J. Am. Chem. Soc., 1997, 119(8), 2058-2059, DOI:10.1021/ja963800b

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

Total Synthesis of the Polyene Macrolide Roflamycoin

Scott D. Rychnovsky*, Uday R. Khire, and Guang Yang
Department of Chemistry, University of California, Irvine, California 92697-2025

($3 R, 5 S, 9 R, 11 R$)-12-Bromo-7-(1,3-dithiane-2,2'-yl)-3,5:9,11-bis-O-(1-methylethyledene)-1- O-(phenylmethyl)-dodecane-1,3,5,9,11-pentol (5): To a solution of dithiane (obtained after protection of diol 3 as an acetonide) ($0.80 \mathrm{~g}, 1.19$ mmol, 1.00 equiv) in 3 mL of THF under Ar at $-40^{\circ} \mathrm{C}$ was added dropwise a 2.50 M solution of butyllithium ($0.48 \mathrm{~mL}, 1.21 \mathrm{mmol}, 1.01$ equiv). After stirring for 1 h , a solution of dibromide $4(0.69 \mathrm{~g}, 2.30 \mathrm{mmol}, 1.93$ equiv) in 1.5 mL of THF was added dropwise followed by addition of DMPU ($2 \mathrm{~mL}, 16.5 \mathrm{mmol}, 14$ equiv). The reaction mixture was then warmed up to $-10^{\circ} \mathrm{C}$. After stirring overnight (16 h) at $-10{ }^{\circ} \mathrm{C}$, the reaction was quenched by addition of 3 mL of $\mathrm{H}_{2} \mathrm{O}$. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography ($\mathrm{SiO}_{2}, 5 \%$ ethyl acetate/hexanes) gave the product ($430 \mathrm{mg}, 60 \%$) as a colorless oil: $[\alpha]^{24}=+4.79^{\circ}$ (c 1.79, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat) 2985, 2937, 2857, 1454, 1441, $1421,1379,1223,1170,1125,1102,1038,1027,993,907,737,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.35(\mathrm{~m}, 5 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.06-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.97$ (m, 2 H$), 3.51-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.78(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.65(\mathrm{~m}, 2$ H), 1.28-1.37 (m, 12 H); ${ }^{13} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, DEPT) : δC 138.55, 101.17, 100.59; CH 128.43 (2), 127.75 (2), 127.62, 66.94, 64.05, 63.89, 63.83; $\mathrm{CH}_{2} 73.18,66.71$,
$43.86,43.72,39.67,38.07,36.06,35.38,26.30,26.21,25.28 ; \mathrm{CH}_{3} 24.84$ (2), 24.79, 24.63. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{O}_{5} \mathrm{~S}_{2}: \mathrm{C}, 55.71 ; \mathrm{H}, 7.18$. Found: C, $55.81 ; \mathrm{H}, 6.97$.

($3 R, 5 S, 9 R, 11 R$)-12-Bromo-7-oxo-3,5:9,11-bis- O-(1-methylethyledene)-1-O-(phenylmethyl)-dodecane-1,3,5,9,11-pentol: To a solution of dithiane 5 (92 $\mathrm{mg}, 0.15 \mathrm{mmol}, 1$ equiv) and $\mathrm{CaCO}_{3}(270 \mathrm{mg}, 2.69 \mathrm{mmol}$, 18 equiv) in THF (7 mL) and $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ was added dropwise a 2.0 M aqueous solution of $\mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2}(170 \mu \mathrm{~L}, 0.34$ $\mathrm{mmol}, 2.26$ equiv). After stirring for 30 min at $23^{\circ} \mathrm{C}$, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a plug of neutral alumina. The organic layer was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give product $(66 \mathrm{mg}, 85 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}^{24}=$ $+8.61^{\circ}\left(c 1.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) 2986, 2937, 2858, 1716, 1454, 1380, 1223, 1117, $1098,738,698 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{~s}, 5 \mathrm{H}$), $4.47(\mathrm{~s}, 2 \mathrm{H}), 4.20-$ 4.36 (m, 2 H), 3.28-3.36 (m, 2 H), 2.65-2.76 (m, 2 H), 2.42-2.52 (m, 2 H), 1.62-1.84 $\left.(\mathrm{m}, 6 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{DEPT}\right) \delta C 206.22$, $138.33,100.96,100.40$; CH 128.26 (2), 127.59 (2), 127.46, $66.55,62.85$ (2), 62.79; $\mathrm{CH}_{2} 73.00,66.39,49.30,48.98,38.01,36.54,35.76,34.98 ; \mathrm{CH}_{3} 24.61,24.59,24.49$, 24.41. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{BrO}_{6}: \mathrm{C}, 58.48$; H 7.26 . Found C, 58.33; H 7.43.

(3R,5R,9S,11R)-12-Bromo-7-methylene-3,5:9,11-bis-O-(1-methylethyledene)-1- O-(phenylmethyl)-dodecane-1,3,5,9,11-pentol: To a solution of ketone obtained from previous step ($92 \mathrm{mg}, 0.163 \mathrm{mmol}, 1$ equiv) in THF (3 mL) was added 0.5 M solution of $\mathrm{Cp}_{2} \mathrm{TiMe}_{2}$ in toluene (1.31 mL , 4 equiv) under nitrogen
in dark and the reaction mixture was heated at $75^{\circ} \mathrm{C}$. After stirring for 48 h at this temperature, the reaction mixture was gradually cooled to $0^{\circ} \mathrm{C}$ and was diluted with hexanes. The resulting yellow-orange precipitate was removed by filtration and the filtrate was concentrated under reduced pressure. Purification by flash chromatography $\left(\mathrm{SiO}_{2}, 8 \%\right.$ ethyl acetate/hexanes) gave 77 mg (85%) of the product as a colorless oil: $[\alpha]^{24}{ }_{\mathrm{D}}=+4.36^{\circ}$ (c $1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat) $3068,3029,2985,2931,2854,1644,1495,1443,1454$, $1379,1223,1125,1100,903,735,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.36$ $(\mathrm{m}, 5 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 3.93-4.05(\mathrm{~m}, 4 \mathrm{H}), 3.52-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~d}$, $J=5.77 \mathrm{~Hz}, 2 \mathrm{H}), 2.23-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.79(\mathrm{~m}, 6 \mathrm{H}), 1.35(\mathrm{~s}$, $3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right) \delta C$ $138.65,101.07,100.49$; CH 128.54 (2), 127.86 (2), 127.74, $66.97,65.37$ (2), 63.89 ; CH_{2} 113.97, 73.29, 66.82, 42.73, 42.63, 38.59, 36.97, 36.17, 35.60; $\mathrm{CH}_{3} 25.11$, 24.98, 24.93, 24.80. Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{BrO}_{5}: \mathrm{C}, 61.05$; H 7.68. Found C, 60.89; H 7.53.

