J. Am. Chem. Soc., 1997, 119(1), 233-234, DOI:10.1021/ja9630957

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

The Sila-Wittig Rearrangement

Atsushi Kawachi, Noriyuki Doi, and Kohei Tamao*
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan

Experimental Details

General Remarks. ${ }^{1} \mathrm{H}(200 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(50.29 \mathrm{MHz})$ NMR spectra were recorded on a Varian VXR-200 spectrometer, or ${ }^{1} \mathrm{H}(270 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(67.94 \mathrm{MHz})$ NMR spectra were recorded on a JEOL EX- 270 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are referenced to internal benzene- $\mathrm{d}_{6}\left({ }^{1} \mathrm{H} \delta\right.$ 7.200 ppm and ${ }^{13} \mathrm{C} \delta 128.00 \mathrm{ppm}$) or $\mathrm{CDCl}_{3}\left({ }^{13} \mathrm{C} \delta 77.00 \mathrm{ppm}\right)$. Mass spectra were measured at 70 eV on a JEOL JMS-DX300 mass spectrometer equipped with a JMA-3500 data processing system. Melting points were measured with a Yanaco-MP-S3 apparatus and were uncorrected. The elemental analyses were performed at the Microanalysis Division of Institute for Chemical Research, Kyoto University: Analytical samples were purified by preparative GLC, preparative HPLC, or recycling reverse-phase liquid chromatography. Analytical and preparative GLC were performed on a Shimadzu GC-4B gas chromatography, equipped with a $3-\mathrm{m}$ or 1 -m column packed with 30% Silicone DC550 on Celite 545. Recycling reverse-phase liquid chromatography was performed with JAI LC-908 equipped with JAIGEL-ODS S-343-15 and P-15 columns. Reverse-phase column chromatography was performed by using Wakogel LP-40C18 (20-40 $\mu \mathrm{m}$) (Wako Pure Chemical Industries). Reverse-phase thin layer chromatography was performed on plates of RP-18 F254S (Merck). Column chromatography was performed by using Kieselgel 60 (70-230 mesh) (Merck). Thin layer chromatography was performed on plates of silica gel 60F-254 (Merck).

Trimethylchlorostannane was prepared by disproportionation between tetramethylstannane and dimethyldichlorostannane (Grant, D.; Wazer, J. R. J. Organomet. Chem. 1965, 4, 229): the last was kindly donated from Nitto Kasei Co.. Diphenyldichlorosilane was kindly donated from Shin-Etsu Chemical Co., Ltd.. Diphenylchlorosilane and silicon tetrachloride were purchased from Shin-Etsu Chemical Co., Ltd.. Trimethylchlorosilane was treated with small pieces of sodium under a nitrogen
atmosphere to remove the dissolved HCl and the supernatant was used. n-Butyllithium in hexane, tertbutyllithium in pentane, and granular lithium were purchased from Wako Pure Chemical Industries, Kanto Chemical Co., Inc., and Chemetall Gesellshaft, respectively. 4-(Dimethylamino)pyridine (DMAP) was purchased from Nacalai Tesque and used without purification. 12-crown-4 was purchased from Aldrich and dried over Molecular Sieves 3A before use. 2-Methyl-3-buten-2-ol and 1-octen-3-ol were purchased from Tokyo Chemical Industry. Spray-dried KF was purchased from Wako Pure Chemical Industries. THF and $\mathrm{Et}_{2} \mathrm{O}$ were distilled under a nitrogen atmosphere from sodium benzophenone ketyl. Dichloromethane, triethylamine, and carbon tetrachloride were distilled from calcium hydride. All reactions were carried out under an argon atmosphere.

Preparation of Alcohols. 3,4-Dimethyl-1-penten-3-ol was obtained by reaction of 3-methyl-2-butanone with vinylmagnesium bromide in THF in 54% yield. 3,4,4-Trimethyl-1-penten-3-ol was obtained by reaction of 3,3-dimethyl-2-butanone with vinylmagnesium bromide in THF in 56% yield. 3-Phenyl-1-buten-3-ol was prepared by reaction of acetophenone with vinylmagnesium bromide in THF in 90% crude yield. This compound was decomposed by distillation, so that it was used in the next step without purification. 1-Vinyl-cyclohexanol was obtained by reaction of cyclohexanone with vinylmagnesium bromide in THF in 86% yield. 1-Propenyl-cyclohexanol was obtained by reaction of cyclohexanone with 1-propenylmagnesium bromide in THF in 25% yield as a $1: 1$ mixture of E and Z isomers. 1-(2'-Methyl-1'-propenyl)-cyclohexanol was obtained by reaction of cyclohexanone with 2-methyl-propenylmagnesium bromide in THF in only 14% yield, which was due to the poor separation by column chromatography on silica gel. 1-Methyl-1-(1'-cyclohexenyl)-ethanol was obtained by reaction of methyl 1-cyclohexene-1-carboxylate with methyllithium in $\mathrm{Et}_{2} \mathrm{O}$ in 81% yield. 1-Vinyl-2-cyclohexenol was obtained by reaction of 2-cyclohexene-1-one with vinyllithium in $\mathrm{Et}_{2} \mathrm{O}$ in 74% yield. 3-Ethyl-1-penten-3-ol was obtained by reaction of 3-pentanone with vinylmagnesium bromide in THF in 54% yield.
(Chlorodiphenylsilyl)trimethylstannane (3). To a solution of [(diethylamino)diphenylsilyl]trimethylstannane ${ }^{4 \mathrm{~b}}$ ($18.8 \mathrm{~g}, 45.0 \mathrm{mmol}$) in dichloromethane (45.0 mL) was added dropwise acetyl chloride $(3.50 \mathrm{~mL}, 49.2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The solvent was evaporated and the residue was distilled through a short column (123-149
$\left.{ }^{\circ} \mathrm{C} / 0.38 \mathrm{mmHg}\right)$ to give $3\left(15.5 \mathrm{~g}, 90 \%\right.$ yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.27(\mathrm{~s}, 9 \mathrm{H}$, ${ }^{2}[\mathrm{Sn}-\mathrm{H}]=51.3$ and 49.1 Hz$), 7.16-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.69-7.73(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $-10.65,128.27,130.23,134.14,135.72$. MS: m/e $382\left(\mathrm{M}^{+}, 0.3\right), 367\left(\mathrm{M}^{+}-\mathrm{Me}, 1\right), 217\left(\mathrm{ClPh}_{2} \mathrm{Si}^{+}\right.$, 3), 199 (100), $165\left(\mathrm{Me}_{3} \mathrm{Sn}^{+}, 1\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{SiClSn}$: C, 47.22; H, 5.02. Found: C, 46.94; H, 4.92.

