J. Am. Chem. Soc., 1996, 118(51), 13103-13104, DOI:10.1021/ja963098j

Terms \& Conditions
Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

Supplemental Material

An experiment on the optical purity of (-)-10-mercaptoisoborneol (2)

A IMF (2 mL) solution of (-)-10-mercaptoisoborneol (2) ($300 \mathrm{mg}, 1.61 \mathrm{mmol}$) was added dropwise to a slurry of 60% sodium hydride ($129 \mathrm{mg}, 3.22 \mathrm{mmol}$), which was washed 3 times with dry ether (5 mL), in dry DMF (10 mL) at $0^{\circ} \mathrm{C}$. After being stirred for 30 min , benzyl bromide ($330 \mathrm{mg}, 1.93 \mathrm{mmol}$) was added dropwise and then stirred for 10 h . The reaction mixture was quenched with a saturated ammonium chloride solution. The solvent was removed in vacuo. The residue was added water (20 mL) and then the aqueous layer was extracted with ethyl acetate ($50 \mathrm{~mL} \times 3$). The combined organic layer was washed with brine, dried (MgSO4), filtered and concentrated in vacuo. Silica gel chromatography of the residue (eluted with hexane : ethyl acetate $=15$: 1) gave the S-benzyl ether of $2\left(440 \mathrm{mg}, 99 \%\right.$ yield). S-Benzyl ether of $2:$ colorless oil; $[\alpha] \mathrm{D}^{27}=-60.3\left(1.17, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}$ $\left(\mathrm{CHCl}_{3}\right) 3600-3500,2950,1490,1450,1385,1065,1045,1025,990,875 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.33-7.23(\mathrm{~m}$, $5 \mathrm{H}), 3.82(\mathrm{dt}, J=7.3$ and $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, \mathrm{~A}$ part of $\mathrm{AB}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, \mathrm{~B}$ part of $\mathrm{AB}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}$, A part of $\mathrm{AB}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, \mathrm{~B}$ part of $\mathrm{AB}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.41$ $(\mathrm{m}, 1 \mathrm{H}), 1.29-1.13(\mathrm{~m}, 1 \mathrm{H}), 1.07-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS} \mathrm{FAB}(+) m / z 276\left(\mathrm{M}^{+}, 22\right)$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{OS}: \mathrm{C}, 73.86 ; \mathrm{H}, 8.75$. Found : C, 73.87; H, 8.86.

The 98% ex of (-)-2 was determined by a chiral HPLC analysis [DAICEL CHIRALCEL OD (25×0.46); fluent: hexane / isopropanol $=99 / 1$; flow rate: $1 \mathrm{~mL} /$ min.; Temp.: $25^{\circ} \mathrm{C}$; detector: $254 \mathrm{~nm}, S$-benzyl ether of (+)-2: $14.1 \mathrm{~min} ., S$-benzyl ether of (-)-2: 15.8 min .].

A General Procedure for the Tandem Michael Addition - MPV Reduction (Table 1, 3a-d)
To a dichloromethane (or benzene) solution (20 mL) of (-)-10-mercaptoisoborneol (2) ($100 \mathrm{mg}, 0.54 \mathrm{mmol}$) was added dropwise dimethyl aluminum chloride (0.94 M hexane solution, $0.57 \mathrm{~mL}, 0.54 \mathrm{~mol}$) at room temperature (ca. $20^{\circ} \mathrm{C}$). After being stirred for 1 h , dichloromethane (or benzene) (5 mL) solution of an $\alpha,(3$-unsaturated ketone $1 \mathrm{a}-\mathrm{d}$ (0.45 mmol) was added dropwise and then the mixture was stirred for hours indicated in Table 1 at room temperature (ca. $20^{\circ} \mathrm{C}$) (if necessary, a Cryobath CB-80, Neslab Co. Ltd., was used to control the temperature). The reaction mixture was quenched with a saturated ammonium chloride solution, then the aqueous layer was extracted with dichloromethane (or ethyl acetate) ($50 \mathrm{~mL} \times 3$). The organic layer was washed with brine, dried (MgSO4), filtered and concentrated in vacuo. Silica gel chromatography of the residue (eluted with hexane : ethyl acetate $=7:$

1-10:1) gave a product 3a-d in the yield shown in Table 1.
(1R)-3-[(1S,4R)-2-Oxobornane-10-sulfenyl]-1,3-diphenyl-1-propanol (Ba)
colorless oil; $[\alpha] \mathrm{D}^{22}=+124.4\left(1.05, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 3640-3170,3605,2960,1735,1492,1450,1410,1045,905,550$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.15(\mathrm{~m}, 10 \mathrm{H}), 4.95(\mathrm{dt}, J=8.6$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=9.1$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.63(\mathrm{~d}$, A part of $\mathrm{AB}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.07(\mathrm{~m}, 3 \mathrm{H}), 2.16(\mathrm{~d}, \mathrm{~B}$ part of $\mathrm{AB}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.01(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.20(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}), 0.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(67.5$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $217.86,144.03,142.98,128.32,127.87,126.97,125.88,71.59,60.63,48.38,47.66,45.75,43.20,42.95,27.42$, 26.67, 26.53, 19.86, 19.79; MS (20 eV) m/z 394 ($\mathrm{M}^{+}, 0.7$), 211 (23), 210 (100), 193 (10), 185 (12), 107 (22), 105 (75), 104 (11); HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{~S}$: 394.1967, found 394.1962.

