pz(9.0), Cβ 2pz(7.0),	30.9	41.9	26.7	0.9	-6.9	-1.2	0.2
	,		Cm 2pz(6.0),							

_

49a'	-6.407	0.0	Fe dxz(19.0), O 2px(6.8), N(Por) 2pz(9.1), Cα 2pz(18.4),	19.3	6.8	73.6	0.1	-2.5	-4.7	0.1
			Cβ 2pz(19.1), Cm 2pz(21.7),							
34a''	-6.390	0.0	Fe dyz(17.5), O 2py(5.8), N(Por) 2pz(9.7), Cα 2pz(18.6),	17.7	5.8	75.8	0.5	-2.3	-4.3	0.0
			Cβ 2pz(19.4), Cm 2pz(22.7),							
35a''	-5.525	0.0	Fe dxy(68.3), N(Por) 2s(7.5), N(Por) 2px(7.5), N(Por) 2py(7.5),	68.3	0.0	31.5	0.2	0.0	-27.8	-0.1
50a'	-5.077	0.0	Ca 2pz(8.2), Cβ 2pz(55.1), Cm 2pz(29.4),	0.0	0.0	99.9	0.1	0.0	0.0	0.0
51a'	-4.732	0.0	Fe dz2(57.4), O 2pz(20.1),	59.3	20.5	11.7	7.4	-7.7	-8.3	-13.9

MO	energy	occu	. primary contributors(%)	groi	up po	pulatio	n(%) o	overlar	o popu	lation(%)
(α)	(EV)			Fe	0	Por	Im	Fe-O	Fe-Poi	Fe-Im
21a''	-9.710	1.0	Fe dxy(14.5), N(Por) 2px(11.2), N(Por) 2py(11.4), Cβ 2px(15.2) Cβ 2py(15.4), Hβ 1s(17.4).	, 14.5	0.0	85.5	0.0	0.0	6.8	0.0
36a'	-9.581	1.0	Fe dz2(24.5), N(Por) 2px(13.8), N(Por) 2py(14.1), Ca 2px(5.3), Ca 2py(5.6), C β 2px(8.1), C β 2py(7.9), Im 2pz(6.2),	27.1	2.7	62.0	7.9	0.7	8.5	1.9
37a'	-9.488	1.0	N(Por) 2px(9.8), N(Por) 2py(10.0), Cα 2px(8.3), Cα 2py(8.5), Cm 2px(9.2), Cm 2py(10.0), Hm 1s(28.1),	3.0	0.0	96.9	0.0	0.0	1.8	-0.1
22a''	-9.221	1.0	N(Por) 2py(8.6), Cα 2py(21.6), Cβ 2py(30.6), Cm 2py(6.3), Hβ 1s(21.1),	1.1	0.8	96.5	1.6	0.2	0.8	0.2
38a'	-9.202	1.0	N(Por) 2px(8.2), Cα 2px(22.2), Cβ 2px(31.1), Cm 2px(6.9), Hβ 1s(20.8),	1.2	1.1	97.7	0.0	0.3	0.8	0.0
23a''	-8.958	1.0	Ca 2px(18.1), Ca 2py(19.3), Cβ 2px(13.1), Cβ 2py(14.5), Cm 2py(5.3), Hβ 1s(20.0),	0.0	0.0	100.0	0.0	0.0	0.0	0.0
24a''	-8.694	1.0	Fe dxy(18.9), N(Por) 2px(6.4), N(Por) 2py(6.6), Cα 2px(10.4), Cα 2py(8.9), Cβ 2px(17.7), Cβ 2py(16.2),	18.9	0.0	81.1	0.1	0.0	6.2	0.0
25a''	-8.660	1.0	Fe dyz(10.9), Cβ 2pz(6.0), Im 2py(63.6),	11.9	2.7	20.2	66.5	0.7	-0.6	5.1
39a'	-8.415	1.0	Fe dxz(15.4), O 2px(28.1), N(Por) 2px(10.3), Cα 2px(9.5), Cβ 2px(6.5),	20.2	28.3	51.4	0.1	7.7	1.7	0.0
26a''	-8.412	1.0	Fe dyz(12.2), Fe 4py(5.3), O 2py(25.9), N(Por) 2py(12.2), Cα 2py(10.7), Cβ 2px(5.2), Cβ 2py(7.2),	17.7	26.1	55.3	0.9	7.1	2.0	0.0