Typical Procedure for Preparation of (Allyloxysilyl)stannanes.
[(2-Methyl-3-buten-2-oxy)diphenylsilyl]trimethylstannane (1). To a mixture of $3(1.17 \mathrm{~g}, 3.07 \mathrm{mmol})$, triethylamine ($0.47 \mathrm{~mL}, 3.4 \mathrm{mmol}$), and 4-(dimethylamino)pyridine ($75 \mathrm{mg}, 0.61 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(9.0$ mL) was added a solution of 2-methyl-3-buten-2-ol (4) ($0.35 \mathrm{~mL}, 3.4 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ over 3 \min at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 4 h . The mixture was diluted with hexane (ca. 20 mL) and the salts were filtered with suction. The filtrate was concentrated and the residue was distilled bulb-to-bulb to give 1 ($1.16 \mathrm{~g}, 87 \%$ yield). bp: $145-165^{\circ} \mathrm{C} / 0.3 \mathrm{mmHg}$ (bath temperature). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.32\left(\mathrm{~s}, 9 \mathrm{H},{ }^{2} \mathrm{~J}[\mathrm{Sn}-\mathrm{H}]=47.2\right.$ and 45.2 Hz$), 1.34(\mathrm{~s}, 6 \mathrm{H}), 4.92(\mathrm{dd}, \mathrm{J}=10.6$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}, \mathrm{J}=17.3$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dd}, 17.3$ and $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.25(\mathrm{~m}$, $6 \mathrm{H}), 7.75-7.80(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta-9.69,30.20,75.35,111.98,128.30,129.78,134.69$, 139.67, 146.04. MS: m/e $432\left(\mathrm{M}^{+}, 0.3\right), 430(0.2), 417\left(\mathrm{M}^{+}-\mathrm{Me}, 3\right), 415$ (3), 413 (2), 363 (19), 361 (14), 359 (8), 267 (34), 199 (100). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{OSiSn}: \mathrm{C}, 55.70 ; \mathrm{H}, 6.54$. Found: C, 55.63; H, 6.54.
[(3,4-Dimethyl-1-penten-3-oxy)diphenyl]trimethylstannane (8a). This compound was obtained by reaction of 3 with 3,4-dimethyl-1-penten-3-ol in 74% yield as a colorless oil after reverse-phase column chromatography with $\mathrm{CH}_{3} \mathrm{CN}$ as eluent $\left(\mathrm{R}_{\mathrm{f}}=0.40\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.33$ (s, $9 \mathrm{H}, 2 \mathrm{~J}[\mathrm{Sn}-\mathrm{H}]=47.5$ and 45.4 Hz$) 0.95(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.79$ (septet, J $=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dd}, \mathrm{J}=10.8$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, \mathrm{J}=17.5$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dd}, \mathrm{J}=$ 17.5 and $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.75-7.80(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-9.48,17.63$, $17.71,23.69,39.43,80.24,114.31,128.29,129.73,129.80,134.70,134.88,139.72,139.99$, 143.54 (two phenyl groups on silicon are diastereotopic). MS: m/e $460\left(\mathrm{M}^{+}, 0.1\right), 445\left(\mathrm{M}^{+}-\mathrm{Me}, 5\right)$,
 C, $57.40 ; \mathrm{H}, 7.04$. Found: C, 57.53; H, 7.02.
[(3-Phenyl-1-buten-3-oxy)diphenylsilyl]trimethylstannane (8c). This compound was obtained by reaction of 3 with 3-phenyl-1-buten-3-ol in 66% yield as a colorless oil after reversephase column chromatography with $\mathrm{CH}_{3} \mathrm{CN}$ as eluent $\left(\mathrm{R}_{\mathrm{f}}=0.45\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.25(\mathrm{~s}, 9 \mathrm{H}$, ${ }^{2} \mathrm{~J}[\mathrm{Sn}-\mathrm{H}]=48.1$ and 45.6 Hz$), 1.65(\mathrm{~s}, 3 \mathrm{H}), 4.98(\mathrm{dd}, \mathrm{J}=10.5$ and $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dd}, \mathrm{J}=17.1$ and $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, \mathrm{J}=17.1$ and $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.30(\mathrm{~m}, 9 \mathrm{H}), 7.56-7.59(\mathrm{~m}, 2 \mathrm{H})$, 7.77-7.82 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta-9.57,29.24,79.11,113.19,125.84,127.16,128.34$, $128.45,129.83,134.72,139.45,139.48,145.14,147.14$ (two phenyl groups on silicon are diastereotopic). MS: $m / e 479\left(\mathrm{M}^{+}-\mathrm{Me}, 7\right), 363\left(\mathrm{Me}_{3} \mathrm{Sn}-\mathrm{Ph}_{2} \mathrm{Si}^{-\mathrm{O}^{+}}, 38\right), 329\left(\mathrm{M}^{+}-\mathrm{Me}_{3} \mathrm{Sn}, 50\right), 199$ (100). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{OSi}: \mathrm{C}, 60.87 ; \mathrm{H}, 6.13$. Found: C, $60.71 ; \mathrm{H}, 6.12$.
[(1-Vinyl-cyclohexanoxy)diphenylsilyl]trimethylstannane (11a). This compound was obtained by reaction of $\mathbf{3}$ with 1-vinyl-cyclohexanol in 83% yield as a colorless oil after reverse-phase column chromatography with $\mathrm{CH}_{3} \mathrm{CN}$ as eluent $\left(\mathrm{R}_{\mathrm{f}}=0.35\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.33\left(\mathrm{~s}, 9 \mathrm{H},{ }^{2} \mathrm{~J}[\mathrm{Sn}-\mathrm{H}]\right.$ $=47.5$ and 45.1 Hz$), 1.05-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.58(\mathrm{~m}, 5 \mathrm{H}), 1.70-1.93(\mathrm{~m}, 4 \mathrm{H}), 4.95(\mathrm{dd}, \mathrm{J}=10.8$ and $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, \mathrm{J}=17.7$ and $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, \mathrm{J}=17.7$ and $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.32$ ($\mathrm{m}, 6 \mathrm{H}$), 7.77-7.81 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta-9.48,22.49,25.92,38.10,76.05,113.93$, $128.25,129.76,134.81,139.84,145.20$. MS: $m / e 472\left(\mathrm{M}^{+}, 0.2\right), 457\left(\mathrm{M}^{+}-\mathrm{Me}, 5\right), 363\left(\mathrm{Me}_{3} \mathrm{Sn}-\right.$ $\left.\mathrm{Ph}_{2} \mathrm{Si}^{-} \mathrm{O}^{+}, 25\right), 307\left(\mathrm{M}^{+}-\mathrm{Me}_{3} \mathrm{Sn}, 53\right), 199$ (100). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{OSiSn}: \mathrm{C}, 58.62 ; \mathrm{H}, 6.84$. Found: C, 58.37; H, 6.91.
\{[1-Propenyl-cyclohexanoxy]diphenylsilyl\}trimethylstannane (11b). This compound was obtained by reaction of 3 with 1-propenyl-cyclohexanol in 74% yield as a $1: 1$ mixture of E and Z isomers as a colorless oil after reverse-phase column chromatography with $\mathrm{CH}_{3} \mathrm{CN}$ as eluent $\left(\mathrm{R}_{\mathrm{f}}\right.$ $=0.38)$. The isomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: A mixture of E and Z isomers; $\delta 0.34\left(\mathrm{~s}, 9 \mathrm{H},{ }^{2} \mathrm{~J}[\mathrm{Sn}-\mathrm{H}]=47.3\right.$ and 45.1 Hz , one isomer) and $0.37\left(\mathrm{~s}, 9 \mathrm{H},{ }^{2} \mathrm{~J}[\mathrm{Sn}-\mathrm{H}]=47.3\right.$ and 45.1 Hz , another isomer), $1.18-1.95(\mathrm{~m}, 13 \mathrm{H}), 5.37-5.52(\mathrm{~m}, 1 \mathrm{H}), 5.57-5.67(\mathrm{~m}, 1 \mathrm{H}), 7.17-$ $7.32(\mathrm{~m}, 6 \mathrm{H}), 7.77-7.83(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): A mixture of E and Z isomers; $\delta-9.77,9.28$, $15.19,18.05,22.63,23.10,25.70,26.10,38.59,40.37,75.53,76.90,124.82,127.84,128.22$ (2C), $129.67,134.86,134.94,135.01,136.36,138.89,139.91,140.06$. MS: $m / e 486\left(\mathrm{M}^{+}, 0.2\right), 471$ $\left(\mathrm{M}^{+}-\mathrm{Me}, 25\right), 363\left(\mathrm{Me}_{3} \mathrm{Sn}^{-} \mathrm{Ph}_{2} \mathrm{Si}_{-} \mathrm{O}^{+}, 109\right), 321\left(\mathrm{M}^{+}-\mathrm{Me}_{3} \mathrm{Sn}, 88\right), 200(100)$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{OSiSn}: \mathrm{C}, 59.40 ; \mathrm{H}, 7.06$. Found: C, $59.05 ; \mathrm{H}, 7.05$.
\{[1-(2'-Methyl-1'-propenyl)-cyclohexanoxy]diphenylsilyl\}trimethylstannane
(11c). This compound was obtained by reaction of 3 with 1-(2'-methyl-1'-propenyl)-cyclohexanol in 74% yield as a colorless oil after reverse-phase column chromatography with $\mathrm{CH}_{3} \mathrm{CN}$ as eluent $\left(\mathrm{R}_{\mathrm{f}}=\right.$ 0.28). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.36\left(\mathrm{~s}, 9 \mathrm{H},{ }^{2} \mathrm{~J}[\mathrm{Sn}-\mathrm{H}]=46.7\right.$ and 45.1 Hz$), 1.22-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{~d}, \mathrm{~J}$ $=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.64-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.98(\mathrm{~m}, 4 \mathrm{H}), 5.40-5.47(\mathrm{~m}$, $1 \mathrm{H}), 7.18-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.77-7.82(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (C6D6): $\delta-9.54,19.83,23.26,25.77$, $27.45,40.71,76.27,128.14,129.60,131.13,135.04,136.36,139.93$. $\mathrm{MS}: m / e 485\left(\mathrm{M}^{+}-\mathrm{Me}, 6\right)$, 363 ($\mathrm{Me}_{3} \mathrm{Sn}-\mathrm{Ph}_{2} \mathrm{Si}_{-} \mathrm{O}^{+}, 59$), $335\left(\mathrm{M}^{+}-\mathrm{Me}_{3} \mathrm{Sn}, 67\right.$), 199 (100). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{OSiSn}: \mathrm{C}$, 60.13; H, 7.27. Found: C, 60.03; H, 7.29.
\{[1-methyl-1-(1'-cyclohexenyl)-ethoxy]diphenylsilyl\}trimethylstannane
(13).