(2S,4R)-4-[(1S,4R)-2-Oxobornane-10-sulfenyl]-4-phenyl-2-butanol (3b)

colorless oil; $[\alpha]_{\mathrm{D}}{ }^{20}=+134.5\left(2.53, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3650-3260,3610,2970,1735,1710,1450,1410,1375,1360$, $1125,1060,1050,935 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.17(\mathrm{~m}, 5 \mathrm{H}), 4.15-3.95(\mathrm{~m}, 2 \mathrm{H}), 2.61$ (d, A part of $\mathrm{AB}, J=$ $13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.49-2.15 (br s, 1 H), 2.31 (ddd, A part of $\mathrm{AB}, J=18.3,4.7$ and $3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.21 (d, B part of AB, $J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.01(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.83(\mathrm{~d}, \mathrm{~B}$ part of $\mathrm{AB}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.45(\mathrm{~m}, 1 \mathrm{H})$, 1.39-1.13 (m, 1H), $1.20(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}(70 \mathrm{eV}) \mathrm{m} / z 332\left(\mathrm{M}^{+}, 10\right), 185(50), 137(16), 109$ (18), 105 (100), 81 (16), 79 (16); HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}: 332.1810$, found 332.1819.
(1R)-3-[(1S,4R)-2-Oxobornane-10-sulfenyl]-3-(p-methoxyphenyl)-1-phenyl-1-propanol (3c) colorless oil; $[\alpha]_{\mathrm{D}}{ }^{23}=+122.6\left(0.31, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3700,3600,3550-3390,2960,1740,1610,1510,1420,1300$, $1180,1040,835,550 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 4.92(\mathrm{br} \mathrm{dd}, J=9.0 \mathrm{and} 5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=8.7$ and $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.64$ (d, A part of $\mathrm{AB}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.40-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~d}, \mathrm{~B}$ part of $\mathrm{AB}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.37-$ $1.22(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 3 \mathrm{H})$; MS FAB $(+) \mathrm{m} / z 425\left(\mathrm{M}^{+}+\mathrm{H}, 4\right)$; HRMS ($\left.\mathrm{FAB}(+)\right)$ calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right)$: 425.2151, found 425.2152.
(1R)-3-[(1S,4R)-2-Oxobornane-10-sulfenyl]-1-phenyl-3-(p-tolyl)-1-propanol (3d)
colorless oil; $[\alpha]_{\mathrm{D}}{ }^{23}=+126.0\left(0.44, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3700,3600,3550-3400,2960,1740,1600,1510,1450,1410$, $1300,1000,920,620 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.09(\mathrm{~m}, 9 \mathrm{H}), 4.94(\mathrm{br} \mathrm{dt}, J=7.4$ and $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=$ 9.0 and $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, \mathrm{~A}$ part of $\mathrm{AB}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~d}$, B part of AB, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H})$, $0.76(\mathrm{~s}, 3 \mathrm{H})$; $\mathrm{MS} \mathrm{FAB}(+) m / z 409\left(\mathrm{M}^{+}+\mathrm{H}, 10\right)$; $\mathrm{HRMS}(\mathrm{FAB}(+))$ calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right): 409.2201$, found 409.2189.

A General Procedure for Reductive Desulfurization with the Raney Nickel - Sodium Hypophosphite

Combination System (Method A)