($3 R, 5 S, 9 R, 11 R$)-12-Bromo-7-(1,3-dioxalan-2,2-dimethyl-4,4'-yl)-3,5:9,11-bis- O-(1-methylethyledene)-1- O-(phenylmethyl)-dodecane-

1,3,5,9,11-pentol (6): To a stirred solution of alkene obtained from previous step (64 $\mathrm{mg}, 0.12 \mathrm{mmol}, 1$ equiv) and N-methylmorpholine- N-oxide hydrate ($28 \mathrm{mg}, 0.24 \mathrm{mmol}, 2$ equiv) in 2 mL of acetone:water ($9: 1$) was added $0.025 \mathrm{~mL}(0.0025 \mathrm{mmol}, 2 \%)$ of OsO_{4} solution (2.5% in t-BuOH). After 40 h at $25^{\circ} \mathrm{C}$ the reaction was quenched by addition of Celite and 0.2 mL of $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ solution. The mixture was filtered through Celite after 1 h and concentrated under reduced pressure to give the crude diol as a colorless oil. It was then dissolved in 6 mL of acetone and 2 mL of 2,2-dimethoxypropane with 5 mg of CSA and stirred for 14 h . The crude product was purified by chromatography on silica
gel, eluting with 8% ethyl acetate/hexanes to give major diastereomer of $6(41 \mathrm{mg}, 0.075$ mmol, 62\%): IR (neat) 2984, 2937, $2859 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.38$ $(\mathrm{m}, 5 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.91-3.99(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.51-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~d}$, $J=5.58 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.78(\mathrm{~m}, 8 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 6 \mathrm{H})$, $1.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT) $\delta C 138.50,108.65,100.79,100.25$; CH 128.38 (2), 127.69 (2), 127.57, 66.82, 63.70, 63.32, $63.23 ; \mathrm{CH}_{2} 73.12,70.84$, $66.62,44.69,44.44,40.06,38.42,35.99,35.34, \mathrm{CH}_{3} 27.19,27.09,24.91,24.85$ (2), 24.76.

In addition to the major diastereomer, $20 \mathrm{mg}(0.036 \mathrm{mmol}, 31 \%)$ of the minor diastereomer was also isolated. IR (neat) $2985,2937,2857 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.25-7.39(\mathrm{~m}, 5 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.92-4.10(\mathrm{~m}, 4 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 3.43-$ $3.58(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~d}, J=5.80,2 \mathrm{H}), 1.76-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.78(\mathrm{~m}, 8 \mathrm{H}), 1.35(\mathrm{~s}$, $9 \mathrm{H}), 1.33(\mathrm{~s}, 6 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT) $\delta C 138.49$, 107.90, 100.67, 100.12; CH 128.38 (2), 127.70 (2), 127.57, 66.82, 62.72 (2), 63.42, 63.24; $\mathrm{CH}_{2} 75.34,73.10,66.64,42.59,42.39,39.21,37.53,35.98,35.37, \mathrm{CH}_{3} 27.34$ (2), 24.97, 24.83 (2), 24.68. Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{BrO}_{7}: \mathrm{C}, 59.48 ; \mathrm{H} 7.75$. Found C , 59.54; H 7.76.

(3S,4S,7S)-3-O-(Phenylmethyl)-7-O-((1,1-dimethylethyl)dimethylsilyl)-2,4-dimethyl-9-decene-3,7-diol: To a salt-free solution of B-allyldiisopinocampheylborane ($14.5 \mathrm{mmol}, 2$ equiv, prepared from (-)- α-pinene) in 10 mL of ether, a pre-cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of aldehyde $8(1.8 \mathrm{~g}, 7.25 \mathrm{mmol}, 1$ equiv) in 2 mL of ether was added dropwise at $-100^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h and quenched with 0.5 mL of methanol and was then allowed to warm to $23^{\circ} \mathrm{C}$. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and oxidized with $\mathrm{NaOH}(9 \mathrm{~mL}, 3 \mathrm{~N})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(7 \mathrm{~mL})$. After stirring for 12 h , the reaction mixture was diluted with water, extracted with ether (3 $\times 15 \mathrm{~mL}$), washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The crude product was purified by flash chromatography (5% ethyl acetate/hexanes) to give product which was contaminated by isopinocampheol. The contaminated product was then dissolved in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under N_{2}, and the solution was cooled to $0^{\circ} \mathrm{C}$. 2,6-Lutidine ($1.35 \mathrm{~mL}, 11.58 \mathrm{mmol}, 1.5$ equiv) was added to the solution followed by TBSOTf (2.13 $\mathrm{mL}, 9.26 \mathrm{mmol}, 1.2$ equiv). After stirring at $0^{\circ} \mathrm{C}$ for 30 min , the reaction mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$ and stirred overnight. The reaction was then quenched by addition of 15 mL of saturated NaHCO_{3} solution. The layers were separated and the aqueous portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, washed (brine), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}, 5 \%\right.$ ethyl acetate/hexanes) gave 2.12 g , (75% for two steps) of the product as a colorless oil: $[\alpha]^{24}=$ $-8.15^{\circ}\left(c 1.52, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathbb{R}$ (neat) : 2957, 2930, 2857, 1471, 1463, 1455, 1254, 1095, $1068,1029 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.45(\mathrm{~m}, 5 \mathrm{H}), 5.86-5.90(\mathrm{~m}, 1$ H), $5.09-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{t}, J=10.74 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=6.76$, $4.37 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.95-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.44-1.56$ (m, $4 \mathrm{H}), 1.08(\mathrm{~d}, J=6.76 \mathrm{~Hz}, 3 \mathrm{H}), 0.97-1.05(\mathrm{~m}, 15 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{DEPT}\right): \delta C 139.38,18.14 ; \mathrm{CH} 135.34,128.24$ (2), 127.56, $127.42,127.27,89.39,72.85,36.53,31.62, \mathrm{CH}_{2} 116.70,75.16,42.00,34.66,30.25$; $\mathrm{CH}_{3} 25.93$ (3), 20.25, 18.18, 14.41, -4.3, -4.45. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 74.20$; H, 10.96. Found: C, 74.39; H, 10.72 .