This compound was obtained by reaction of 3 with 1-methyl-1-(1'-cyclohexenyl)-ethanol in 87% yield as a colorless oil after reverse-phase column chromatography with $\mathrm{CH}_{3} \mathrm{CN}$ as eluent ($\mathrm{R}_{\mathrm{f}}=0.30$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.35\left(\mathrm{~s}, 9 \mathrm{H},{ }^{2} \mathrm{~J}[\mathrm{Sn}-\mathrm{H}]=47.3\right.$ and 44.8 Hz$), 1.43(\mathrm{~s}, 6 \mathrm{H}), 1.46-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.87-$ $2.02(\mathrm{~m}, 2 \mathrm{H}), 2.03-2.08(\mathrm{~m}, 2 \mathrm{H}), 5.78-5.84(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.78-7.81(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (C6D6): $\delta-9.77,22.59,23.26,24.77,25.34,29.91,77.44,119.72,128.27,129.73,134.79$, 139.77, 143.44. MS: $m / e 471\left(\mathrm{M}^{+}-\mathrm{Me}, 0.6\right), 363\left(\mathrm{Me}_{3} \mathrm{Sn}^{\left.-\mathrm{Ph}_{2} \mathrm{Si}_{-} \mathrm{O}^{+}, 10\right), 321\left(\mathrm{M}^{+}-\mathrm{Me}_{3} \mathrm{Sn}, 14\right), 199}\right.$ (100). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{34}$ OSiSn: C, 59.40; H, 7.06. Found: C, 59.04; H, 7.06.
[(1-Vinyl-2-cyclohexenoxy)diphenylsilyl]trimethylstannane (15). This compound was obtained by reaction of 3 with 1-vinyl-2-cyclohexenol in 70% yield as a colorless oil after reversephase column chromatography with $\mathrm{CH}_{3} \mathrm{CN}$ as eluent $\left(\mathrm{R}_{\mathrm{f}}=0.40\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.34(\mathrm{~s}, 9 \mathrm{H}$, ${ }_{2} \mathrm{~J}[\mathrm{Sn}-\mathrm{H}]=47.5$ and 45.4 Hz$), 1.34-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.94-2.06(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{dd}$, $\mathrm{J}=10.5$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, \mathrm{J}=17.3$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dt}, \mathrm{J}=10.0$ and $3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.80(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, \mathrm{J}=17.3$ and $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.76-7.85(\mathrm{~m}$, $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta-9.49,19.10,24.96,37.29,75.35,113.64,127.73,127.78,129.22$, $129.27,130.80,131.02,134.30,139.30,139.35,144.26$ (two phenyl groups on silicon are diastereotopic). MS: m/e $470\left(\mathrm{M}^{+}, 0.1\right), 455\left(\mathrm{M}^{+}-\mathrm{Me}, 23\right), 359$ (100), 333 (53), 289 (34), 255 (33), 200 (99), 197 (94). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{OSiSn}: \mathrm{C}, 58.87 ; \mathrm{H}, 6.44$. Found: C, 58.80; H, 6.49.
[(3,4,4-Trimethyl-1-penten-3-oxy)diphenylsilyl]trimethylstannane (8b). (1) (3,4,4-Trimethyl-1-penten-3-oxy)diphenylchlorosilane was prepared from diphenyldichlorosilane (2.10 mL ,
10.1 mmol) and 3,4,4-trimethyl-1-penten-3-ol ($1.41 \mathrm{~g}, 11.0 \mathrm{mmol}$) in the presence of triethylamine (1.80 $\mathrm{mL}, 12.9 \mathrm{mmol}$) and 4-(dimethylamino)pyridine ($245 \mathrm{mg}, 2.00 \mathrm{mmol}$) in THF (12.0 mL) by refluxing for 44 h in 60% yield. ${ }^{4 \mathrm{c}} \mathrm{bp}: 166-183{ }^{\circ} \mathrm{C} / 0.60 \mathrm{mmHg}$ (bath temperature). (3,4,4-Trimethyl-1-penten-3-oxy)diphenylchlorosilane: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 1.02(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 4.97$ (dd, J $=17.3$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, \mathrm{J}=10.8$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, \mathrm{J}=17.3$ and $10.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.16-7.23 (m, 6H), 7.82-7.96(m, 4H). (2) (Trimethylstannyl)lithium was prepared from $\mathrm{Me}_{3} \mathrm{SnCl}$ ($463 \mathrm{mg}, 2.33 \mathrm{mmol}$) with granular lithium ($74 \mathrm{mg}, 11 \mathrm{mg}$-atom) in THF (3.0 mL) by the literature method (Ritter, K. Synthesis 1989, 218). The resulting green solution was used in the next step without titration after removal of the unreacted lithium. (3) To a solution of (3,4,4-trimethyl-1-penten-3oxy) diphenylchlorosilane ($681 \mathrm{mg}, 1.97 \mathrm{mmol}$) in THF (1.5 mL) was added over 3 min the solution of (trimethylstannyl)lithium in THF at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at room temperature for 3 h . The reaction mixture was diluted with hexane (ca. 10 mL) and filtered. The filtrate was concentrated and the residue was subjected to reverse-phase column chromatography (Wakogel LP$40 \mathrm{C} 18,50 \mathrm{~mL})$ with $\mathrm{CH}_{3} \mathrm{CN}$ as eluent to give $\mathbf{8 b}\left(541 \mathrm{mg}, 58 \%\right.$ yield) $\left(\mathrm{R}_{\mathrm{f}}=0.40\right)$ as a colorless oil. 8b: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.33\left(\mathrm{~s}, 9 \mathrm{H},{ }^{2} \mathrm{~J}[\mathrm{Sn}-\mathrm{H}]=47.5\right.$ and 45.4 Hz$), 1.02(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 5.01$ (dd, $\mathrm{J}=11.1$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}, \mathrm{J}=17.4$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, \mathrm{J}=17.4$ and 11.1 Hz , $1 \mathrm{H}), 7.18-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.75-7.80(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-9.32,22.14,25.68,38.69$, $82.07,114.88,128.25,128.29,129.69,129.83,134.72,135.08,139.64,140.06,143.11$ (two phenyl groups on silicon are diastereotopic). MS: m/e $474\left(\mathrm{M}^{+}, 0.8\right), 459\left(\mathrm{M}^{+}-\mathrm{Me}, 30\right), 417\left(\mathrm{M}^{+} t_{-}^{-}\right.$ $\mathrm{Bu}, 4), 363\left(\mathrm{Me}_{3} \mathrm{Sn}-\mathrm{Ph}_{2} \mathrm{Si}_{\mathrm{Si}}{ }^{+}, 44\right), 309\left(\mathrm{M}^{+}-\mathrm{Me}_{3} \mathrm{Sn}, 69\right), 267$ (93), 199 (100). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{OSiSn}: \mathrm{C}, 58.36 ; \mathrm{H}, 7.24$. Found: C, $58.28 ; \mathrm{H}, 7.34$.