To a solution [acetate buffer (pH 5.2) : ethanol $=1: 2,9 \mathrm{~mL}$] of an MPV product $3 \mathrm{a}-\mathrm{d}$ was added Raney $\mathrm{Ni} \mathrm{W}-2$ (ethanol suspension, 2 mL). To a resultant solution was added sodium hypophosphite monohydrate (in water solution, 2 mL) immediately and stirred for minutes indicated in Table 1 at room temperature. The reaction mixture was filtered with celite and then evaporated. To this solution was added water (20 mL), then aqueous layer was extracted with dichloromethane ($30 \mathrm{~mL} \times 3$), washed brine, dried (MgSO_{4}), filtered and concentrated in vacuo. Preparative TLC of the residue (eluted with hexane : ethyl acetate $=3: 1$) gave a
secondary alcohol in the yield shown in Table 1.
(R)-1,3-Diphenylpropanol (4a) (Lit. Table 1, footnote f)
(1R)-3-[(1S,4R)-2-Oxobornane-10-sulfenyl]-1,3-diphenyl-1-propanol (3a) ($50.8 \mathrm{mg}, 0.129 \mathrm{mmol}$) and sodium hypophosphite monohydrate ($136.7 \mathrm{mg}, 1.29 \mathrm{mmol}$) were used. $4 \mathrm{a}:[\alpha]_{\mathrm{D}}{ }^{22}=+16.2(1.17, \mathrm{MeOH}) ;[96 \%$ ee, chiral HPLC analysis; DAICEL CHIRALCEL OD (25 x 0.46); eluent: hexane / isopropanol = 95/5; flow rate: $1 \mathrm{~mL} / \mathrm{min}$; Temp.: $25^{\circ} \mathrm{C}$; detector: $254 \mathrm{~nm},(S)$ 4a: 21.0 min., (R)-4a: 25.0 min.].
(S)-4-Phenylbutan-2-ol (4b)
($2 S, 4 R$)-4-[(1S,4R)-2-Oxobornane-10-sulfenyl]-4-phenyl-2-butanol (3b) (38 $\mathrm{mg}, 0.11 \mathrm{mmol}$) and sodium hypophosphite monohydrate $(180 \mathrm{mg}, 1.65 \mathrm{mmol})$ were used. 4b: colorless oil; $[\alpha]_{\mathrm{D}}{ }^{22}=+18.8\left(0.86, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3680-3230,3625$, $3075,2985,2948,1603,1495,1455,1370,1120,1045,950,850 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.12(\mathrm{~m}, 5 \mathrm{H}), 3.83$ (sextet, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ; \mathrm{MS}(70 \mathrm{eV}) \mathrm{m} / \mathrm{z} 150$ $\left(\mathrm{M}^{+}, 7\right), 132(32), 117(82), 92(48), 91(100), 78(27) ; \mathrm{HRMS}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}: 150.1045$, found 150.1050. [97\% ee, chiral HPLC analysis; DAICEL CHIRALCEL OD (25 x 0.46); eluent: hexane / isopropanol = $95 / 5$; flow rate: $1 \mathrm{~mL} / \mathrm{min} . ;$ Temp.: 25 ${ }^{\circ} \mathrm{C}$; detector: $\left.254 \mathrm{~nm},(R)-4 \mathrm{~b}: 12.4 \mathrm{~min} .,(S)-4 \mathrm{~b}: 18.0 \mathrm{~min}.\right]$.
(R)-3-(p-Methoxyphenyl)-1-phenylpropanol (4c)
(R)-3-[(1S,4R)-2-Oxobornane-10-sulfenyl]-3-(p-methoxyphenyl)-1-phenyl-1-propanol (3c) ($24 \mathrm{mg}, 0.057 \mathrm{mmol}$) and sodium hypophosphite monohydrate ($0.57 \mathrm{mmol}, 60 \mathrm{mg}$) were used. 4c: colorless needles, $\mathrm{mp} 96-97^{\circ} \mathrm{C}$ (hexane); $[\alpha]_{\mathrm{D}}{ }^{28}=+17.1(0.14$, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3600,3450(\mathrm{br}), 3000,2925,2850,1615,1510,1450,1290,1170,1060,830 \mathrm{~cm}^{-1} ; 1_{\mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz},}$ $\left.\mathrm{CDCl}_{3}\right) \delta 7.36-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{dd}, J=7.8$ and $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, 2.75-2.55 (m, 2 H$), 2.17-1.91(\mathrm{~m}, 3 \mathrm{H})$; MS $[\mathrm{FAB}(+)] m / z 242\left(\mathrm{M}^{+}, 20\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 78.23; H, 7.88. Found: C, 78.13; H, 7.72. [96\% ee, chiral HPLC analysis; DAICEL CHIRALPAK AS (25×0.46); eluent: hexane / isopropanol $=95 /$ 5; flow rate: $1 \mathrm{~mL} / \mathrm{min} . ;$ Temp.: $25^{\circ} \mathrm{C}$; detector: $\left.254 \mathrm{~nm},(S)-4 \mathrm{c}: 13.7 \mathrm{~min} .,(R)-4 \mathrm{c}: 18.1 \mathrm{~min}.\right]$.
(R)-1-Phenyl-3-(p-tolyl)propanol (4d)
(R)-3-[(1S,4R)-2-Oxobornane-10-sulfenyl]-1-phenyl-3- p-tolyl)-1-propanol (3d) (32 mg, 0.077 mmol) and sodium hypophosphite monohydrate ($82 \mathrm{mg}, 0.77 \mathrm{mmol}$) were used. 4d: colorless needles; $\mathrm{mp} 73-74^{\circ} \mathrm{C}$ (hexane); $[\alpha]_{\mathrm{D}}{ }^{25}=+22.6(0.45$, CHCl_{3}); IR (CHCl_{3}) $3600,3440(\mathrm{br}), 3000,2930,2860,1510,1450,1380,1050,910,560 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.35-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{~s}, 4 \mathrm{H}), 4.67(\mathrm{dd}, J=7.8$ and $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.29-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.88$ (br s, 1H); MS [FAB(+)] m/z $226\left(\mathrm{M}^{+}, 5\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 84.07 ; \mathrm{H}, 8.47$. Found: C, 84.33; H, 8.25. [98\% ee, chiral HPLC analysis; DAICEL CHIRALCEL OD (25 x 0.46); eluent: hexane / isopropanol = $95 / 5$; flow rate: $1 \mathrm{~mL} / \mathrm{min}$.; Temp.: $25^{\circ} \mathrm{C}$; detector: $\left.254 \mathrm{~nm},(R)-4 \mathrm{~d}: 14.2 \mathrm{~min} .,(S)-4 \mathrm{~d}: 16.9 \mathrm{~min}.\right]$.