Table S-2e. Composition of The Molecular Orbitals for Model Compound II (α spin)

40a'	-8.182	1.0	Ca 2pz(47.8), Cβ 2pz(5.1), Cm 2pz(41.4),	0.2	0.9	98.2	0.6	0.0	0.0	0.0
41a'	-7.783	1.0	Fe dxz(18.3), O 2px(7.8), O 2pz(14.1), N(Por) 2px(11.8),		22.4	50.8	4.1	1.3	3.6	-0.4
			N(Por) 2py(8.0), Cα 2px(5.2), Cβ 2pz(6.0),							
42a'	-7.731	1.0	Fe dxz(5.4), O 2pz(46.0), Im 2pz(10.7),	13.2	50.0	22.4	14.7	-0.7	-1.7	1.3
27a''	-7.489	1.0	Fe dyz(15.0), O 2py(11.2), N(Por) 2px(8.6), N(Por) 2py(11.5),	16.0	11.2	42.5	29.7	2.3	4.1	-3.8
			Im 2py(27.9),							
43a'	-7.170	1.0	Ca 2pz(39.1), Cβ 2pz(23.2), Cm 2pz(30.5),	0.0	0.1	99.3	0.5	0.0	0.0	0.0
28a''	-7.145	1.0	Ca 2pz(41.0), Cβ 2pz(22.1), Cm 2pz(30.6),	0.0	0.0	99.9	0.0	0.0	0.0	0.0
29a''	-6.854	1.0	Im 2py(86.0),	0.4	1.4	6.9	91.3	0.2	0.0	-0.2
44a'	-6.439	1.0	N(Por) 2pz(20.1), Cβ 2pz(65.6),	0.7	2.7	93.7	3.1	0.1	1.9	-2.5
30a''	-6.258	1.0	N(Por) 2pz(35.0), Cβ 2pz(54.8),	0.0	0.0	95.3	4.6	0.0	0.0	0.0
45a'	-6.047	1.0	O 2px(15.4), N(Por) 2pz(30.8), Cβ 2pz(40.8),	1.5	15.3	83.0	0.2	1.3	-1.7	0.0
31a''	-6.038	1.0	O 2py(13.1), N(Por) 2pz(31.3), Cβ 2pz(42.2),	1.6	13.0	84.7	0.6	1.2	-1.7	0.1
46a'	-5.636	1.0	Fe dx2-y2(93.6),	93.6	0.0	6.3	0.1	0.1	-2.6	0.0
32a''	-5.233	1.0	$Ca 2pz(70.6), C\beta 2pz(23.8),$	0.0	0.0	99.9	0.1	0.0	0.0	0.0
47a'	-5.110	1.0	N(Por) 2pz(29.1), Cm 2pz(55.5),	0.6	0.6	96.7	1.2	0.0	2.0	-2.2
48a'	-5.010	1.0	Fe dxz(52.3), 0 2px(39.0),	52.8	39.0	7.6	0.6	- 9. 4	-4.9	0.1
33a''	-4.991	1.0	Fe dyz(51.8), O 2py(38.8),	52.3	38.8	6.3	2.6	-9.4	-4.3	-1.0
49a'	-3.051	0.0	N(Por) 2pz(11.1), Cα 2pz(25.8), Cβ 2pz(26.7), Cm 2pz(28.0),	1.5	0.0	98.4	0.1	0.1	-1.0	0.0
34a''	-3.030	0.0	N(Por) 2pz(11.8), Cα 2pz(25.1), Cβ 2pz(26.0), Cm 2pz(28.7),	1.6	0.0	98.3	0.2	0.1	-1.1	0.0
35a''	-2.709	0.0	Fe dxy(62.4), N(Por) 2s(8.4), N(Por) 2px(9.4), N(Por) 2py(9.4)), 62.4	0.0	37.3	0.3	0.0	-26.8	-0.1
50a'	-2.106	0.0	Fe dz2(54.4), O 2pz(20.8),	56.1	21.1	12.8	8.5	-8.8	-5.3	-15.1
51a'	-1.676	0.0	Ca 2pz(6.8), Cβ 2pz(57.3), Cm 2pz(28.4),	0.0	0.0	99.9	0.1	0.0	0.0	0.0
36a''	-1.615	0.0	Im 2py(88.8),	1.2	0.1	2.1	96.9	-0.2	-0.7	-0.1