Reaction of 1 with n-Butyllithium: Synthesis of [(2-Methyl-3-buten-2oxy)diphenylsilyl]lithium (2) and Trapping as 1-(2'-Methyl-3'-buten-2'-oxy)-1,1-diphenyl-2,2,2-trimethyldisilane (6). To a solution of $1(227 \mathrm{mg}, 0.526 \mathrm{mmol}$) in THF (2.0 mL) was added dropwise over $1 \mathrm{~min} n$-butyllithium in hexane $(1.64 \mathrm{M}, 0.64 \mathrm{~mL}, 1.1 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 3 h to give a yellow solution of 2 . To the solution was added $\mathrm{Me}_{3} \mathrm{SiCl}(0.15 \mathrm{~mL}, 1.2 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After being stirred for 30 min , the reaction mixture was warmed to ambient temperature. The mixture was evaporated, diluted with hexane (ca. 20 mL), and filtered. The filtrate was concentrated and the residue was subjected to column chromatography on silica
gel (20 mL) eluted with hexane/AcOEt (30/1) to give a mixture (148 mg) $\left(\mathrm{R}_{\mathrm{f}}=\mathrm{ca} .0 .55\right)$ of $5(21 \%$ yield), 6 (51% yield), and 1,2-di(2'-methyl-3'-buten-2'-oxy)-1,1,2,2-tetraphenyldisilane (13% yield). The yields were estimated by ${ }^{1} \mathrm{H}$ NMR. 6: The authentic sample was obtained by reaction of 1 -chloro-1,1-diphenyl-2,2,2-trimethyldisilane with 2-methyl-3-buten-2-ol in the presence of triethylamine and 4(dimethylamino)pyridine in a similar way for 1 and purified by column chromatography on silica gel eluted with hexane/AcOEt $(60 / 1)(47 \%$ yield $)\left(\mathrm{R}_{\mathrm{f}}=0.28\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.27(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~s}$, $6 \mathrm{H}), 4.91(\mathrm{dd}, \mathrm{J}=10.6$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, \mathrm{J}=17.2$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{dd}, 17.2$ and 10.6 $\mathrm{Hz}, 1 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.77-7.82(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-1.20,30.26,74.75$, $110.98,127.60,129.09,134.91,138.65,146.51$. MS: $m / e 340\left(\mathrm{M}^{+}, 0.2\right), 325\left(\mathrm{M}^{+}-\mathrm{Me}, 3\right), 272$ (66), 271 (76), 267 (25), 255 (25), 199 (67), 193 (100). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{OSi}_{2}: \mathrm{C}, 70.53 ; \mathrm{H}$, 8.29. Found: C, 70.43; H, 8.28. 1,2-Di(2'-methyl-3'-buten-2'-oxy)-1,1,2,2-tetraphenyldisilane: The pure sample was obtained as colorless crystals by recrystallization from hexane. mp : $166-167^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.35(\mathrm{~s}, 12 \mathrm{H}), 4.88(\mathrm{dd}, \mathrm{J}=10.7$ and $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{dd}, \mathrm{J}=$ 17.3 and $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{dd}, 17.3$ and $10.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.20(\mathrm{~m}, 12 \mathrm{H}), 7.88-7.92(\mathrm{~m}, 8 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 30.08,75.92,110.80,127.28,129.16,135.89,137.38,146.38$. MS: $m / e 534$ $\left(\mathrm{M}^{+}, 0.1\right), 519\left(\mathrm{M}^{+}-\mathrm{Me}, 1\right), 465$ (0.3), 397 (100), 319 (99), 267 (52), 199 (99). Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}_{2}$: C, 76.35; H, 7.16. Found: C, 76.48; $\mathrm{H}, 7.00$.

Typical Procedure for Reaction of (Allyloxysilyl)stannane with \boldsymbol{n}-Butyllithium and Subsequent Rearrangement: Synthesis of 1-(3'-Methyl-2'-butenyl)-1,1-diphenyl-3,3,3-trimethyldisiloxane (5). To a solution of $1(216 \mathrm{mg}, 0.501 \mathrm{mmol})$ in THF (1.0 mL) was added dropwise over $1 \mathrm{~min} n$-butyllithium in hexane $(1.76 \mathrm{M}, 0.57 \mathrm{~mL}, 1.0 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h , warmed to room temperature, and stirred for 2 h . To the reaction mixture was added $\mathrm{Me}_{3} \mathrm{SiCl}(0.14 \mathrm{~mL}, 1.1 \mathrm{mmol})$. After being stirred for 30 min , the reaction mixture was evaporated and the residue was diluted with hexane (ca. 10 mL) and filtered. The filtrate was concentrated and the residue was subjected to column chromatography on silica gel (20 mL) eluted with hexane to give $5(116 \mathrm{mg}, 68 \%$ yield $)\left(\mathrm{R}_{\mathrm{f}}=0.28\right)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.18(\mathrm{~s}, 9 \mathrm{H})$, $1.48(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.13(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.40-5.51(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.27(\mathrm{~m}$, $6 \mathrm{H}), 7.71-7.75(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 2.03,17.76,18.30,25.90,118.58,130.54,128.00$,
129.85, 134.63, 137.35. MS: $m / e 340\left(\mathrm{M}^{+}, 4\right), 325\left(\mathrm{M}^{+}-\mathrm{Me}, 2\right), 271$ (100), 255 (9), 193 (39). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{OSi}_{2}$: C, $70.53 ; \mathrm{H}, 8.29$. Found: C, $70.28 ; \mathrm{H}, 8.26$.

Reaction of 1 with \boldsymbol{n}-Butylithium and Subsequent Rearrangement in the Presence of $\mathbf{1 2 - C r o w n}-4$. To a solution of $1(216 \mathrm{mg}, 0.501 \mathrm{mmol})$ in THF (2.0 mL) was added dropwise over $1 \mathrm{~min} n$-butyllithium in hexane $(1.68 \mathrm{M}, 0.60 \mathrm{~mL}, 1.0 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 3 h . To the resulting yellow solution was added 12 -crown-4 ($0.16 \mathrm{~mL}, 1.0 \mathrm{mmol}$) at -78 ${ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for another 1 h . To the reaction mixture was added $\mathrm{Me}_{3} \mathrm{SiCl}$ $(0.14 \mathrm{~mL}, 1.1 \mathrm{mmol})$. After being stirred for 10 min , the reaction mixture was warmed to room temperature. Water $(10 \mathrm{~mL})$ was added to the reaction mixture, which was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \mathrm{x}$ 3). The combined organic layer was washed with water (10 mL) and brine (10 mL), and dried over MgSO_{4}. The solution was concentrated and the residue was subjected to bulb-to-bulb distillation (110$130^{\circ} \mathrm{C} / 0.90 \mathrm{mmHg}$, bath temperature) and column chromatography on silica gel (20 mL) eluted with hexane to give 5 ($94 \mathrm{mg}, 55 \%$ yield) $\left(\mathrm{R}_{\mathrm{f}}=0.28\right.$).

1-(3',4'-Dimethyl-2'-pentenyl)-1,1-diphenyl-3,3,3-trimethyldisiloxane (9a and 10a). This compound was obtained in 83% yield as a mixture of $9 \mathrm{a}(E)$ and $\mathbf{1 0 a}(Z)(\mathbf{9 a} / \mathbf{1 0 a}=62 / 38)$ as a colorless oil after column chromatography on silica gel eluted with hexane $\left(\mathrm{R}_{\mathrm{f}}=0.33\right)$. The isomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR and the stereochemistry was determined by NOE experiments. The mixture was separated into 9 a and $\mathbf{1 0 a}$ by means of recycling reverse-phase liquid chromatography with $\mathrm{CH}_{3} \mathrm{CN}$ as eluent. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 9 \mathrm{a} ; \delta 0.19(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.43(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}$, $3 \mathrm{H}), 2.13(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.24$ (septet, $\mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{tq}, \mathrm{J}=8.1$ and $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-$ $7.30(\mathrm{~m}, 6 \mathrm{H}), 7.68-7.75(\mathrm{~m}, 4 \mathrm{H}) . \quad 10 \mathrm{a} ; \delta 0.18(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.60(\mathrm{~d}, \mathrm{~J}=1.1$ $\mathrm{Hz}, 3 \mathrm{H}), 2.17(\mathrm{dd}, \mathrm{J}=8.0$ and 1.0 (homoallylic) $\mathrm{Hz}, 2 \mathrm{H}$), 2.79 (septet, $\mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{tq}, \mathrm{J}=$ 8.0 and $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.70-7.95(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 9 \mathrm{a} ; \delta 2.00,13.16$, $17.68,21.40,37.04,115.60,127.55,129.43,134.25,137.11,140.09$. 10a; $\delta 2.02,17.04,18.10$, $20.38,28.14,116.89,127.58,129.47,134.29,137.05,139.68 . \mathrm{MS}: m / e 368\left(\mathrm{M}^{+}, 3\right), 353\left(\mathrm{M}^{+}-\mathrm{Me}\right.$, 4), 273 (100), 198 (98). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{OSi}_{2}$: C, 71.67; H, 8.75. Found: C, 71.58; H, 8.78.