(3S,4S,7S)-3-O-((1,1-Dimethylethyl)dimethylsilyl)-7-O-(phenylmethyl)-6,8-dimethyl-3,7-dihydroxy-1-decanal (9) : To a stirred solution of alkene obtained from previous step ($0.824 \mathrm{~g}, 2.03 \mathrm{mmol}, 1$ equiv) and N-methylmorpholine- N oxide hydrate ($0.405 \mathrm{~g}, 3.45 \mathrm{mmol}, 1.7$ equiv) in 10 mL of acetone : water ($8: 2$) was added $0.6 \mathrm{~mL}(0.06 \mathrm{mmol}, 3 \%)$ of OsO_{4} solution (2.5% in t-BuOH). After 12 h at $25^{\circ} \mathrm{C}$, the mixture was diluted with water, extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$, washed $\left(\mathrm{Na}_{2} \mathrm{SO}_{3}\right.$, brine) and concentrated. The crude product was purified by chromatography on silica gel eluting with 10% ethyl acetate/hexanes to give $0.642 \mathrm{~g}(78 \%)$ of the product as colorless oil: IR (neat) : 2957, 2932, 2859, 1726, 1463, 1383, 1363, 1255, 1101, 1067, 836, 776 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 5 \mathrm{H}), 4.54-4.63(\mathrm{~m}$, $2 \mathrm{H}), 4.11-4.17$ (m, 1 H$), 2.90-2.96(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.71(\mathrm{~m}, 3 \mathrm{H})$, $1.31-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.35(\mathrm{~m}, 1 \mathrm{H}), 0.99-1.02(\mathrm{~m}, 3 \mathrm{H}), 0.90-0.95(\mathrm{~m}, 6 \mathrm{H}), 0.87$ $(\mathrm{s}, 9 \mathrm{H}), 0.066(\mathrm{~s}, 3 \mathrm{H}), 0.051(\mathrm{~s}, 3 \mathrm{H})$. This sensitive aldehyde was used in the next step without further purification.

Methy $\quad[3 S, 4 S, 7 S, 9 S]-3-O$-(phenylmethyl)-7-O-((1,1-dimethylethyl)-dimethylsilyl)-9-O-(trimethylsilyl)-2-4-dimethyl-3,7,9-
trihydroxyundecanoate (10): Schiff Base (Catalyst) Formation: A solution of (R)-(+)-2-amino-2'-hydroxy-1,1'-binapthyl ($25 \mathrm{mg}, 0.087 \mathrm{mmol}$) and 3-bromo-5-tert-butylsalicylaldehyde ($27 \mathrm{mg}, 0.105 \mathrm{mmol}$) in 1 mL of absolute ethanol was heated at reflux for 24 h . After removal of the volatiles, the product was purified on silica gel column (15% ethyl acetate/hexanes). The orange product was dissolved in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 5 mL of 5% aqueous NaHCO_{3} solution. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, solvent was evaporated and the resulting powder (28 mg) was dried over vacuum (0.1 mm) overnight.

Aldol Reaction : To the solution of Schiff base (28 mg) in toluene (22 mL) was added $\mathrm{Ti}(i-\mathrm{PrO})_{4}(0.24 \mathrm{mmol}, 6.9 \mathrm{mg}, 7.3 \mu \mathrm{~L})$ under N_{2}. The orange solution was stirred for 1 h at $23^{\circ} \mathrm{C}$ and 3,5 -di-tert-butyl salicylic acid ($0.029 \mathrm{mmol}, 6.9 \mathrm{mg}$) was added in 1 mL of toluene. Stirring was continued for additional 1 h . The solvent was removed under vacuum and the solid orange residue was dissolved in ether (5 mL). The solution was cooled to $-78^{\circ} \mathrm{C}$, and 2,6-lutidine ($0.098 \mathrm{mmol}, 10.54 \mathrm{mg}, 12 \mu \mathrm{~L}$) was added, followed by aldehyde 9 ($0.492 \mathrm{mmol}, 196 \mathrm{mg}$) in ether (2 mL) and excess of ketene silyl acetal (150 $\mu \mathrm{L})$. The reaction was stirred at $-10^{\circ} \mathrm{C}$ for 3 d , and quenched with 5% aqueous NaHCO_{3} solution. The aqueous layer was extracted with ether, and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The pure product was obtained ($0.907 \mathrm{mg}, 84 \%$) by flash chromatography ($\mathrm{SiO}_{2}, 10 \%$ ethyl acetate/hexanes): IR (neat) $2956,2930,2858,1742,1471,1463,1382,1362,1251,1098,1069,838,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.37(\mathrm{~m}, 5 \mathrm{H}) ; 4.61(\mathrm{~s}, 2 \mathrm{H}) ; 4.24-4.60(\mathrm{~m}, 1 \mathrm{H}) ; 3.67$ (s, 3 H); 2.94-2.97 (m, 1 H); 2.49-2.52 (m, 2 H); 2.39-2.44 (m, 2 H); 1.89-1.91 (m, 1 H); 1.67-1.71 (m, 3 H); 1.44-1.63 (m, 4 H), 0.999 (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ; 0.93-0.97$ (m, 6 $\mathrm{H}) ; 0.89(\mathrm{~s}, 9 \mathrm{H}) ; 0.06(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.95$, $139.23,128.26,128.12,127.55,127.38,127.23,90.36,89.12,75.11,69.62,66.92$, $51.39,45.20,42.82,36.01,34.96,30.88,29.98,25.83,20.19,18.59,17.96,14.38$,
$0.33,0.22,-4.35,-4.52$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{56} \mathrm{O}_{5}: \mathrm{C}, 65.17 ; \mathrm{H}, 10.21$. Found: C, 65.29; H, 10.24 .

(3S,4S,7S,9R,11R)-and (3S,4S,9R,11S)-3-O-(Phenylmethyl)-7-O-((1,1-dimethylethyl)dimethylsilyl)-9,11-O-(1-methyethyledene)-3,7,9,11tetrahydroxyundecanenitrile (11): To a solution of $10(0.823 \mathrm{~g}, 1.57 \mathrm{mmol}, 1$ equiv) in $\mathrm{Et}_{2} \mathrm{O}$ at $-78^{\circ} \mathrm{C}$ was added dropwise a 1.0 M solution of DIBAL-H (1.73 mL , $1.73 \mathrm{mmol}, 1.1$ equiv) under N_{2} and the reaction was stirred for 90 min . The reaction was quenched with 0.8 mL of ethyl formate followed by 10 mL of 10% aqueous AcOH solution and the reaction mixture was warmed to $0^{\circ} \mathrm{C}$. The layers were separated and the aqueous fraction was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The product was quickly purified by flash column chromatography ($\mathrm{SiO}_{2}, 10 \%$ ethyl acetate/hexanes) to obtain the aldehyde ($0.634 \mathrm{~g}, 82 \%$).