MO	energy	occu	cu. primary contributors(%)		group population(%) overlap population(%)						
(β)	(EV)			Fe	0	Por	Im	Fe-O Fe-Por Fe-Im			
21a''	-9.641	1.0	Fe dxy(10.3), N(Por) 2px(10.6), N(Por) 2py(10.8), Cβ 2px(17.2), Cβ 2py(17.6), Hβ 1s(18.1),	, 10.3	0.0	89.7	0.0	0.0	5.7	0.0	
36a'	-9.485	1.0	N(Por) 2px(8.1), N(Por) 2py(12.0), Cα 2px(7.3), Cα 2py(9.7), Cm 2px(9.2), Cm 2py(9.9), Hm 1s(28.2),	2.5	0.0	97.5	0.0	0.0	1.7	-0.1	
37a'	-9.445	1.0	Fe dz2(22.0), N(Por) 2px(14.8), N(Por) 2py(11.6), Cα 2px(5.4), Cβ 2px(6.2), Cβ 2py(6.8), Im 2pz(14.0),	24.3	1.8	55.5	17.9	0.5	8.0	3.1	
22a''	-9.219	1.0	N(Por) 2py(8.3), Cα 2py(21.8), Cβ 2py(31.2), Cm 2py(6.6), Hβ 1s(21.1),	0.9	0.2	97.3	1.7	0.1	0.8	0.1	
38a'	-9.198	1.0	N(Por) 2px(7.7), Cα 2px(22.7), Cβ 2px(32.0), Cm 2px(7.4), Hβ 1s(20.8),	0.8	0.2	98.9	0.0	0.1	0.7	0.0	
23a''	-8.961	1.0	Ca 2px(18.4), Ca 2py(19.0), Cβ 2px(13.4), Cβ 2py(14.2), Cm 2py(5.2), Hβ 1s(20.0),	0.0	0.0	100.0	0.0	0.0	0.0	0.0	
24a''	-8.600	1.0	Ca 2py(5.3), Im 2py(67.8),	4.3	0.0	25.9	70.9	0.0	0.0	3.9	
25a''	-8.571	1.0	Fe dxy(18.4), N(Por) 2px(9.0), N(Por) 2py(9.2), Cα 2px(9.6), Cα 2py(8.7), Cβ 2px(15.5), Cβ 2py(14.7),	18.4	0.0	81.2	0.4	0.0	7.6	0.0	
39a'	-8.183	1.0	Ca 2pz(48.1), Cβ 2pz(5.1), Cm 2pz(41.7),	0.1	0.2	98.9	0.7	0.0	0.0	0.0	
40a'	-8.132	1.0	Fe 4px(6.6), N(Por) 2s(5.0), N(Por) 2px(24.7), N(Por) 2py(13.6) Cα 2px(15.0), Cβ 2px(9.5), Cβ 2py(7.9),), 7.9	4.3	87.6	-0.1	1.5	6.2	-0.4	

Table S2-f. Composition of the molecular orbitals for model compound II (β spin)