1-(3',4',4'-Timethyl-2'-pentenyl)-1,1-diphenyl-3,3,3-trimethyldisiloxane (9b and $\mathbf{1 0 b})$. This compound was obtained in 73% yield as a mixture of $\mathbf{9 b}(E)$ and $\mathbf{1 0 b}(Z)(9 b / \mathbf{1 0 b}=$ 89/11) as a colorless oil after column chromatography on silica gel eluted with hexane ($\mathrm{R}_{\mathrm{f}}=0.41$) and

HPLC eluted with hexane/AcOEt (100/1). The isomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR and the stereochemistry was determined by NOE experiments. The mixture was separated into $\mathbf{9 b}$ and $\mathbf{1 0 b}$ by means of recycling reverse-phase liquid chromatography with $\mathrm{CH}_{3} \mathrm{CN}$ as eluent. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $9 \mathbf{b}$; $\delta 0.19(\mathrm{~s}, 9 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.14(\mathrm{dd}, \mathrm{J}=8.4$ and 0.5 (homoallylic) Hz , $2 \mathrm{H}), 5.57(\mathrm{tq}, \mathrm{J}=8.4$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.69-7.77(\mathrm{~m}, 4 \mathrm{H}) .10 b ; \delta 0.19(\mathrm{~s}, 9 \mathrm{H})$, $1.15(\mathrm{~s}, 9 \mathrm{H}), 1.73(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.40(\mathrm{dd}, \mathrm{J}=8.5$ and 0.9 (homoallylic) $\mathrm{Hz}, 2 \mathrm{H}), 5.52(\mathrm{tq}, \mathrm{J}=$ 8.5 and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.75-7.80(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 9 \mathbf{b} ; \delta 2.03,12.72$, $18.17,29.06,36.26,114.57,127.55,129.43,134.27,137.11,142.12 .10 b ; \delta 2.02,19.63,24.14$, $30.28,35.37,118.87,127.58,129.47,134.30,136.95,141.67 . \mathrm{MS}: m / e 382\left(\mathrm{M}^{+}, 3\right), 272(100)$, 255 (50), 241 (24), 193 (77). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{OSi}_{2}$: C, 72.19; H, 8.96. Found: C, 72.26; H, 9.08 .

1-(3'-Phenyl-2'-butenyl)-1,1-diphenyl-3,3,3-trimethyldisiloxane (9c and 10c). This compound was obtained in 77% yield as a mixture of $9 \mathrm{c}(E)$ and $\mathbf{1 0 c}(Z)(9 \mathrm{c} / \mathbf{1 0 c}=29 / 71)$ as a colorless oil after column chromatography on silica gel eluted with hexane ($\mathrm{R}_{\mathrm{f}}=0.10-0.15$) and reversephase column chromatography eluted with $\mathrm{CH}_{3} \mathrm{CN}\left(\mathrm{R}_{\mathrm{f}}=0.48\right)$. The isomeric ratio was determined by ${ }^{1}$ H NMR and the stereochemistry was determined by NOE experiments. The mixture was separated into 9c and 10 c by means of recycling reverse-phase liquid chromatography with $\mathrm{CH}_{3} \mathrm{CN}$ as eluent. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): 9c; $\delta 0.16(\mathrm{~s}, 9 \mathrm{H}), 1.83(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.30(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.12(\mathrm{tq}, \mathrm{J}=8.5$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.33-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.77(\mathrm{~m}, 4 \mathrm{H})$. $\mathbf{1 0 c} ; \delta 0.15(\mathrm{~s}, 9 \mathrm{H}), 1.99(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.26(\mathrm{dq}, \mathrm{J}=8.1$ and 1.4 (homoallylic) $\mathrm{Hz}, 2 \mathrm{H}), 5.76$ $(\mathrm{tq}, \mathrm{J}=8.1$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.26(\mathrm{~m}, 11 \mathrm{H}), 7.61-7.69(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 9 \mathrm{c} ; \delta$ $2.02,15.78,19.73,122.66,125.46,126.07,127.71,128.07,129.65,133.89,134.23,136.66$, 144.40. 10c $; \delta 1.98,18.67,25.72,121.11,126.81,127.64,127.98,128.12,129.52,134.25$, 135.65, 136.73, 142.01. MS: $m / e 402\left(\mathrm{M}^{+}, 5\right), 387\left(\mathrm{M}^{+}-\mathrm{Me}, 10\right), 271\left(\mathrm{Me}_{3} \mathrm{Si}^{\left.-\mathrm{O}-\mathrm{Ph}_{2} \mathrm{Si}^{+}, 100\right), 193}\right.$ (46). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{OSi}_{2}$: C, 74.57; $\mathrm{H}, 7.51$. Found: C, 74.33; H, 7.46.

1-(2'-Cyclohexylidene-ethyl)-1,1-diphenyl-3,3,3-trimethyldisiloxane (12a). This compound was obtained in 80% yield as a colorless oil after column chromatography on silica gel eluted with hexane $\left(\mathrm{R}_{\mathrm{f}}=0.35\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.19(\mathrm{~s}, 9 \mathrm{H}), 1.22-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.54(\mathrm{~m}, 4 \mathrm{H})$, $1.98-2.13(\mathrm{~m}, 4 \mathrm{H}), 2.16(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.70-$
$7.77(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.00,16.95,26.88,27.10,28.39,28.43,37.31,114.65$, 127.57, 129.43, 134.29, 137.00, 138.56. MS: m/e $380\left(\mathrm{M}^{+}, 3\right), 365\left(\mathrm{M}^{+}-\mathrm{Me}, 1\right), 271\left(\mathrm{Me}_{3} \mathrm{Si}-\mathrm{O}-\right.$ $\mathrm{Ph}_{2} \mathrm{Si}^{+}, 100$), 193 (81). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{OSi}_{2}: \mathrm{C}, 72.57 ; \mathrm{H}, 8.47$. Found: C, 72.44; $\mathrm{H}, 8.45$.

1-(1'-Methyl-2'-cyclohexylidene-ethyl)-1,1-diphenyl-3,3,3-trimethyldisiloxane

(12b). This compound was obtained in 77% yield as a colorless oil after column chromatography on silica gel eluted with hexane $\left(\mathrm{R}_{\mathrm{f}}=0.30\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.21(\mathrm{~s}, 9 \mathrm{H}), 1.16-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.32$ $(\mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.92-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.23(\mathrm{~m}, 3 \mathrm{H}), 2.56(\mathrm{dq}, \mathrm{J}=10.8$ and $7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.30(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.76-7.81(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.09$, $15.76,20.97,26.88,27.26,28.41,28.88,37.43,122.98,127.37,127.49,129.54,129.29,134.52$, 134.70, 136.35, 137.30 (two phenyl groups on silicon are diastereotopic). MS: $m / e 394\left(\mathrm{M}^{+}, 0.9\right), 379$ ($\mathrm{M}^{+}-\mathrm{Me}, 4$), 297 (16), 273 (100), 193 (95). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{OSi}_{2}$: C, 73.03; H, 8.68. Found: C, 72.88; H, 8.77.

1-(1', 1'-Dimethyl-2'-cyclohexylidene-ethyl)-1,1-diphenyl-3,3,3-

trimethyldisiloxane (12c). This compound was obtained in 84% yield as a colorless oil after column chromatography on silica gel eluted with hexane $\left(\mathrm{R}_{\mathrm{f}}=0.48\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.21(\mathrm{~s}, 9 \mathrm{H})$, $1.31-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}), 2.12-2.19(\mathrm{~m}, 4 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.86-7.94$ $(\mathrm{m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.14,25.88,26.70,26.78,27.69,28.92,29.83,39.59,127.33$, $128.73,129.22,135.15,136.06,138.62$. MS: m/e $408\left(\mathrm{M}^{+}, 0.3\right), 393\left(\mathrm{M}^{+}-\mathrm{Me}, 0.3\right), 311(43), 273$ (100), 193 (94). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{OSi}_{2}$: C, 73.47 ; H, 8.88. Found: C, 73.30 ; H, 8.84.