Tandem Michael Addition - MPV Reduction Reaction (Table 1, 3e-g)

The same procedure as described on the general procedure was carried out using (-)-10-mercaptoisoborneol ($150 \mathrm{mg}, 0.81 \mathrm{mmol}$), dimethyl aluminum chloride (0.94 M hexane solution, $0.81 \mathrm{~mL}, 0.86 \mathrm{~mol}$), and an α, β-unsaturated ketone $1 \mathbf{e - g}(0.67 \mathrm{mmol})$. Silica gel chromatography of the crude product (eluted with hexane : ethyl acetate $=6: 1-8: 1$) gave a product $3 \mathrm{e}-\mathrm{g}$ in the yield shown in Table 1.

(S)-4-[(1S,4R)-2-Oxobornane-10-sulfenyl]-4-metyl-2-pentanol (3e)

colorless oil; $[\alpha]_{\mathrm{D}}{ }^{22}=+43.5\left(0.40, \mathrm{CHCl}_{3}\right)$; IR (CHCl_{3}) $3680,3600-3225,2965,2930,1735,1455,1415,1370,1280$, $1140,1040,925 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.17-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.83$ (d, A part of $\mathrm{AB}, J=11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.49(\mathrm{~d}, \mathrm{~B}$ part of $\mathrm{AB}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (ddd, A part of $\mathrm{AB}, J=18.3,4.3$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.19-1.78 (m, 3 H), $1.86(\mathrm{~d}$, B part of $\mathrm{AB}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-0.83(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}$, $3 \mathrm{H})$; MS (70 eV) m/z $284\left(\mathrm{M}^{+}, 26\right), 185(100), 109(47), 108(42), 85(72), 81(49), 67(41), 57(91), 55$ (54); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}: 284.1810$, found 284.1817.

(S)-4-[(1S,4R)-2-Oxobornane-10-sulfenyl]-2-butanol (3f)

colorless oil; $[\alpha]_{\mathrm{D}}{ }^{16}=+32.0\left(0.32, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3655-3210,3625,2980,1735,1455,1410,1390,1375,1280$, $1120,1050 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.96$ (sextet, $\left.J=6.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.82(\mathrm{~d}, \mathrm{~A}$ part of $\mathrm{AB}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~d}, \mathrm{~B}$ part of $\mathrm{AB}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (ddd, A part of $\mathrm{AB}, J=18.3,4.6$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-1.87(\mathrm{~m}$, $3 \mathrm{H}), 1.88(\mathrm{~d}, \mathrm{~B}$ part of $\mathrm{AB}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.31(\mathrm{~m}, 1 \mathrm{H})$, $1.22(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) 217.67,66.99,60.88,47.75,43.39,43.06$, 38.14, 31.03, 29.11, 26.79, 26.71, 23.39, 20.12 (2 carbons); MS (70 eV) $m / z 256$ ($\mathrm{M}^{+}, 65$), 185 (26), 183 (100), 113 (39), 109 (55), 107 (46), 93 (26), 81 (52), 79 (36), 67 (46), 55 (49); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}: 256.1497$, found 256.1490 .

(S)-1-[(1S,4R)-2-Oxobornane-10-sulfenyl]-3-octanol (3g)

colorless oil; $[\alpha]_{\mathrm{D}}{ }^{17}=+27.1\left(2.01, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3630,3680-3255,2980,2950,1740,1710,1465,1450,1415$, $1385,1375,1280,1050 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.82-3.68(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~d}, \mathrm{~A}$ part of $\mathrm{AB}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$ (br $\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~d}, \mathrm{~B}$ part of $\mathrm{AB}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{ddd}, \mathrm{A}$ part of $\mathrm{AB}, J=18.4,4.7$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.14-1.89 $(\mathrm{m}, 4 \mathrm{H}), 1.88(\mathrm{~d}, \mathrm{~B}$ part of $\mathrm{AB}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.21(\mathrm{~m}, 10 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H})$; MS (70 eV) $m / z 312\left(\mathrm{M}^{+}, 34\right), 185(72), 183(100), 109(57), 107(43), 81(68), 69(55), 67(56), 55$ (80); HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{~S}: 312.2123$, found 312.2114 .

Benzoylation of the Hydroxy group of 3e-g

(S)-2-Benzoyloxy-4-[(1S,4R)-2-oxobornane-10-sulfenyl]-4-methyl-2-pentane (Table 1, entry 8, 9)

To a pyridine solution (5 mL) of $3 \mathrm{e}(79 \mathrm{mg}, 0.28 \mathrm{mmol})$ was added dropwise benzoyl chloride ($0.039 \mathrm{~mL}, 0.34 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ and the mixture was allowed to warm up to room temperature and stirred for 1 h . After removal of the solvent under reduced pressure, water (20 mL) was added the residue. The mixture was extracted with ether ($20 \mathrm{~mL} \times 3$). The combined extract was dried
$\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Silica gel chromatography of the residue (hexane : ethyl acetate $=10: 1$) gave ($($)-2-benzoyloxy-4[(1S,4R)-2-oxobornane-10-sulfenyl]-4-methyl-2-pentane ($105 \mathrm{mg}, 96 \%$) as colorless oil. IR (CHCl_{3}); 2970, 2940, 1735, 1710, 1450, 1315, 1280, $1115 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.09-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.49-$ $7.40(\mathrm{~m}, 2 \mathrm{H}), 5.49-5.38(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~d}, \mathrm{~A}$ part of $\mathrm{AB}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~d}, \mathrm{~B}$ part of $\mathrm{AB}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{ddd}, \mathrm{A}$ part of $\mathrm{AB}, J=18.3,4.6$ and $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-1.91(\mathrm{~m}, 5 \mathrm{H}), 1.85(\mathrm{~d}, \mathrm{~B}$ part of $\mathrm{AB}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.37$ (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}$), 1.34 ($\mathrm{s}, 3 \mathrm{H}$), $1.32(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}(70 \mathrm{eV}) \mathrm{m} / \mathrm{z} 388\left(\mathrm{M}^{+}, 1\right), 122(28), 105(100), 83$ (11), 77 (53), 51 (24); HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{~S}: 388.2073$, found 388.2072.
(S)-2-Benzoyloxy-4-[(1S,4R)-2-Oxobornane-10-sulfenyl]butane (Table 1, entry 10)