26a''	-8.050	1.0	O 2py(6.0), N(Por) 2px(11.7), N(Por) 2py(20.1), Cα 2py(10.6),	8.7	6.1	72.1	12.9	2.2	5.2	-0.7
			Cβ 2px(5.9), Cβ 2py(6.7), Im 2py(12.3),							
41a'	-7.311	1.0	Fe dz2(9.3), O 2pz(62.6), Cβ 2pz(6.3), Im 2pz(7.4),	11.3	65.5	13.4	10.5	-1.9	-5.0	1.2
42a'	-7.181	1.0	Ca $2pz(40.5)$, C $\beta 2pz(15.6)$, Cm $2pz(33.2)$,	0.9	0.5	97.9	0.6	0.2	0.1	0.0
27a''	-7.150	1.0	Ca 2pz(41.5), Cβ 2pz(20.8), Cm 2pz(31.1),	0.0	0.0	99.8	0.0	0.0	0.0	0.0
43a'	-7.024	1.0	Fe dxz(24.0), O 2px(15.6), N(Por) 2pz(16.1), Cβ 2pz(35.0),	24.0	16.1	58.9	1.0	4.8	4.6	-0.5
28a''	-6.986	1.0	Fe dyz(11.3), O 2py(7.6), N(Por) 2pz(8.8), Cβ 2pz(14.9),	11.3	7.7	28.6	52.4	2.3	2.2	-0.6
			Im 2py(49.1),							
29a''	-6.742	1.0	Fe dyz(8.1), O 2py(7.2), N(Por) 2pz(9.9), Cβ 2pz(14.9),	8.2	7.3	31.1	53.2	2.1	1.7	-1.3
			Im 2py(50.0),							
44a'	-6.419	1.0	O 2pz(5.5), N(Por) 2pz(18.5), Cβ 2pz(63.3),	1.1	5.4	90.2	3.4	0.1	1.7	-2.4
30a''	-6.255	1.0	N(Por) 2pz(35.0), Cβ 2pz(54.8),	0.0	0.0	95.3	4.7	0.0	0.0	0.0
31a''	-5.542	1.0	Fe dyz(20.1), O 2py(27.2), N(Por) 2pz(15.6), Ca 2pz(6.4),	20.2	27.3	51.9	0.6	7.2	-5.9	-0.1
			Cβ 2pz(24.9),							
45a'	-5.528	1.0	Fe dxz(20.2), O 2px(27.2), N(Por) 2pz(16.2), Ca 2pz(6.4),	20.3	27.3	52.3	0.2	7.1	-5.9	0.0
			Cβ 2pz(24.7),							
32a''	-5.239	1.0	Ca 2pz(70.6), Cβ 2pz(23.7),	0.0	0.0	99.9	0.1	0.0	0.0	0.0
46a'	-5.105	1.0	N(Por) 2pz(29.4), Cm 2pz(55.2),	0.7	0.9	96.4	1.1	0.0	1.8	-2.0
47a'	-4.978	1.0	Fe dx2-y2(93.6),	93.6	0.0	6.4	0.1	0.1	-2.0	0.0
33a''	-3.369	0.0	Fe dyz(33.8), O 2py(43.3), Ca 2pz(5.9),	34.8	43.3	17.5	4.8	-7.7	-1.6	-0.1
48a'	-3.350	0.0	Fe dxz(34.6), O 2px(43.4), Cα 2pz(7.0), Cβ 2pz(5.4),	35.6	43.4	20.4	0.9	-8.0	-1.5	0.3
49a'	-2.966	0.0	Fe dxz(15.3), N(Por) 2pz(10.1), Cα 2pz(18.8), Cβ 2pz(21.6),	15.4	4.1	80.1	0.1	-1.8	-4.2	0.1
			Cm 2pz(23.8),							