1-(2'-Isopropylidene-cyclohexyl)-1,1-diphenyl-3,3,3-trimethyldisiloxane (14). This compound was obtained in 79% yield as a colorless oil after column chromatography on silica gel eluted with hexane $\left(\mathrm{R}_{\mathrm{f}}=0.35\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.19(\mathrm{~s}, 9 \mathrm{H}), 1.28-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H})$, $1.55-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.92(\mathrm{~m}, 3 \mathrm{H}), 2.05-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.97-$ $3.05(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.65-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.89(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $2.14,20.07,20.45,24.10,27.51,27.96,28.68,29.80,120.34,127.17,127.66,129.15,129.29$, $131.36,134.48,134.57,137.05,137.36$ (two phenyl groups on silicon are diastereotopic). MS: m / e $394\left(\mathrm{M}^{+}, 3\right), 379\left(\mathrm{M}^{+}-\mathrm{Me}, 1\right), 271\left(\mathrm{Me}_{3} \mathrm{Si}^{-}-\mathrm{O}_{-} \mathrm{Ph}_{2} \mathrm{Si}^{+}, 100\right), 93(35)$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{OSi}_{2} \mathrm{C}$, 73.03; H, 8.68. Found: C, $72.69 ; \mathrm{H}, 8.82$. compound was obtained in 65% yield as a mixture of E and Z isomers $(E / Z=35 / 65)$ as a colorless oil after column chromatography on silica gel eluted with hexane ($\mathrm{R}_{\mathrm{f}}=0.28$). The isomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR and the stereochemistry was determined by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and NOE experiments. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.18(\mathrm{~s}, 9 \mathrm{H}, E), 0.20(\mathrm{~s}, 9 \mathrm{H}, Z), 1.46-1.56(\mathrm{~m}, 2 \mathrm{H}, E), 1.56-1.66$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{Z}), 1.95-2.03(\mathrm{~m}, 2 \mathrm{H}, E$ and $Z), 2.13-2.21(\mathrm{~m}, 4 \mathrm{H}, E) 2.22-2.30(\mathrm{~m}, 4 \mathrm{H}, Z), 5.39(\mathrm{t}, \mathrm{J}=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}, Z), 5.54-5.65(\mathrm{~m}, 2 \mathrm{H}, E), 5.72(\mathrm{ddt}, \mathrm{J}=10.0,4.1$, and $2.0 \mathrm{~Hz}, 1 \mathrm{H}, Z), 6.17(\mathrm{dt}, \mathrm{J}=8.1$ and $1.9 \mathrm{~Hz}, 1 \mathrm{H}, E), 6.49(\mathrm{ddt}, \mathrm{J}=10.0,1.9$, and $1.1 \mathrm{~Hz}, 1 \mathrm{H}, Z), 7.24-7.27(\mathrm{~m}, 6 \mathrm{H}, E$ and $Z), 7.70-$ $7.75(\mathrm{~m}, 4 \mathrm{H}, E$ and $Z) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ (Two isomers are named arbitrary A and B$): \delta 1.98$ (A and B), 17.13 (A), 18.13 (B), 22.27 (B), 23.25 (A), 25.20 (A or B), 25.54 (A or B), 26.22 (A or B), 32.58 (A or B), 119.07 (A), 121.22 (B), 124.53 (A), 125.80 (B), 127.66 (A and B), 128.75 (B), 129.49 (A and B), 129.56 (A), 131.30 (A or B), 132.83 (A or B), 134.21 (A and B), 136.82 (B), 136.95 (A). MS: m/e $378\left(\mathrm{M}^{+}, 3\right), 345(16), 271\left(\mathrm{Me}_{3} \mathrm{Si}_{\mathrm{i}}-\mathrm{O}-\mathrm{Ph}_{2} \mathrm{Si}^{+}, 83\right), 193$ (56), 144 (100). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{OSi}_{2}$: C, $72.96 ; \mathrm{H}, 7.99$. Found: C, $72.89 ; \mathrm{H}, 8.03$.
(1-Octen-3-oxy)diphenylchlorosilane (17). (1) To a mixture of diphenylchlorosilane $(4.40 \mathrm{~mL}, 25.0 \mathrm{mmol})$ and triethylamine ($3.80 \mathrm{~mL}, 27.0 \mathrm{mmol}$) in hexane $(100 \mathrm{~mL})$ was added dropwise a solution of 1 -octen-3-ol $(4.20 \mathrm{~mL}, 27.0 \mathrm{mmol})$ in hexane $(6.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h . The salts were filtered with suction. The filtrate was concentrated and the residue was distilled to give (1-octen-3-oxy)diphenylsilane ($6.22 \mathrm{~g}, 80 \%$ yield) as a colorless oil. (1-Octen-3-oxy)diphenylsilane: bp: $146-147{ }^{\circ} \mathrm{C} / 0.80 \mathrm{mmHg}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.88(\mathrm{t}, \mathrm{J}=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.13-1.29(\mathrm{~m}, 4 \mathrm{H}), 1.30-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.78(\mathrm{~m}, 1 \mathrm{H}), 4.33$ ($\mathrm{dt}, \mathrm{J}=6.8$ and $6.2 \mathrm{~Hz}, \mathrm{H}$), 5.03 (ddd, $\mathrm{J}=10.4,1.4$, and $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.23 (ddd, $\mathrm{J}=17.0,1.4$, and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{ddd}, \mathrm{J}=17.0,10.4$, and $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.75-$ $7.78(\mathrm{~m}, 4 \mathrm{H})$. (2) To a suspension of palladium chloride ($128 \mathrm{mg}, 0.724 \mathrm{mmol}$) in carbon tetrachloride $(5.0 \mathrm{~mL})$ was added over 13 min a solution of (1-octen-3-oxy)diphenylsilane ($4.26 \mathrm{~g}, 13.7 \mathrm{mmol}$) in carbon tetrachloride $(6.0 \mathrm{~mL})$ at room temperature and the reaction mixture was stirred for 1 h . The reaction mixture was filtered and the filtrate was concentrated. The residue was distilled through short column to give $17\left(3.03 \mathrm{~g}, 64 \%\right.$ yield) as a colorless oil. 17: bp: $124-139^{\circ} \mathrm{C} / 0.25 \mathrm{mmHg} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.87(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.12-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.80(\mathrm{~m}, 2 \mathrm{H}), 4.57$
$(\mathrm{ddd}, \mathrm{J}=6.1,1.5$, and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{ddd}, \mathrm{J}=10.3,1.5$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{ddd}, \mathrm{J}=17.0$, 1.5 , and $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.84(\mathrm{ddd}, \mathrm{J}=17.0,10.3$, and $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.86-7.90(\mathrm{~m}$, $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.00,22.52,24.49,31.61,37.20,75.65,115.08,127.91,127.96$, $130.89,132.79,132.99,134.47,134.57,139.64$ (two phenyl groups on silicon are diastereotopic). MS: m/e $344\left(\mathrm{M}^{+}, 9\right), 317$ (7), 273 (82), $217\left(\mathrm{ClPh}_{2} \mathrm{Si}^{+}, 100\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{OSiCl}: \mathrm{C}$, 69.64; H, 7.30. Found: C, 69.25; H, 7.59.

Reaction of 17 with Lithium Naphthalenide and Subsequent Rearrangement: Synthesis of 1-(2'-Octenyl)-1,1-diphenyl-3,3,3-trimethyldisiloxane (18). To a THF solution of lithium naphthalenide, prepared from naphthalene ($442 \mathrm{mg}, 3.45 \mathrm{mmol}$) and granular lithium ($24 \mathrm{mg}, 3.5 \mathrm{mmol}$) in THF (7.0 mL), was added over 1 min a solution of $\mathbf{1 7}(409 \mathrm{mg}, 1.19 \mathrm{mmol}$) in THF (1.2 mL) at $-45^{\circ} \mathrm{C} .4^{\mathrm{d}}$ The reaction mixture was stirred at $-45^{\circ} \mathrm{C}$ for 1 h and at $0^{\circ} \mathrm{C}$ for 1 h . To the reaction mixture was added $\mathrm{Me}_{3} \mathrm{SiCl}(0.45 \mathrm{~mL}, 3.6 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 15 min , the reaction mixture was diluted with hexane (ca. 15 mL) and filtered. The filtrate was evaporated and the residue was subjected to sublimination at $50^{\circ} \mathrm{C}$ in vacuo to remove the regenerated naphthalene. The obtained residue was sebjected to column chromatography on silica gel (30 $\mathrm{mL})$ eluted with hexane to give $\mathbf{1 8}\left(171 \mathrm{mg}, 38 \%\right.$ yield) $\left(\mathrm{R}_{\mathrm{f}}=0.28\right)$ as a $1: 1$ mixture of E and Z isomers as a colorless oil. The isomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR. Two isomers are named arbitrary A and B for the spectral assignment. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.18(\mathrm{~s}, 9 \mathrm{H}, \mathrm{A}), 0.20(\mathrm{~s}, 9 \mathrm{H}, \mathrm{B}), 0.91(\mathrm{t}, \mathrm{J}=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{A}$ and B$), 1.17-1.40(\mathrm{~m}, 6 \mathrm{H}, \mathrm{A}$ and B$), 1.95-2.06(\mathrm{~m}, 2 \mathrm{H}, \mathrm{A}$ and B$), 2.16(\mathrm{dd}, \mathrm{J}=7.6$ and $1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{B}), 2.22(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{A}), 5.37-5.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{A}$ and B$), 7.23-7.28(\mathrm{~m}, 6 \mathrm{H}, \mathrm{A}$ and B), $7.71-7.76(\mathrm{~m}, 4 \mathrm{H}, \mathrm{A}$ and B$) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.02$ (A and B), 14.04 (A or B), 14.07 (A or $B), 21.80(A$ or $B), 22.54(A$ or $B), 27.14(A$ or $B), 29.18(A$ or $B), 29.38(A$ or $B), 31.27(A$ or $B)$, $31.61(A$ or $B), 32.78(A$ or $B), 123.09(A$ or $B), 123.88(A$ or $B), 127.60(A$ and $B), 129.45(A$ or $B)$, 129.52 (A or B), 129.61 (A or B), 131.11 (A or B), 134.23 (A and B), 136.80 (A or B), 136.93 (A or B). MS: $m / e 382\left(\mathrm{M}^{+}, 3\right), 367(2), 271\left(\mathrm{Me}_{3} \mathrm{Si}-\mathrm{O}-\mathrm{Ph}_{2} \mathrm{Si}^{+}, 100\right), 193$ (30). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{OSi}_{2}$: C, $72.19 ; \mathrm{H}, 8.95$. Found: $\mathrm{C}, 72.31 ; \mathrm{H}, 9.22$.
\{ N-Trimethylsilyl- N-(2-propenyl)-amino]diphenylsilyl\}trimethylstannane (19). (1) To a solution of allylamine ($2.30 \mathrm{~mL}, 30.7 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(10.0 \mathrm{~mL})$ was added over 10 min a solution of $3(3.79 \mathrm{~g}, 9.93 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(6.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h .