The same procedure described above was carried out using $3 \mathrm{f}(83 \mathrm{mg}, 0.32 \mathrm{mmol}$), pyridine (10 mL), benzoyl chloride (0.11 $\mathrm{mL}, 0.969 \mathrm{mmol}$) for 12 h . Silica gel chromatography of the residue (eluted with hexane: ethyl acetate $=8: 1$) gave (S)-2-benzoyloxy-4[($1 S, 4 R$)-2-oxobornane-10-sulfenyl]butane ($111 \mathrm{mg}, 96 \%$) as colorless oil. IR (CHCl_{3}): 3545, 3075, 2975, 1730, $1710,1603,1450,1410,1390,1370,1355,1315,1280,1110,1050,1025 \mathrm{~cm}^{-1} ;{ }^{1}{ }^{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.07-8.01(\mathrm{~m}$, $2 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 2 \mathrm{H}), 5.31-5.20(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~d}, \mathrm{~A}$ part of $\mathrm{AB}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.54$ (d, B part of $\mathrm{AB}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.42 (ddd, A part of $\mathrm{AB}, J=18.3,4.7$ and $2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.15-1.87 ($\mathrm{m}, 5 \mathrm{H}$), 1.86 (d, B part of $\mathrm{AB}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}(70 \mathrm{eV})$ $m / z 360\left(\mathrm{M}^{+}, 31\right), 238(52), 183(82), 109(35), 105(100), 81(38), 77(58), 55(48)$; HRMS caled for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~S}: 360.1759$, found 360.1765 .

(S)-3-Benzoyloxy-1-[(1S,4R)-2-oxobornane-10-sulfenylloctane (Table 1, entry 11)

The same procedure described above was carried out using $\mathbf{3 g}$ ($168.2 \mathrm{mg}, 0.54 \mathrm{mmol}$), pyridine (7 mL), benzoyl chloride (0.125 $\mathrm{mL}, 1.08 \mathrm{mmol}$) for 13 h . Silica gel chromatography of the residue (eluted with hexane : ethyl acetate $=10: 1$) gave (S)-3-benzoyloxy-1-[(1S,4R)-2-oxobornane-10-sulfenyl]-3-octane ($219.9 \mathrm{mg}, 98 \%$) as colorless oil. IR (CHCl_{3}) 2975, 2950, 2890, $2875,1740,1710,1450,1315,1270,1110,1025 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.32(\mathrm{~m}, 3 \mathrm{H})$, 5.27-5.18 ($\mathrm{m}, 1 \mathrm{H}$), $2.80(\mathrm{~d}, \mathrm{~A}$ part of $\mathrm{AB}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~d}, \mathrm{~B}$ part of $\mathrm{AB}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (ddd, A part of AB, $J=18.2,4.6$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.12-1.83(\mathrm{~m}, 5 \mathrm{H}), 1.85(\mathrm{~d}, \mathrm{~B}$ part of $\mathrm{AB}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.54(\mathrm{~m}, 2 \mathrm{H})$, 1.52-1.13 (m, 8H), $1.02(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{brt}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ; \mathrm{MS}(70 \mathrm{eV}) \mathrm{m} / \mathrm{z} 416\left(\mathrm{M}^{+}, 9\right), 295(36), 183(43), 110$ (30), 109 (41), 105 (100), 81 (50), 77 (54), 69 (38), 67 (44), 55 (46); Anal. calcd for $\mathrm{C}_{2} \mathrm{H}_{36} \mathrm{O} 3 \mathrm{~S}: \mathrm{C}, 72.07$; H, 8.71. Found: C, 72.23; H, 8.80.

Reductive Desulfurization with Raney Nickel in EtOH (Table 1, Method B)

(S)-2-Benzoyl-4-methylpentane (4e)