-2.948	0.0	Fe dyz(13.3), N(Por) 2pz(10.8), Cα 2pz(19.1), Cβ 2pz(22.0),	13.4	3.1	82.8	0.3	-1.5	-3.8	0.1
		Cm 2pz(25.0),							
-2.065	0.0	Fe dxy(67.2), N(Por) 2s(7.4), N(Por) 2px(7.5), N(Por) 2py(7.5)	, 67.2	0.0	32.0	0.9	0.0	-27.6	-0.2
-1.679	0.0	Cα 2pz(6.8), Cβ 2pz(57.3), Cm 2pz(28.4),	0.0	0.0	99.9	0.1	0.0	0.0	0.0
-1.563	0.0	Im 2py(86.3),	3.3	0.6	2.1	94.3	-0.5	-0.6	-0.7
-1.403	0.0	Fe dz2(53.4), O 2pz(18.7), H(Im) 1s(8.0),	55.7	19.0	10.6	12.9	-8.5	-6.0	-13.9
	-2.948 -2.065 -1.679 -1.563 -1.403	-2.948 0.0 -2.065 0.0 -1.679 0.0 -1.563 0.0 -1.403 0.0	 -2.948 0.0 Fe dyz(13.3), N(Por) 2pz(10.8), Ca 2pz(19.1), Cβ 2pz(22.0), Cm 2pz(25.0), -2.065 0.0 Fe dxy(67.2), N(Por) 2s(7.4), N(Por) 2px(7.5), N(Por) 2py(7.5) -1.679 0.0 Ca 2pz(6.8), Cβ 2pz(57.3), Cm 2pz(28.4), -1.563 0.0 Im 2py(86.3), -1.403 0.0 Fe dz2(53.4), O 2pz(18.7), H(Im) 1s(8.0), 	-2.9480.0Fe dyz(13.3), N(Por) 2pz(10.8), Cα 2pz(19.1), Cβ 2pz(22.0),13.4 Cm 2pz(25.0),-2.0650.0Fe dxy(67.2), N(Por) 2s(7.4), N(Por) 2px(7.5), N(Por) 2py(7.5), 67.2-1.6790.0Cα 2pz(6.8), Cβ 2pz(57.3), Cm 2pz(28.4),0.0-1.5630.0Im 2py(86.3),3.3-1.4030.0Fe dz2(53.4), O 2pz(18.7), H(Im) 1s(8.0),55.7	-2.9480.0Fe dyz(13.3), N(Por) 2pz(10.8), Ca 2pz(19.1), Cβ 2pz(22.0),13.43.1Cm 2pz(25.0),2.0650.0Fe dxy(67.2), N(Por) 2s(7.4), N(Por) 2px(7.5), N(Por) 2py(7.5), 67.20.0-1.6790.0Ca 2pz(6.8), Cβ 2pz(57.3), Cm 2pz(28.4),0.00.0-1.5630.0Im 2py(86.3),3.30.6-1.4030.0Fe dz2(53.4), O 2pz(18.7), H(Im) 1s(8.0),55.719.0	-2.9480.0Fe dyz(13.3), N(Por) 2pz(10.8), Cα 2pz(19.1), Cβ 2pz(22.0),13.43.182.8Cm 2pz(25.0),Cm 2pz(25.0),2.0650.0Fe dxy(67.2), N(Por) 2s(7.4), N(Por) 2px(7.5), N(Por) 2py(7.5), 67.20.032.0-1.6790.0Cα 2pz(6.8), Cβ 2pz(57.3), Cm 2pz(28.4),0.00.099.9-1.5630.0Im 2py(86.3),3.30.62.1-1.4030.0Fe dz2(53.4), O 2pz(18.7), H(Im) 1s(8.0),55.719.010.6	-2.9480.0Fe dyz(13.3), N(Por) 2pz(10.8), Cα 2pz(19.1), Cβ 2pz(22.0),13.43.182.80.3Cm 2pz(25.0),2.0650.0Fe dxy(67.2), N(Por) 2s(7.4), N(Por) 2px(7.5), N(Por) 2py(7.5), 67.20.032.00.9-1.6790.0Cα 2pz(6.8), Cβ 2pz(57.3), Cm 2pz(28.4),0.00.099.90.1-1.5630.0Im 2py(86.3),3.30.62.194.3-1.4030.0Fe dz2(53.4), O 2pz(18.7), H(Im) 1s(8.0),55.719.010.612.9	-2.9480.0Fe dyz(13.3), N(Por) 2pz(10.8), Ca 2pz(19.1), Cβ 2pz(22.0),13.43.182.80.3-1.5Cm 2pz(25.0),2.0650.0Fe dxy(67.2), N(Por) 2s(7.4), N(Por) 2px(7.5), N(Por) 2py(7.5), 67.20.032.00.90.0-1.6790.0Ca 2pz(6.8), Cβ 2pz(57.3), Cm 2pz(28.4),0.00.099.90.10.0-1.5630.0Im 2py(86.3),3.30.62.194.3-0.5-1.4030.0Fe dz2(53.4), O 2pz(18.7), H(Im) 1s(8.0),55.719.010.612.9-8.5	-2.9480.0Fe dyz(13.3), N(Por) 2pz(10.8), Ca 2pz(19.1), Cβ 2pz(22.0), Cm 2pz(25.0),13.43.182.80.3-1.5-3.8-2.0650.0Fe dxy(67.2), N(Por) 2s(7.4), N(Por) 2px(7.5), N(Por) 2py(7.5), 67.20.032.00.90.0-27.6-1.6790.0Ca 2pz(6.8), Cβ 2pz(57.3), Cm 2pz(28.4),0.00.099.90.10.00.0-1.5630.0Im 2py(86.3),Signal (18.7), H(Im) 1s(8.0),3.30.62.194.3-0.5-0.6-1.4030.0Fe dz2(53.4), O 2pz(18.7), H(Im) 1s(8.0),55.719.010.612.9-8.5-6.0