Then the solvent was evaporated and the residue was diluted with hexane (ca. 30 mL) and filtered. The filtrate was concentrated and the residue was distilled bulb-to-bulb to give [(2-propenylamino)diphenylsilyl]trimethylstannane ($3.36 \mathrm{~g}, 84 \%$ yield) as a colorless oil. \{[N-(2-propenyl)amino]diphenylsilyl\}trimethylstannane: bp: $145-160{ }^{\circ} \mathrm{C} / 0.70 \mathrm{mmHg}$ (bath temperature). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.30\left(\mathrm{~s}, 9 \mathrm{H},{ }^{2} \mathrm{~J}[\mathrm{Sn}-\mathrm{H}]=47.5\right.$ and 45.4 Hz), $3.41(\mathrm{ddd}, \mathrm{J}=5.1,1.6$, and $1.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.99(\mathrm{ddt}, \mathrm{J}=10.3,1.6$, and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{ddt}, \mathrm{J}=17.3,1.6$, and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{ddt}, \mathrm{J}=$ 17.3, 10.3, and $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.65-7.69(\mathrm{~m}, 4 \mathrm{H})$. (2) To a solution of $\{[\mathrm{N}-(2-$ propenyl)amino]diphenylsilyl \}trimethylstannane ($3.36 \mathrm{~g}, 8.35 \mathrm{mmol}$) in THF (15.0 mL) was added over 20 min tert-butyllithium in pentane ($1.54 \mathrm{M}, 6.00 \mathrm{~mL}, 9.24 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ over 20 min and the reaction mixture was stirred for 1 h . To the solution was added $\mathrm{Me}_{3} \mathrm{SiCl}(1.30 \mathrm{~mL}, 10.3 \mathrm{mmol})$ at -78 ${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 min at that temperature and warmed to ambient temperature. After being stirred for 15 min , the solvent was evaporated. The residue was diluted with hexane (ca. 30 mL) and filtered. The filtrate was concentrated and the residue was distilled bulb-to-bulb to give 19 ($3.62 \mathrm{~g}, 92 \%$ yield) as a colorless oil. 19: bp: $184-197^{\circ} \mathrm{C} / 0.50 \mathrm{mmHg}$ (bath temperature). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.11(\mathrm{~s}, 9 \mathrm{H}), 0.28\left(\mathrm{~s}, 9 \mathrm{H},{ }^{2} \mathrm{~J}[\mathrm{Sn}-\mathrm{H}]=46.4\right.$ and 44.8 Hz$), 3.72(\mathrm{ddd}, \mathrm{J}=5.3,1.6$, and 1.6 $\mathrm{Hz}, 2 \mathrm{H}), 4.98(\mathrm{ddt}, \mathrm{J}=10.3,1.6$, and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{ddt}, \mathrm{J}=17.0,1.6$, and $1.6,1 \mathrm{H}), 5.83(\mathrm{ddt}$, $\mathrm{J}=17.0,10.3$, and $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.70-7.78(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ $-9.14,2.23,50.98,114.78,128.23,129.53,135.33,138.75,140.13$. MS: $m / e 460\left(\mathrm{M}^{+}-\mathrm{Me}, 4\right)$, $434\left(\mathrm{M}^{+}-\left(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\right), 1\right), 310\left(\mathrm{M}^{+}-\mathrm{Me}_{3} \mathrm{Sn}, 100\right) 197$ (34), 135 (57). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NSi}_{2} \mathrm{Sn}: \mathrm{C}, 53.17 ; \mathrm{H}, 7.01$; N, 2.95. Found: C, $52.90 ; \mathrm{H}, 7.11 ; \mathrm{N}, 2.95$.

Reaction of 23 with tert-Butyllithium: Synthesis of \{[N-Trimethylsilyl-N-(2'-propenyl)-amino]diphenylsilyl\}lithium (20) and Trapping as $1-[N$-Trimethylsilyl- N -(2'-propenyl)-aminol-1,1-diphenyl-2,2,2-trimethyldisilane (21). To a solution of 19 (256 $\mathrm{mg}, 0.539 \mathrm{mmol})$ in THF $(1.1 \mathrm{~mL})$ was added over 1 min tert-butyllithium in pentane $(1.54 \mathrm{M}, 0.70$ $\mathrm{mL}, 1.1 \mathrm{mmol}$) at $-45^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 2 h to give a yellow solution of 20. To the solution was added $\mathrm{Me}_{3} \mathrm{SiCl}(0.15 \mathrm{~mL}, 1.2 \mathrm{mmol})$ at $-45^{\circ} \mathrm{C}$. The reaction mixture was warmed to ambient temperature. After being stirred for 15 min , the reaction mixture was diluted with hexane (ca. 5 mL) and filtered. The filtrate was concentrated and the residue was distilled bulb-to-bulb to give 21 $\left(177 \mathrm{mg}, 86 \%\right.$ yield) as a colorless oil. bp: $174-211^{\circ} \mathrm{C} / 0.70 \mathrm{mmHg} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.10(\mathrm{~s}, 9 \mathrm{H})$,
$0.21(\mathrm{~s}, 9 \mathrm{H}), 3.80(\mathrm{ddd}, \mathrm{J}=5.4,1.6$, and $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{ddt}, \mathrm{J}=10.0,1.6$, and $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.15(\mathrm{ddt}, \mathrm{J}=17.0,1.6$, and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{ddt}, \mathrm{J}=17.0,10.0$, and $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.36(\mathrm{~m}$, $6 \mathrm{H}), 7.76-7.83(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta-0.38,2.18,50.68,114.27,127.60,128.77,135.17$, 138.28, 140.93.MS: m/e $383\left(\mathrm{M}^{+}, 1\right), 368\left(\mathrm{M}^{+}-\mathrm{Me}, 1\right), 342\left(\mathrm{M}^{+}-\left(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\right), 0.3\right), 310\left(\mathrm{M}^{+}-\right.$ $\mathrm{SiMe}_{3}, 19$), 254 (1), 233(2), 84 (100). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NSi}_{3}: \mathrm{C}, 65.73 ; \mathrm{H}, 8.67 ; \mathrm{N}, 3.65$. Found: C, 65.43; H, 8.77; N, 3.66.

Reaction of 23 with tert-Butyllithium and Subsequent Rearrangement: Synthesis of [N, N-Bis(trimethylsilyl)amino](2-propenyl)diphenylsilane (23). To a solution of 19 ($440 \mathrm{mg}, 0.928 \mathrm{mmol}$) in THF (2.0 mL) was added over 1 min tert-butyllithium in pentane $(1.64 \mathrm{M}$, $1.89 \mathrm{~mL}, 1.15 \mathrm{mmol}$) at $-45^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 2 h . To the solution was added a solution of 12 -crown-4 $(0.31 \mathrm{~mL}, 1.9 \mathrm{mmol})$ in THF $(0.8 \mathrm{~mL})$ at $-45^{\circ} \mathrm{C}$ and the reaction mixure was stirred for another 2 h . To the reaction mixture was added $\mathrm{Me}_{3} \mathrm{SiCl}(0.26 \mathrm{~mL}, 2.1 \mathrm{mmol})$ at $-45^{\circ} \mathrm{C}$. The reaction mixture was warmed to ambient temperature. After being stirred for 15 min , the reaction mixture was diluted with hexane (ca. 5 mL) and filtered. The filtrate was concentrated and the residue was distilled bulb-to-bulb to give 23 ($307 \mathrm{mg}, 86 \%$ yield) as a colorless oil. bp: 191-201 ${ }^{\circ} \mathrm{C} / 0.38$ $\mathrm{mmHg} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.22(\mathrm{~s}, 18 \mathrm{H}), 2.34(\mathrm{ddd}, \mathrm{J}=6.5,1.4$, and $1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.95-5.08(\mathrm{~m}$, $2 \mathrm{H}), 5.91-6.08(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.77-7.90(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 5.65,26.65$, $114.88,127.39,129.08,134.97,135.27,139.16$. MS: m/e 368 ($\mathrm{M}^{+}-\mathrm{Me}, 8$), 343 (100), 326 (58), 264 (61) 192 (54). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NSi}_{3}: \mathrm{C}, 65.73 ; \mathrm{H}, 8.67$; N, 3.65. Found: C, 65.43 ; H , 8.66; N, 3.56.