To an ethanol solution (4 mL) of ((S)-2-benzoyloxy-4-methyl-4-[($1 S, 4 R$)-2-oxobomane-10-sulfenyl]pentane ($51.7 \mathrm{mg}, 0.13$ mmol) was added Raney Ni W-2 (ethanol suspension, 2 mL) and then stirred 2 h at room temperature. The reaction mixture was
filtered with celite and concentrated in vacuo. A preparative TLC gave (S)-2-benzoyl-4-methylpentane (4 e) ($10 \mathrm{mg}, 75 \%$) as colorless oil. $[\alpha]_{\mathrm{D}}{ }^{22}=+37.1\left(0.16, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 3545,3080,2970,1700,1603,1450,1315,1275,1170,1110,1070$, $1020,910 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.12-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.38(\mathrm{~m}, 3 \mathrm{H}), 5.34-5.17(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.63(\mathrm{~m}, 2 \mathrm{H})$, $1.33(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.50-1.24(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ; \mathrm{MS}:(70 \mathrm{eV}) m / z 206\left(\mathrm{M}^{+}, 0.1\right)$, 123 (12), 105 (100), 84 (69), 77 (34), 69 (36), 51 (12); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$: 206.1307, found 206.1326. [98\% ee, chiral HPLC analysis; DAICEL CHIRALCEL OB (25×0.46); eluent: hexane / isopropanol $=99 / 1$; flow rate: $0.2 \mathrm{~mL} / \mathrm{min}$.; Temp.: 25 ${ }^{\circ} \mathrm{C}$; detector: $254 \mathrm{~nm},(R)-4 \mathrm{e}: 19.4 \mathrm{~min} .,(S)-4 \mathrm{e}: 20.8 \mathrm{~min}$].

(S)-2-Benzoyloxybutane (4f)

To an ethanol solution (10 mL) of ($2 S$)-2-benzoyloxy-4[($1 S, 4 R$)-2-oxobornane-10-sulfenyl]butane ($28 \mathrm{mg}, 0.08 \mathrm{mmol}$) was added Raney Ni W-2 (ethanol suspension, 5 mL) and then refluxed 2 h at $90^{\circ} \mathrm{C}$. The reaction mixture was filtered with celite and concentrated in vacuo. Preparative TLC gave (S)-2-benzoylbutane ($10 \mathrm{mg}, 73 \%$) as colorless oil. $\quad[\alpha] \mathrm{D}^{25}=+39.7(0.12$, CHCl_{3}); $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 2980,2950,2890,1705,1445,1380,1350,1270,1170,1100,1065,1015,965,880 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.38(\mathrm{~m}, 3 \mathrm{H}), 5.10($ sextet, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, 3H), $0.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$; MS (70 eV) $m / z 178\left(\mathrm{M}^{+}, 0.6\right), 123$ (45), 105 (100), 77 (39), 73 (10), 56 (20), 51 (15); HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$: 178.0994 , found 178.0999. [98\% ee, chiral HPLC analysis; DAICEL CHIRALCEL OB (25×0.46); eluent: hexane / isopropanol = $99 /$; flow rate: $0.2 \mathrm{~mL} /$ min.; Temp.: $25^{\circ} \mathrm{C}$; detector: $254 \mathrm{~nm},(R)-4 \mathrm{f}: 22.3 \mathrm{~min}$., $(S)-4 \mathrm{f}: 25.1$ min.].

(R)-3-Benzoyloxyoctane (4g)

The same procedure described on the synthesis of 4 e , was carried out using (S)-3-benzoyloxy-1-[(1S,4R)-2-oxobornane-10-sulfenyll-3-octane ($40 \mathrm{mg}, 0.096 \mathrm{mmol}$), Raney Ni W2 (suspension, 1.5 mL), and ethanol (7 mL) for 31 h to give $\mathbf{4 g}$ (17.5 mg , $77 \%)$ as colorless oil. $[\alpha]_{D}{ }^{23}=-8.0\left(0.28, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3530,3075,2975,2950,2860,1705,1603,1450,1315$, $1280,1110,1065,1020,920 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 2 \mathrm{H})$, 5.08 (quintet, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.22(\mathrm{~m}, 6 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{br} \mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$; MS $(70 \mathrm{eV}) m / z 234$ ($\mathrm{M}^{+}, 0.6$), 123 (23), 112 (16), 105 (100), 77 (28), 70 (11); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$: 234.1620, found 234.1601. [97\% ee, chiral HPLC analysis; DAICEL CHIRALCEL OF (25×0.46); eluent: hexane / isopropanol $=1000 / 1$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$.; Temp.: $24^{\circ} \mathrm{C}$; detector: $254 \mathrm{~nm},(R)-4 \mathrm{~g}: 15.8 \mathrm{~min} .,(S)-4 \mathrm{~g}: 19.3 \mathrm{~min} .1$.

(1S,2R,4R)-10-Mercaptoisoborneol-2-d

($1 S, 2 R, 4 R$)-10-Mercaptoisoborneol-2-d was prepared by Eliel's procedure ${ }^{6 \mathrm{a}}$ using lithium aluminum deuteride ($>98 \% \mathrm{D}$) $(45 \%$, 2 steps). white powder; $[\alpha]_{\mathrm{D}}{ }^{27}=-58.1\left(0.98, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3600-3400,2975,2170,1450,1385,1080,965 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.78(\mathrm{dd}, \mathrm{A}$ part of $\mathrm{AB}, J=12.7$ and $9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, \mathrm{B}$ part of $\mathrm{AB}, J=12.7$ and $5.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.07(\mathrm{~s}, 1 \mathrm{H}), 1.83-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 1 \mathrm{H}) 1.32-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{dd}, J=9.7 \mathrm{and} 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.10-1.01(\mathrm{~m}, 1 \mathrm{H}) 1.05$ $(\mathrm{s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS} \operatorname{FAB}(+) m / z 170\left(\mathrm{M}^{+}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}, 70\right)$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{DS}\left(\mathrm{M}^{+}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right): 170.1114$, found 170.1121.