The aldehyde was cooled to $0^{\circ} \mathrm{C}$, and trimethylsilyl cyanide ($180 \mu \mathrm{~L}, 1.34 \mathrm{mmol}$, 1.1 equiv) was added followed by $1 \mathrm{mg} \mathrm{KCN} / 18$-crown- 6 complex. After stirring for 6 h at $23^{\circ} \mathrm{C}, 70 \mathrm{mg}$ CSA and 30 mL of acetone/2,2-dimethoxypropane (3:2) were added. After stirring for $16 \mathrm{~h}, 1 \mathrm{~mL}$ of $\mathrm{Et}_{3} \mathrm{~N}$ was added and the reaction mixture was concentrated under reduced pressure. Chromatography ($\mathrm{SiO}_{2}, 10 \%$ ethyl acetate/hexanes) gave (280 $\mathrm{mg}, 47 \%)$ of the desired product as a colorless oil. $[\alpha]^{24}=-6.5^{\circ}\left(c 0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{IR}$ (neat) : 2956, 2931, 2858, 1472, 1383, 1362, 1256, 1205, 1162, 1068, 1029, 1004, 983, $836,809,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.38(\mathrm{~m}, 5 \mathrm{H}), 4.82-4.84(\mathrm{~m}$, $0.5 \mathrm{H}), 4.71-4.73(\mathrm{~m}, 0.5 \mathrm{H}), 4.56-4.62(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.33(\mathrm{~m}, 0.5 \mathrm{H}), 4.01-4.02(\mathrm{~m}$, $0.5 \mathrm{H}), 3.76-3.81(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.97(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H})$,
$1.32-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.76,3 \mathrm{H}), 0.76-0.86(\mathrm{~m}$, $15 \mathrm{H}), 0.07-0.09(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT) $\delta C 139.23,119.88$, $117.80,100.69,99.85,18.66$; CH 128.84, 128.79, 127.94, 127.91, 127.86, 1217.83, $89.74,89.66,69.23,69.20,65.61,63.29,59.67,59.36,36.40,36.37,31.49,26.39$; $\mathrm{CH}_{2} 75.71,75.69,43.54,43.44,35.29,35.26,34.10,29.91 ; \mathrm{CH}_{3} 30.99,26.38$ (3), $22.24,20.78,20.76,19.58,19.32,19.24,14.93,14.83,-3.74,-3.92$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{NO}_{4} \mathrm{Si}: \mathrm{C}, 69.59 ; \mathrm{H}, 9.93$. Found: C, 69.83; H, 10.05.

($2 S, 4 S, 6 R, 8 R, 12 S, 14 R$)-4-Cyano-10-(1,3-dioxalan-2,2-dimethyl-4,4'-yl)-2,4:6,8:12,14-tris- O-(1-methylethylidine)-16-O-phenylmethyl-1-O-(tri(1-methylethyl))silyl-hexadecane-1,2,4,6,8,12,14,16-octanol: To a solution of LiNEt_{2} (0.51 mmol , 3.0 equiv) in 5 mL THF under Ar at $-78^{\circ} \mathrm{C}$ was added nitrile 12 (138 $\mathrm{mg}, 0.42 \mathrm{mmol}, 2.5$ equiv) in 0.6 mL THF via cannula. After stirring for 1 h, DMPU (80 $\mu \mathrm{L}, 0.67 \mathrm{mmol}, 4.0$ equiv) was added, followed by a solution of bromide $6(100 \mathrm{mg}, 0.17$ $\mathrm{mmol}, 1.0$ equiv) dissolved in 0.5 mL of THF. The reaction mixture was allowed to warm up to $23^{\circ} \mathrm{C}$ slowly in an ice-methanol bath. The reaction was then quenched with 5 mL of saturated NaHCO_{3} solution and 5 mL of $\mathrm{H}_{2} \mathrm{O}$. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Chromatography ($\mathrm{SiO}_{2}, 20 \%$ ethyl acetate/hexanes) gave the product ($120 \mathrm{mg}, 85 \%$) as a colorless syrup. $[\alpha]^{24}=+15.3^{\circ}\left(c 4.45, \mathrm{CHCl}_{3}\right.$); IR (neat) 2986, 2941, 2867, 1462, $1380,1224,1175,1124,1054,992,942,910,883,803,772,738,688,661 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.21(\mathrm{~m}, 5 \mathrm{H}), 4.34(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{AB}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H})$, 3.98 (m, 3 H), 3.83 (dd, $J=17.2,1.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.64 (dd, $J=10.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.50$ (dd, $J=10.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ (ddd, $J=8.6,8.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.36 (ddd, $J=9.4$,
$5.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.50(\mathrm{~m}, 7 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.42$ $(\mathrm{s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 6 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.40-$ $1.30(\mathrm{~m}, 7 \mathrm{H}), 1.01(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT) δC 138.4, 121.4, $108.5,100.8,100.5,100.2,81.9,68.7$; СН 128.3 (2), 127.6 (2), 126.5, 67.0, 63.6, $63.15,63.10,62.3,11.8$ (3); $\mathrm{CH}_{2} 73.0,70.7,66.5,66.1,47.8,44.6,44.4,40.2,40.0$, 38.1, 35.9; $\mathrm{CH}_{3} 30.8,27.1,27.0,24.8,24.7,24.5,24.4,21.6,17.9$ (6). HRMS (FAB) Calcd for $\mathrm{C}_{46} \mathrm{H}_{78} \mathrm{NO}_{10}$ Si 832.5395, Found $832.5385[\mathrm{M}+\mathrm{H}]^{+}$.