Atom types	Ind	ices	Mulliken charge	α-spin	β-spin	Net spin	ESP charge
Fe	1		0.655	8.292	7.053	1.239	0.781
0	2		-0.428	3.707	2.721	0.986	-0.477
N1.Po	3	4	-0.389	2.728	2.660	0.068	-0.174
N2.Po	5	6	-0.393	2.729	2.663	0.066	-0.197
N1.Im	7		-0.301	2.637	2.664	-0.027	-0.436
N2.Im	8		0.028	2.488	2.484	0.004	-0.316
Ca 1	9	11	0.266	1.849	1.885	-0.036	0.305
Ca2	10	12	0.254	1.855	1.891	-0.036	0.296
Ca3	13	15	0.264	1.851	1.885	-0.034	0.307
Ca4	14	16	0.245	1.859	1.895	-0.036	0.319
Сβ1	17	19	0.197	1.901	1.902	-0.001	-0.262
Cp2	18	20	0.201	1.899	1.900	-0.001	-0.260
СβЗ	21	23	0.196	1.901	1.903	-0.002	-0.254
Сβ4	22	24	0.200	1.900	1.900	0.000	-0.276
Cm1	25	27	0.165	2.024	1.811	0.213	-0.349
Cm2	26		0.122	2.044	1.834	0.210	-0.293
Cm3	28		0.128	2.043	1.829	0.214	-0.278
C1.Im	29		0.467	1.773	1.759	0.014	0.272
C2.Im	30		0.350	1.827	1.823	0.004	-0.003
C3.Im	31		0.239	1.880	1.881	-0.001	-0.063
Ηβ1	32	34	-0.194	0.597	0.596	0.001	0.187
Ηβ2	33	35	-0.194	0.597	0.596	0.001	0.183
НβЗ	36	38	-0.193	0.597	0.596	0.001	0.186
Ηβ4	37	39	-0.194	0.597	0.596	0.001	0.187
Hm1	40	42	-0.168	0.577	0.592	-0.015	0.211
Hm2	41		-0.164	0.574	0.590	-0.016	0.184
Hm3	43		-0.165	0.574	0.590	-0.016	0.186
Hn.Im	44		-0.005	0.502	0.503	-0.001	0.348
H1.Im	45		-0.125	0.562	0.563	-0.001	0.020
H2.Im	46		-0.177	0.588	0.589	-0.001	0.091
H3.Im	47		-0.151	0.575	0.575	0.000	0.162

Table S3-a. Mulliken Charges, Spin Populations and ESP Charges in ${}^4\!A_{2u}$ State of Compound I