4-[(1S, 2R,4R)-2-Hydroxybornane-10-sulfenyl]-2-butanone-2-d (6)

To a dry THF solution (10 mL) of ($1 S, 2 R, 4 R$)-10-mercaptoisoborneol-2-d ($200 \mathrm{mg}, 1.07 \mathrm{mmol}$) was added dropwise triethylamine ($5.37 \mathrm{mmol}, 0.75 \mathrm{~mL}$) at room temperature. After being stirred for 30 min and methyl vinyl ketone ($112 \mathrm{mg}, 1.60$ mmol) was added dropwise and then stirred for 4 h at room temperature. The reaction mixture was quenched with a saturated ammonium chloride solution. The solvent was removed in vacuo. The residue was added water (20 mL) and then the aqueous layer was extracted with ethyl acetate $\left(50 \mathrm{~mL} \mathrm{x} \mathrm{3)}\right.$. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Silica gel chromatography of the residue (eluted with hexane : ethyl acetate $=4: 1$) gave 6 ($275 \mathrm{mg}, 100 \%$ yield) as colorless oil. 6: $[\alpha]_{\mathrm{D}}{ }^{27}=-23.3\left(0.18, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3600-3450,2955,1710,1660,1360,1080 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.80(\mathrm{~d}, \mathrm{~A}$ part of $\mathrm{AB}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{br} \mathrm{t}, J=3.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.57$ (d, B part of $\mathrm{AB}, J=11.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.46(\mathrm{~s}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.09-1.01(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 0.84$ ($\mathrm{s}, 3 \mathrm{H}$); MS FAB(+) $m / z 257\left(\mathrm{M}^{+}, 29\right)$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{DO}_{2} \mathrm{~S}: 257.1560$, found 257.1542.

5-[(1S, $2 R, 4 R)-2-H y d r o x y b o r n a n e-10-s u l f e n y l]-3-p e n t e n o n e ~(7) ~$
The same procedure described above carried out using (-)-10-mercaptoisobomeol (2) ($200 \mathrm{mg}, 1.07 \mathrm{mmol}$), ethyl vinyl ketone $(135 \mathrm{mg}, 1.61 \mathrm{mmol})$, triethylamine ($5.37 \mathrm{mmol}, 0.75 \mathrm{~mL}$) and dry THF (10 mL), to give 7 ($288 \mathrm{mg}, 99 \%$ yield) as colorless oil. 7: $[\alpha]]^{25}=-42.1\left(3.35, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 3600-3450,2950,1710,1450,1105,1065,875 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 3.86(\mathrm{br} \mathrm{dt}, J=7.6$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.68(\mathrm{~m}, 4 \mathrm{H}), 2.80(\mathrm{~d}, \mathrm{~A}$ part of $\mathrm{AB}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, \mathrm{~B}$ part of AB , $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.13(\mathrm{~m}, 1 \mathrm{H})$, 1.11-0.98($\mathrm{m}, 1 \mathrm{H}$), $1.08(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS} \mathrm{FAB}(+) m / z 270\left(\mathrm{M}^{+}, 62\right)$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}: 270.1653$, found 270.1640 .

A crossover experiment (Scheme 2)

Dimethylaluminum chloride ($0.52 \mathrm{~mL}, 0.94 \mathrm{M}$ hexane solution, 0.49 mmol) was added dropwise to a dry dichloromethane solution (10 mL) of $6(63 \mathrm{mg}, 0.25 \mathrm{mmol})$ and $7(66 \mathrm{mg}, 0.25 \mathrm{mmol})$, and then stirred for 22 h at room temperature. The reaction mixture was quenched with a saturated ammonium chloride solution and then extracted with ethyl acetate ($50 \mathrm{~mL} \times 3$). The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Silica gel chromatography of the residue (eluted with hexane : ethyl acetate $=10: 1$) gave $8(58 \mathrm{mg}, 92 \%$ yield) and $9(60 \mathrm{mg}, 91 \%$ yield).
$(S)-4-\left[(1 S, 4 R)-2\right.$-Oxobornane-10-sulfenyl]-2-butanol-2-d (8): colorless oil; $[\alpha]_{\mathrm{D}}{ }^{27}=+31.5\left(0.50, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3605$, $3500-3400,2960,1740,1450,1405,1370,1040,930 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.82$ (d, A part of $\mathrm{AB}, J=13.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.69(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{~d}, \mathrm{~B}$ part of $\mathrm{AB}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (ddd, A part of $\mathrm{AB}, J=18.4,4.6$ and $2.6 \mathrm{~Hz}, 1 \mathrm{H}$),
2.17-1.92 (m, 4H), 1.87 (d, B part of AB, $J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.21$ $(\mathrm{s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H})$; MS FAB(+) $m / z 258\left(\mathrm{M}^{+}+\mathrm{H}, 100\right)$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{DO}_{2} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right): 258.1638$, found 258.1660 .
$(S)-5-\left[(1 S, 4 R)-2\right.$-Oxobornane-10-sulfenyl]-3-pentanol (9): colorless oil; $[\alpha]{ }^{24}=+35.8\left(1.44, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3600$, $3450(\mathrm{br}), 2960,1730,1410,1045,960 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.68-3.65(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~d}, \mathrm{~A}$ part of $\mathrm{AB}, \mathrm{J}=13.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.70(\mathrm{brt}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~d}, \mathrm{~B}$ part of $\mathrm{AB}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (ddd, A part of $\mathrm{AB}, J=18.4,4.7 \mathrm{and} 2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.11-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.88(\mathrm{~d}, \mathrm{~B}$ part of $\mathrm{AB}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.22(\mathrm{~m}, 4 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) ; \operatorname{MS~FAB}(+) m / z ; 271\left(\mathrm{M}^{+}+\mathrm{H}, 75\right)$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right):$ 271.1732, found 271.1714.