($2 S, 4 S, 6 R, 8 R, 12 S, 14 R$)-4-Cyano-10-(1,3-dioxalan-2,2-dimethyl-4,4'-yl)-2,4:6,8:12,14-tris- O-(1-methylethylidine)-16-O-phenylmethyl-hexadecane $\mathbf{1 , 2 , 4 , 6 , 8 , 1 2 , 1 4 , 1 6 - n o n o l : ~ T o ~ a ~ s o l u t i o n ~ o f ~ c o m p o u n d ~ o b t a i n e d ~ f r o m ~ p r e v i o u s ~ s t e p ~}$ ($120 \mathrm{mg}, 0.144 \mathrm{mmol}, 1.0$ equiv) and 5 mL dry THF at $0^{\circ} \mathrm{C}$ was added $\operatorname{TBAF}(1.0 \mathrm{M}$ solution in THF, $0.58 \mathrm{~mL}, 0.58 \mathrm{mmol}, 4.0$ equiv) dropwise and stirred for 2 h at $0^{\circ} \mathrm{C}$. The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. THF was removed by rotovap. The residue was extracted by $(3 \times 10 \mathrm{~mL})$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined organic layer was washed with saturated NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure. Chromatography ($\mathrm{SiO}_{2}, 45 \%$ ethyl acetate/hexanes) gave a colorless heavy oil ($88 \mathrm{mg}, 89 \%$) as the desired product: $[\alpha]_{\mathrm{D}}^{24}=+19.2^{\circ}\left(c 1.56, \mathrm{CHCl}_{3}\right) ;$ IR (neat) 3466 , $2986,2939,2868,2244,1455,1381,1225,1174,1122,1053,994,972,940,911,881$, $843,816,735,699,647 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~m}, 5 \mathrm{H}), 4.45(\mathrm{~s}, 2$ H), 4.23 (m, 2 H$), 3.95(\mathrm{~m}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 3 \mathrm{H}), 2.15(\mathrm{~s}$, br, 1 H), 1.98-1.83 (m, 6 H), 1.76 (m, 2 H), $1.72(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.39$ (s, $3 \mathrm{H}), 1.38(\mathrm{~s}, 6 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{DEPT}\right) \delta C 138.4,121.2,108.5,101.0,100.5,100.2,81.9,68.1$;

CH 128.3 (2), 127.6 (2), 127.5, 66.8, 63.6 (2), 63.1, $62.1 ; \mathrm{CH}_{2} 73.0,70.9,66.5,65.1$, 47.6, 44.6, 44.4, 40.2, 40.0, 36.5, 35.9; $\mathrm{CH}_{3} 30.8,27.1,27.0,24.8,24.7,24.5,24.4$, 21.6. HRMS (FAB) Calcd for $\mathrm{C}_{37} \mathrm{H}_{58} \mathrm{NO}_{10} 676.4060$, Found $676.4061[\mathrm{M}+\mathrm{H}]^{+}$.

($2 S, 4 S, 6 R, 8 R, 12 S, 14 R$)-4-Cyano-1-iodo-10-(1,3-dioxalan-2,2-dimethyl-4,4'-yl)-2,4:6,8:12,14-trikis- O-(1-methylethylidine)-16-O-phenylmethyl-hexadecane-2,4,6,8,12,14,16-heptol (13): Alcohol made at previous step (138 $\mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Ph}_{3} \mathrm{P}$ ($185 \mathrm{mg}, 0.7 \mathrm{mmol}, 3.5$ equiv) and imidazole (54 mg , 0.8 mmol , 4.0 equiv) were dissolved in $15 \mathrm{~mL} \mathrm{PhH} / \mathrm{Et}_{2} \mathrm{O}(1: 2)$. At $0^{\circ} \mathrm{C}$, iodine (152 mg , $0.6 \mathrm{mmol}, 3.0$ equiv) was added quickly, resulting a yellowish suspension. After stirring at $0^{\circ} \mathrm{C}$ for 2.5 h , reaction mixture was diluted with 25 mL of $\mathrm{Et}_{2} \mathrm{O}$, washed with 0.5 M $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (yellow color faded) and brine, dried with MgSO_{4}. Filtered and concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}, 20 \%\right.$ ethyl acetate/hexanes) gave the desired product as a colorless oil ($144 \mathrm{mg}, 92 \%$) : $[\alpha]_{\mathrm{D}}^{24}=+18.3^{\circ}\left(c 1.69, \mathrm{CHCl}_{3}\right) ;$ IR (neat) 2988, 2940, 2861,2280, 2268, 1455, 1378, 1290, 1127, 990, 955, 908, 884, 813, 737, 699, 614, $600 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.22(\mathrm{~m}, 5 \mathrm{H}), 4.29-4.20(\mathrm{~m}, 1$ H), $4.26(\mathrm{AB}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~m}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.43$ (ddd, J $=9.5,8.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dt}, J=9.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=10.0,6.0 \mathrm{~Hz}, 1$ H), $2.58(\mathrm{dd}, J=10.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{dd}, J=13.5,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.73-1.56(\mathrm{~m}, 5 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$, $1.36(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{dd}, \mathrm{J}=$ $14.0,11.5 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, DEPT) δ C 138.9, 120.9, 108.3, 101.3, $100.2,99.9,81.7,68.3$; CH 128.1 (2), 127.3 (2), 127.2, 65.8, 63.4, 63.1 (2), 62.1; $\mathrm{CH}_{2} 72.7,70.9,66.3,47.4,44.7,44.5,40.6,40.0(2), 36.2,7.7 ; \mathrm{CH}_{3} 30.5,27.1,27.0$,
24.7, 24.6, 24.44, 24.41, 21.3. HRMS (FAB) Calcd for $\mathrm{C}_{37} \mathrm{H}_{57} \mathrm{NO}_{9} \mathrm{I}$ 786.3080, Found $786.3082[\mathrm{M}+\mathrm{H}]^{+}$.

(3R,5S,9R,11R,13S,15S,17S,19S,21S,24S,25S)-13,17-Di-cyano-1,25-di-O-phenylmethyl-21-O-((1,1-dimethylethyl)dimethylsilyl)-3,5:9,11:13,15:

17,19-tetrakis-O-(1-methylethylidine)-7-(1,3-dioxalan-2,2-dimethyl-4,4'-yl)-24,26-dimethyl-heptacosane-1,3,5,9,11,13,15,17,19,21,25-undecol (14): To a solution of LiNEt_{2} ($0.54 \mathrm{mmol}, 3.0$ equiv) in 5 mL THF under Ar at $-78{ }^{\circ} \mathrm{C}$, was added nitrile 11 ($228 \mathrm{mg}, 0.44 \mathrm{mmol}, 2.4$ equiv) in 0.6 mL THF via cannula. After stirring for 1 h, DMPU ($87 \mu \mathrm{l}, 0.72 \mathrm{mmol}, 4.0$ equiv) was added, followed by a solution of iodide 13 ($142 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.0$ equiv) dissolved in 0.5 mL of THF. The reaction mixture was allowed to warm up to $23^{\circ} \mathrm{C}$ slowly in an ice-methanol bath. The reaction was then quenched with 5 mL of saturated NaHCO_{3} solution and 5 mL of $\mathrm{H}_{2} \mathrm{O}$. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Chromatography ($\mathrm{SiO}_{2}, 25 \%$ ethyl acetate/hexanes) gave a mixture of the product and unreacted iodide which upon MPLC separation gave recovered iodide 13 ($27 \mathrm{mg}, 19 \%$) and the product ($148 \mathrm{mg}, 70 \%$) as a colorless syrup: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.22(\mathrm{~m}, 10 \mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.48$ $(\mathrm{AB}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 3.78$ (m, 1 H), 3.53 (m, 2 H), 2.95 (dd, $J=7.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.01-1.84 (m, 10 H), 1.77$1.60(\mathrm{~m}, 8 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.45(\mathrm{~m}, 8 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}$, $3 \mathrm{H}), 1.38$ ($\mathrm{s}, 3 \mathrm{H}$), 1.37 ($\mathrm{s}, 3 \mathrm{H}$), 1.36 (s, 3 H), 1.34 (s, 6 H). 1.30 (s, 3 H), 0.99 (d, J $=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07$ $(\mathrm{s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right) \delta C$ 139.2, 138.4, 121.0,
$120.9,108.5,101.0$ (2), $100.5,100.2,81.8,68.5,67.8,17.9$, CH 128.3 (2), 128.2 (2), 127.6 (2), 127.5, 127.3 (2), 127.2, 89.0, 68.6, 63.6, 63.1 (2), 63.2, 62.3, 62.2, 35.8, $30.9 ; \mathrm{CH}_{2} 75.1,73.0,70.7,66.5,60.3,47.8,44.6,44.4,43.0,41.1,40.8,40.2,40.0$, 35.9, 34.7, 29.9; $\mathrm{CH}_{3} 31.0,30.8,27.1,25.8$ (3), 24.8, 24.7, 24.6, 24.5, 21.5, 21.3, 20.2, 18.9, 14.4, -4.3, -4.5. HRMS (FAB) Calcd for $\mathrm{C}_{67} \mathrm{H}_{107} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{Si}$ 1175.7542, Found $1175.7603[\mathrm{M}+\mathrm{H}]^{+}$.

($3 R, 5 S, 9 R, 11 S, 13 R, 15 R, 17 S, 19 S, 21 S, 24 S, 25 S$)-7-(1,3-dioxalan-2,2-dimethyl-4,4'-yl)-21-O-[(1,1-dimethylethyl)dimethylsilyl]-

3:5,9:11,13:15,17:19-tetrakis- O-(1-methylethylidine)-24,26-
dimethylheptacosane-1,3,5,9,11,13,15,17,19,21,25-undecol (15): Lithium metal ($80 \mathrm{mg}, 11.5 \mathrm{mmol}, 150$ equiv) was dissolved in 15 mL of ammonia at $-78{ }^{\circ} \mathrm{C}$ to give a bright blue solution. To this solution, then compound 14 ($90 \mathrm{mg}, 0.057 \mathrm{mmol}, 1$ equiv) in 5 mL of dry THF was added via cannula. After stirring for 1 h , the reaction was warmed to reflux and allowed to stir for an additional 30 min . The reaction was then quenched with 1 g of solid $\mathrm{NH}_{4} \mathrm{Cl}$ and warmed to room temperature and the ammonia was allowed to evaporate. The resulting residue was dissolved in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ (20 mL) was added. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 15 \mathrm{~mL})$. The combined extracts were washed with water, brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Chromatography ($\mathrm{SiO}_{2}, 40 \%$ ethyl acetate/hexanes) gave the product ($48 \mathrm{mg}, 69 \%$) as a colorless syrup. IR (neat) $3550,2983,2935,1379$, $1223,1166,1133,1053,938,835,774 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.14-4.07$ $(\mathrm{m}, 8 \mathrm{H}), 3.86(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.73(\mathrm{~s}, 4 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.62(\mathrm{~m}, 12 \mathrm{H})$, $1.62-1.54(\mathrm{~m}, 9 \mathrm{H}), 1.54-1.42(\mathrm{~m}, 14 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 16 \mathrm{H}), 1.32-1.28(\mathrm{~m}, 6 \mathrm{H})$,
$0.96(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.89-0.88(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 2 \mathrm{H}), 0.85(\mathrm{~s}, 1$ H), $0.03(\mathrm{~d}, J=2.14 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3, \mathrm{DEPT}$) C 108.60, 100.37, 100.27, 98.47, 98.32, 81.93; CH 80.03, 69.06, 66.85, 66.17, 65.31, 65.14, 63.36, $63.27,62.42,35.18,30.78 ; \mathrm{CH}_{2} 70.84,61.17,44.78,44.63,43.56,43.24,42.31$, $40.36,39.77,37.99$ (2), $37.69,34.27,29.30, \mathrm{CH}_{3} 30.36,30.30,27.15,27.09,25.89$, $24.91,24.73,24.60,19.85,19.76,19.44,18.39,18.05,13.16$ (3), -4.35, -4.44. HRMS (FAB) Calcd for $\mathrm{C}_{50} \mathrm{H}_{93} \mathrm{O}_{13} \mathrm{Si}\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+} 929.6385$, Found 929.6392.