Atom	Ind	ices	Mulliken	α-spin	β-spin	Net spin	ESP
types			charge				charge
Fe	1		0.656	8.248	7.095	1.153	1.016
0	2		-0.438	3.709	2.729	0.980	-0.506
N1.Po	3	4	-0.403	2.673	2.730	-0.057	-0.337
N2.Po	5	6	-0.406	2.675	2.731	-0.056	-0.359
N1.Im	7		-0.302	2.631	2.671	-0.040	-0.467
N2.Im	8		0.027	2.489	2.485	0.004	-0.321
Ca 1	9	11	0.288	1.928	1.784	0.144	0.447
Ca2	10	12	0.276	1.935	1.789	0.146	0.437
Ca3	13	15	0.285	1.928	1.786	0.142	0.447
Ca4	14	16	0.267	1.937	1.796	0.141	0.458
Сβ1	17	19	0.204	1.912	1.884	0.028	-0.272
Cβ2	18	20	0.207	1.907	1.886	0.021	-0.273
Сβ3	21	23	0.203	1.910	1.887	0.023	-0.266
Сβ4	22	24	0.206	1.909	1.885	0.024	-0.286
Cm1	25	27	0.128	1.910	1.961	-0.051	-0.507
Cm2	26		0.085	1.933	1.982	-0.049	-0.448
Cm3	28		0.091	1.928	1.981	-0.053	-0.434
C1.Im	29		0.463	1.776	1.760	0.016	0.279
C2.Im	30		0.347	1.829	1.824	0.005	0.006
C3.Im	31		0.237	1.881	1.882	-0.001	-0.067
Ηβ1	32	34	-0.191	0.594	0.597	-0.003	0.193
Ηβ2	33	35	-0.192	0.595	0.597	-0.002	0.189
НβЗ	36	38	-0.192	0.594	0.597	-0.003	0.191
Ηβ4	37	39	-0.192	0.594	0.597	-0.003	0.192
Hm1	40	42	-0.172	0.586	0.585	0.001	0.220
Hm2	41		-0.167	0.584	0.583	0.001	0.192
Hm3	43		-0.168	0.585	0.583	0.002	0.194
Hn.Im	44		-0.007	0.503	0.503	0.000	0.347
H1.Im	45		-0.127	0.563	0.564	-0.001	0.016
H2.Im	46		-0.179	0.589	0.590	-0.001	0.086
H3.Im	47		-0.152	0.576	0.576	0.000	0.161

Table S3-b. Mulliken Charges, Spin Populations and ESP Charges in ${}^4\!A_{1u}$ State of Compound I

Atom	Ind	ices	Mulliken	α-spin	β-spin	Net spin	ESP
types			charge				charge
Fe	1		0.658	8.264	7.079	1.185	1.113
0	2		-0.463	3.709	2.754	0.955	-0.568
N1.Po	3	4	-0.405	2.690	2.715	-0.025	-0.296
N2.Po	5	6	-0.408	2.692	2.716	-0.024	-0.319
N1.Im	7		-0.293	2.627	2.666	-0.039	-0.475
N2.Im	8		0.018	2.493	2.489	0.004	-0.338
Cal	9	11	0.261	1.869	1.871	-0.002	0.370
Ca2	10	12	0.249	1.875	1.876	-0.001	0.362
Ca3	13	15	0.258	1.870	1.872	-0.002	0.371
Ca4	14	16	0.241	1.879	1.881	-0.002	0.386
Сβ1	17	19	0.169	1.915	1.916	-0.001	-0.303
Cp2	18	20	0.173	1.913	1.914	-0.001	-0.303
СвЗ	21	23	0.169	1.915	1.916	-0.001	-0.296
Сβ4	22	24	0.172	1.914	1.914	0.000	-0.318
Cm1	25	27	0.102	1.948	1.949	-0.001	-0.522
Cm2	26		0.060	1.969	1.970	-0.001	-0.464
Cm3	28		0.066	1.966	1.967	-0.001	-0.449
C1.Im	29		0.465	1.776	1.759	0.017	0.287
C2.Im	30		0.360	1.823	1.817	0.006	0.020
C3.Im	31		0.213	1.893	1.895	-0.002	-0.094
Ηβ1	32	34	-0.219	0.610	0.610	0.000	0.170
Ηβ2	33	35	-0.220	0.610	0.610	0.000	0.166
НβЗ	36	38	-0.220	0.610	0.610	0.000	0.168
Ηβ4	37	39	-0.220	0.610	0.610	0.000	0.169
Hm1	40	42	-0.199	0.599	0.599	0.000	0.211
Hm2	41		-0.196	0.598	0.598	0.000	0.183
Hm3	43		-0.196	0.598	0.598	0.0000	0.185
Hn.Im	44		-0.022	0.511	0.511	0.000	0.333
H1.Im	45		-0.126	0.562	0.564	-0.002	0.011
H2.Im	46		-0.180	0.589	0.591	-0.002	0.082
H3.Im	47		-0.168	0.584	0.584	0.000	0.145

Table S3-c. Mulliken Charges, Spin Populations and ESP Charges in Compound ${\rm I\!I}$

20