The determination of the configuration on the alcoholic carbon by modified Mosher's

Method

The configurations on the alcoholic carbons of $\mathbf{4 e}, 4 \mathrm{f}$, and 9 shown below were determined by modified Mosher's method (Ohtani, I.: Kusumi, T. et al. J. Am. Chem. Soc. 1991, 113, 4092-4096).

Oxidation of 3b to the corresponding sulfone for X-ray crystallographic analysis (2S,4R)-4-[(1S,4R)-2-Oxobornane-10-sulfonyl]-4-phenyl-2-butanol

To a solution of ($2 S, 4 R$)-4-[(1S,4R)-2-oxobornane-10-sulfenyl]-4-phenyl-2-butanol (3 b) ($165 \mathrm{mg}, 0.50 \mathrm{mmol}$) in methanol/ water $=5: 2(28 \mathrm{~mL})$ was added oxone $(1.53 \mathrm{~g}, 2.50 \mathrm{mmol})$ and then the mixture was stirred for 12 h at room temperature. The solvent was removed in vacuo. The residue was added water $(20 \mathrm{~mL})$ and then the aqueous layer was extracted with ethyl acetate ($50 \mathrm{~mL} \times 3$). The combined organic layer was washed with brine, dried (MgSO 4), filtered and concentrated in vacuo. Silica gel chromatography of the residue (eluted with hexane : ethyl acetate $=1: 1)$ gave the $(2 S, 4 R)-4[(1 S, 4 R)$ - 2 -oxobornane- 10 -sulfonyl]-4-
phenyl-2-butanol ($175 \mathrm{mg}, 97 \%$ yield). Recrystallization of the product (37 mg) from ether gave colorless needles (31 mg) for the X-ray crystallographic analysis. colorless needles: mp $110^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ;\left[\alpha \mathrm{D}^{28}=+74.0\left(0.24, \mathrm{CHCl}_{3}\right)\right.$; IR ($\left.\mathrm{CHCl}_{3}\right) 3600,3510$ (br), $2960,1740,1600,1310,1120,930 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 3 \mathrm{H}), 4.98(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~d}, \mathrm{~A}$ part of $\mathrm{AB}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.62($ ddd, A part of $\mathrm{AB}, J=14.3,6.9 \mathrm{and} 5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.34(\mathrm{~d}, \mathrm{~B}$ part of $\mathrm{AB}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-1.87(\mathrm{~m}, 8 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.66$ ($\mathrm{s}, 3 \mathrm{H}$); MS FAB(+) m/z $365\left(\mathrm{M}^{+}+1,47\right)$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 65.90 ; \mathrm{H}, 7.74$. Found : C, 65.52; H, 7.79.

The monoclinic crystal were observed with a couple of two different conformers: Crystal data for $(2 S, 4 R)-4-[(1 S, 4 R)-2-$ oxobornane-10-sulfonyl]-4-phenyl-2-butanol: $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~S}, \mathrm{M}=364.50$, monoclinic, space group $\mathrm{P} 2_{1}(\nRightarrow 4)$, $\mathrm{a}=10.148(1)$, $\mathrm{b}=$ $17.681(1), \mathrm{c}=10.6260(8) \AA, \beta=91.320(7)^{\circ}, V=1906.0(2) \AA^{3}, Z=4, D_{\mathrm{c}}=1.270 \mathrm{~g} / \mathrm{cm}^{3}, \mu=16.80 \mathrm{~cm}^{-1}, \mathrm{~T}=297 \mathrm{~K}, 3126$ measured reflections, 2945 unique reflections, 2714 reflections with $I>3 \sigma(I)$ used in refinement, direct methods and Fourier techniques, $R=0.037, R_{w}=0.055$. The data were collected using a Rigaku AFC7R diffractometer with graphite-monochromated $\mathrm{Cu}-\mathrm{Ka}$ radiation ($\lambda=1.54178 \AA$) by the $\omega-2 \theta$ scan technique in the range $59.15<2 \theta<59.87^{\circ}$. The structure was solved by direct methods and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined.

MOPAC calculation

The minimization of structures and the calculation of heat of formations were performed with a software, Builder and MOPAC (PM3 ver. 6) on Insight II system (Biosym Technologies, Scranton Road, San Diego, CA 92121-2777) in 4.3BSD UNIX system using a hardware, IRIS work station (4DRPC ${ }^{2}$ extreme, Silicon Graphics Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311).

The corresponding sulfone of $\mathbf{3 b}$

The corresponding sulfone of $\mathbf{3 b}$

Heat of Formation (FM3 Calculation. MOFAC ver. 6)