($3 R, 5 S, 9 R, 11 S, 13 R, 15 R, 17 S, 19 S, 21 S, 24 S, 25 S$)-7-(1,3-dioxalan-2,2-dimethyl-4,4'-yl)-21-O-[(1,1-dimethylethyl)dimethylsilyl]-25-O-(2-
diethylphosphono)propionyl-3:5,9:11,13:15,17:19-tetrakis- O-(1-methylethylidine)-24,26-dimethylheptacosane-$1,3,5,9,11,13,15,17,19,21,25$,-undecol. A solution of $54 \mathrm{mg}(0.25 \mathrm{mmol}, 5.0$ equiv) of the diethylphosphonopropionic acid in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to a solution of a diol $13(4.7 \mathrm{mg}, 0.051 \mathrm{mmol}, 1.0$ equiv), DMAP ($35 \mathrm{mg}, 0.282 \mathrm{mmol}, 5.5$ equiv), and BOP ($91 \mathrm{mg}, 0.205 \mathrm{mmol}, 4.0$ equiv) at $23^{\circ} \mathrm{C}$. The mixture was stirred at 23 ${ }^{\circ} \mathrm{C}$ for 2 d and diluted with EtOAc, washed with $\mathrm{NH}_{4} \mathrm{Cl}$ and NaHCO_{3} solutions, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The crude bis-ester was then treated with 10 mL of NH_{3} saturated MeOH for 4 d at $23{ }^{\circ} \mathrm{C}$. The reaction mixture was concentrated under reduced pressure and purified by flash column chromatography (60% ethyl acetate/hexanes) to give 43 mg (74%) of the product as a colorless syrup. Starting diol ($8 \mathrm{mg}, 17 \%$) was also recovered. IR (neat) : 2984, 2936, 1734, 1379, 1311, 1167, $1052,1025,969,940,775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.1-4.2(\mathrm{~m}, 4 \mathrm{H}) ; 3.96-$
$4.08(\mathrm{~m}, 5 \mathrm{H}) ; 3.91-3.98(\mathrm{~m}, 2 \mathrm{H}) ; 3.88(\mathrm{~s}, 2 \mathrm{H}) ; 3.70-3.80(\mathrm{br} \mathrm{S}, 4 \mathrm{H}) ; 2.95-3.10(\mathrm{~m}, 1$ H); 1.88-1.98 (m, 3 H$), 1.56-1.78(\mathrm{~m}, 9 \mathrm{H}) ; 1.24-1.52(\mathrm{~m}, 52 \mathrm{H}) ; 0.82-0.96(\mathrm{~m}, 21 \mathrm{H})$, $0.02(\mathrm{~s}, 6 \mathrm{H})$. HRMS (FAB) Calcd for $\mathrm{C}_{58} \mathrm{H}_{109} \mathrm{O}_{17} \mathrm{PSi}$ 1159.7069, Found 1159.7073 [M $+\mathrm{Na}]^{+}$.

($3 R, 5 S, 9 R, 11 S, 13 R, 15 R, 17 S, 19 S, 21 S, 24 S, 25 S$)-7-(1,3-Dioxalan-2,2-dimethyl-4,4'-yl)-21-O-[(1,1-dimethylethyl)dimethylsilyl]-25-O-(2-diethylphosphono)propionyl-1-oxo-3:5,9:11,13:15,17:19-tetrakis-O-(1-methylethylidine)-24,26-dimethylheptacosane-
$3,5,9,11,13,15,17,19,21,25-$ decol-1-al (16): A solution of alcohol from the previous step ($30 \mathrm{mg}, 0.026 \mathrm{mmol} .1$ equiv) in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with solid $\mathrm{NaHCO}_{3}(56 \mathrm{mg}, 0.06 \mathrm{mmol}, 25$ equiv) and Dess-Martin reagent ($23 \mathrm{mg}, 0.052 \mathrm{mmol}, 2$ equiv). After 4 h the reaction mixture was diluted with EtOAc, and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \mathrm{~mL})$. The organic portion was then washed with NaHCO_{3}, water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give 26.7 mg (89%) of the aldehyde as a colorless oil : IR (neat) 2986, 2940, $2863,1729,1459,1376,1234,1172,1131,1053,1033,945,832 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.34(\mathrm{~s}, 1 \mathrm{H}), 4.95-4.97(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.89-4.11(\mathrm{~m}, 9$ H), 3.87 (s, 2 H), 3.81-3.85 (m, 2 H), 2.95-3.10 (m, 1 H), 2.12-1.8 (m, 1 H), 1.95-2.12 $(\mathrm{m}, 2 \mathrm{H}), 1.76-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.6(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.54(\mathrm{~m}, 31 \mathrm{H})$, $1.3(\mathrm{~s}, 6 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H}), 1.00-1.18(\mathrm{~m}, 10 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.90-0.94(\mathrm{~m}, 2 \mathrm{H})$, $0.75-0.88(\mathrm{~m}, 9 \mathrm{H}), 0.2(\mathrm{~s}, 6 \mathrm{H})$.

($6 R, 8 S, 12 R, 14 S, 16 R, 18 R, 20 S, 22 S, 24 S, 27 S, 28 S)-10-(1,3-D i o x a l a n-2,2-$ dimethyl-4,4'-yl)-24-O-[(1,1-dimethylethyl)dimethylsilyl]-28-O-(2-diethylphosphono)propionyl-6:8,12:14,16:18,20:22-tetrakis- O-(1-methylethylidine)-27,29-dimethyl-1,3-dienal-triacontane-1-al$\mathbf{6 , 8}, 12,14,16,18,20,22,24,26-$ decol: The Grignard reagent was prepared by combining 1-(4-ethoxybutadienyl)tributylstannane ($57 \mu \mathrm{~L}, 0.16 \mathrm{mmol}, 7.02$ equiv) and butyllithium (2.26 M in hexanes, $66 \mu \mathrm{~L}, 0.0148 \mathrm{mmol}, 6.5$ equiv) in 1 mL of THF at -78 ${ }^{\circ} \mathrm{C}$ followed by the addition of a 0.22 M solution of MgBr_{2} in THF $(0.4 \mathrm{~mL}, 0.0087 \mathrm{mmol}$, 3.8 equiv). A solution of aldehyde 16 ($26 \mathrm{mg}, 0.0023 \mathrm{mmol}, 1$ equiv) in 0.5 mL of THF was added to the Grignard solution at $-78^{\circ} \mathrm{C}$ by cannula, and the flask was rinsed with another 0.5 mL of THF. After 1 h the reaction was warmed slowly to $0{ }^{\circ} \mathrm{C}$ and then quenched with pH 7 phosphate buffer. The mixture was stirred for 10 min and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was extracted ($2 \times 5 \mathrm{~mL}$) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure.

The crude adduct was dissolved in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, cooled to $-40^{\circ} \mathrm{C}$, and treated with $\mathrm{Et}_{3} \mathrm{~N}$ ($70 \mu \mathrm{~L}, 20$ equiv) followed by $\mathrm{MsCl}(22 \mu \mathrm{~L}, 10$ equiv). After 30 min the reaction was quenched with pH 7 phosphate buffer. The mixture was stirred for 15 min , diluted with 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}, 50 \%\right.$ ethyl acetate/hexanes) gave $20.7 \mathrm{mg}(76 \%)$ of the dienal as a light yellow oil. IR (neat) 2986, 2940, 2863, 2355, 1727, 1684, 1641, 1464, 1377, 1248, 1224, 1167, 1109, 1042, $1028,937,893,826,774 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 9.31(\mathrm{~d}, J=7.75,1 \mathrm{H})$, $6.31-6.36(\mathrm{~m}, 1 \mathrm{H}), 5.83-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.76-5.78(\mathrm{~m}, 2 \mathrm{H}), 4.98$ (quintet, $J=9.2 \mathrm{~Hz}, 1$
H), $3.88-4.19(\mathrm{~m}, 14 \mathrm{H}), 3.66(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.11(\mathrm{~m}, 3$ H), 1.75-1.95 (m, 3 H$), 1.68-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.65(\mathrm{~m}, 33 \mathrm{H}), 1.28(\mathrm{~s}, 6 \mathrm{H}), 1.13-$ $1.26(\mathrm{~m}, 3 \mathrm{H}), 0.81-0.96(\mathrm{~m}, 28 \mathrm{H}), 0.63(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H})$.

(10R , 12S $, 16 R, 18 S, 20 R, 22 R, 24 S, 26 S, 31 S, 32 S)$-14-(1,3-dioxalan-2,2-dimethyl-4,4'-yl)-28-O-[(1,1-dimethylethyl)dimethylsilyl]-32-O-(2-diethylphosphono)propionyl-10:12,16:18,20:22,24:26-tetrakis-O-(1-methylethylidine)-31,33-dimethyl-1,3,5,7-tetraene-tetratriacontane-1-al-$10,12,16,18,20,22,24,26,28,32-$ decol (17): The same procedure was repeated using the 20 mg ($16.8 \mu \mathrm{~mol}, 1$ equiv) of dienal and $64 \mu \mathrm{~mol}$ of the Grignard reagent to give $13.3 \mathrm{mg}(10.5 \mu \mathrm{~mol}, 64 \%)$ of tetraenal $17:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 9.38(\mathrm{~d}, J=$ $7.78 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~m}, 1 \mathrm{H}), 5.98-6.19(\mathrm{~m}, 3 \mathrm{H}), 5.78-5.95(\mathrm{~m}, 4 \mathrm{H}), 5.02(\mathrm{~m}, 1 \mathrm{H})$, 3.82-4.22 (m, 14 H$), 3.66(\mathrm{~m}, 1 \mathrm{H}), 2.96-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.02-2.14(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.98$ $(\mathrm{m}, 3 \mathrm{H}), 1.63-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.56(\mathrm{~m}, 33 \mathrm{H}), 1.23-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.12-1.19(\mathrm{~m}, 3$ $\mathrm{H}), 0.85-1.10(\mathrm{~m}, 28 \mathrm{H}), 0.55(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H})$.

(13R,15S,19R,21S,23S,25S,27R,29R,31R,33S,35S)-17-(1,3-dioxalan-2,2-dimethyl-4,4'-yl)-13:15,19:21,23:25,27:29-pentakis-O-(1-methylethylidine)-31-O-((1,1-dimethylethyl)dimethylsilyl)roflamycoin (18):
$\mathrm{LiCl}(9.0 \mathrm{mg}, 0.21 \mathrm{mmol}, 21$ equiv) was dried under high vacuum with heat gun and to it under N_{2} was added tetraenal 17 ($13 \mathrm{mg}, 0.010 \mathrm{mmol}, 1$ equiv) in 8 mL of dry $\mathrm{CH}_{3} \mathrm{CN}$. The reaction mixture was stirred for 30 min at room temperature, followed by addition of $24 \mu \mathrm{~L}$ ($0.16 \mathrm{mmol}, 16$ equiv) of DBU. The reaction mixture was stirred for 16 h , and then diluted with pH 7 phosphate buffer and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}, 15 \%\right.$ ethyl acetate/hexanes) gave $5 \mathrm{mg}(44 \%)$ of the macrocyclic lactone : ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.63(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.33-6.46 (m, 2 H), 6.19-6.25 (dd, $J=10.4,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.98-6.15$ (m, 4 H), $5.88-$ $5.96(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.10(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.24(\mathrm{~m}, 2 \mathrm{H}), 3.86-4.06$ (m, 6 H$), 3.66-3.76(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.16(\mathrm{~m}, 1$ H), $1.90-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H})$, $1.44-1.50(\mathrm{~m}, 6 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3$ H), $1.29(\mathrm{~s}, 3 \mathrm{H}), 1.02-1.03(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.90-$ 0.92 (m, 2 H), 0.70-0.90 (m, 9 H), 0.34 9s, 6 H), 0.15 (s, 3 H), 0.13 (s, 3 H); HRMS (FAB) Calcd for $\mathrm{C}_{62} \mathrm{H}_{104} \mathrm{O}_{13} \mathrm{Si}$ 1083.7171, Found $1083.7179(\mathrm{M}-\mathrm{H})^{+}$.

Roflamycoin: A solution of $5.0 \mathrm{mg}(4.6 \mu \mathrm{~mol})$ of protected roflamycoin 18 in 1 mL of MeOH was treated with 10 mg of Dowex 50 W -X1 acidic resin in the dark under N_{2}. After stirring for 10 h the reaction mixture was filtered and concentrated under reduced pressure. Column chromatography ($\mathrm{SiO}_{2}, 20 \% \mathrm{MeOH} /$ ethyl acetate $)$ gave $2.0 \mathrm{mg}(2.5 \mu \mathrm{~mol}, 57 \%$) of polyol 19. This compound was dissolved in $600 \mu \mathrm{~L}$ of MeOH and to it in dark was added $\mathrm{NaIO}_{4}\left(2 \mathrm{mg}, 9.3 \mu \mathrm{~mol}, 3.74\right.$ equiv) dissolved in $\mathrm{H}_{2} \mathrm{O}(200 \mu \mathrm{~L})$. After 1.5 h , the
reaction mixture was directly loaded onto a flash column ($\mathrm{SiO}_{2}, 20 \% \mathrm{MeOH} /$ ethyl acetate $)$ to give Roflamycoin ($1.8 \mathrm{mg}, 2.4 \mu \mathrm{~mol}, 94 \%$). It was further purified by reverse phase HPLC conditions, eluting with $80: 20 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ to give 1.0 mg of Roflamycoin as a yellow solid which was found to be identical with natural roflamycoin by TLC mobility, ${ }^{1} \mathrm{H}$ NMR, UV, and reverse-phase HPLC analysis. HRMS (FAB) Calcd for $\mathrm{C}_{40} \mathrm{H}_{66} \mathrm{O}_{12} \mathrm{Na}$ 761.4451 , Found $761.4454[\mathrm{M}+\mathrm{Na}]^{+}$.

 ppm

Correlation of Synthetic and Natural Roflamycoin

Synthetic