Reaction of 15a with n-Butyllithium, Subsequent Rearrangement, and Trapping as 1-(2'-Cyclohexylidene-ethyl)-1,1-diphenylsilanol. To a solution of 11 a ($1.42 \mathrm{~g}, 3.01 \mathrm{mmol}$) in THF (6.0 mL) was added n-butyllithium in hexane $(1.76 \mathrm{M}, 3.50 \mathrm{~mL}, 6.16 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h , warmed to room temperature, and stirred for 2 h . A 5% aq. solution of $\mathrm{NH}_{4} \mathrm{Cl}(7.5 \mathrm{~mL})$ was added to the reaction mixture at $0^{\circ} \mathrm{C}$, which was warmed to ambient temperature with stirring. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$ and the combined organic layer was washed with water (20 mL) and brine (20 mL), and dried over MgSO_{4}. The solution was evaporated. The residue was subjected to colum chromathography on silica gel (80 mL) eluted with hexane/AcoEt $(10 / 1)$ to give the title compound $\left(806 \mathrm{mg}, 89 \%\right.$ yield) $\left(\mathrm{R}_{\mathrm{f}}=0.23\right)$ as a colorless oil. ${ }^{1} \mathrm{H}$

NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 1.23-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.73(\mathrm{~s}, 1 \mathrm{H}), 1.96-2.15(\mathrm{~m}, 6 \mathrm{H}), 5.33(\mathrm{t}, \mathrm{J}$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.64-7.77(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 12.26,26.83,27.33$, $28.48,28.56,37.23,113.95,127.80,129.87,134.30,135.94,139.55$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{OSi}$: C, 77.87; H, 7.84. Found: C, 77.67; H, 7.84. MS: m/e 308 ($\mathrm{M}^{+}, 72$), 230 (9), 200 (100), 199 $\left(\mathrm{Ph}_{2}(\mathrm{HO}) \mathrm{Si}^{+}, 81\right), 181$ (25).

Hydrogen Peroxide Oxidation of 1-(2'-Cyclohexylidene-ethyl)-1,1diphenylsilanol: Synthesis of 2-(Cyclohexylidene)ethyl alcohol. To a solution of 1-(2'-Cyclohexylidene-ethyl)-1,1-diphenylsilanol ($173 \mathrm{mg}, 0.560 \mathrm{mmol}$) in THF (0.6 mL) and $\mathrm{MeOH}(0.6$ mL) was added successively $\mathrm{KF}\left(239 \mathrm{mg}, 4.12 \mathrm{mmol}\right.$), KHCO_{3} ($223 \mathrm{mg}, 2.23 \mathrm{mmol}$), and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ $(0.63 \mathrm{~mL}, 5.6 \mathrm{mmol})$ at room temperature and the reaction mixture was stirred for 8 h . Then $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ $(0.32 \mathrm{~mL}, 2.8 \mathrm{mmol})$ was added to the reaction mixture, which was stirred at $40^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$. The combined organic layer was washed with a 10% aq. solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$, a 1 M solution of $\mathrm{NaOH}\left(10 \mathrm{~mL} \times 3\right.$), water (10 mL), and brine (10 mL), and dried over MgSO_{4}. The solution was concentrated and the residue was subjected to column chromatography on silica gel (15 mL) eluted with hexane/AcoEt (7/1) to give the title compound ($60 \mathrm{mg}, 85 \%$ yield) $\left(\mathrm{R}_{\mathrm{f}}=0.13\right.$) as a colorless oil. The spectral data were identical with the reported data. ${ }^{16 \mathrm{~b}}$

 $40^{\circ} \mathrm{C}, 24 \mathrm{~h}$

85%

Crossover Experiments

The intramolecular fashion of the rearrangement was confirmed by the following crossover experiment. An equimolar mixture of (allyloxysilyl)stannanes $\mathbf{1}$ and 24 was treated with n-butyllithium (4 equiv) under the same condition employed for 1 to give only the intramolecular rearrangement products 5 and $\mathbf{2 5}$ in 81% and 82% yields, respectively. No cross-over products $\mathbf{2 6}$ and 27 were detected at all.

[(3-Ethyl-1-penten-3-oxy)di(p-tolyl)silyl]trimethylstannane (24). (1) $\operatorname{Di}(p$ tolyl)dichlorosilane was prepared by reaction of silicon tetrachloride with 2 equiv of (p-tolyl)magnesium bromide in THF-toluene in 85% yield. (2) (3-Ethyl-1-penten-3-oxy)di(p-tolyl)chlorosilane was prepared from di(p-tolyl)dichlorosilane ($2.79 \mathrm{~g}, 9.93 \mathrm{mmol}$) and 3-ethyl-1-penten-3-ol ($1.46 \mathrm{~g}, 12.8 \mathrm{mmol}$) in the presence of triethylamine ($1.94 \mathrm{~mL}, 13.9 \mathrm{mmol}$) and 4-(dimethylamino) pyridine ($123 \mathrm{mg}, 0.990 \mathrm{mmol}$) in THF (12.0 mL) by essentially the same method as described in the literature. ${ }^{4 \mathrm{c}}$ This compound decomposed during distillation, so that it was used in the next step without purification. (3-Ethyl-1-penten-3-oxy)di(p-tolyl)chlorosilane: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.91(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.72$ (q, J $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 6 \mathrm{H}), 5.10(\mathrm{dd}, \mathrm{J}=10.7$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}$, $\mathrm{J}=17.3$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{dd}, \mathrm{J}=17.3$ and $10.7,1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=7.6$ $\mathrm{Hz}, 4 \mathrm{H})$. (3) (Trimethylstannyl)lithium was prepared from $\mathrm{Me}_{3} \mathrm{SnCl}(2.26 \mathrm{~g}, 11.3 \mathrm{mmol})$ with granular lithium ($310 \mathrm{mg}, 44.7 \mathrm{mg}$-atom) in THF (12.0 mL). The resulting solution was used in the next step without titration after removal of the unreacted lithium. (4) To a THF (10 mL) solution of (3-ethyl-1-penten-3-oxy)di(p-tolyl)chlorosilane prepared above was added over 10 min the solution of (trimethylstannyl)lithium in THF at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2.5 h and at room temperature for 10 h . The reaction mixture was evaporated, diluted with hexane (ca. 20 mL), and filtered. The filtrate was concentrated and the residue was subjected to reverse-phase column chromatography (Wakogel LP-40C18, 80 mL) with $\mathrm{CH}_{3} \mathrm{CN}$ as eluent to give 24 as a colorless oil (70%
overall yield based on di(p-tolyl)dichlorosilane) $\left(\mathrm{R}_{\mathrm{f}}=0.35\right) .24:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.38(\mathrm{~s}, 9 \mathrm{H}$, $2 \mathrm{~J}[\mathrm{Sn}-\mathrm{H}]=46.8$ and 44.8 Hz$), 0.89(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.76(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.12(\mathrm{~s}, 6 \mathrm{H}), 5.11$ $(\mathrm{dd}, \mathrm{J}=10.8$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, \mathrm{J}=17.4$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{dd}, \mathrm{J}=17.4$ and 10.8 Hz , $1 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-9.49,8.56,21.44$, $32.45,80.67,114.25,129.14,135.00,136.42,139.49,143.19$. MS: $m / e 488\left(\mathrm{M}^{+}, 0.9\right), 473\left(\mathrm{M}^{+}-\right.$ $\mathrm{Me}, 2$), 391 (13), 323 ($\mathrm{M}^{+}-\mathrm{SnMe}_{3}, 57$), 227 (100). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{OSiSn}: \mathrm{C}, 59.15 ; \mathrm{H}, 7.45$. Found: C, 58.91; H, 7.54.

Reaction of 24 with \boldsymbol{n}-Butyllithium and Subsequent Rearrangement: Synthesis of 1-(3'-Ethyl-2'-pentenyl)-1,1-di(p-tolyl)-3,3,3-trimethyldisiloxane (25). To a solution of $24(264 \mathrm{mg}, 0.541 \mathrm{mmol})$ in THF (2.0 mL) was added dropwise over $1 \mathrm{~min} n$-butyllithium in hexane $(1.65 \mathrm{M}, 0.66 \mathrm{~mL}, 1.1 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h , warmed to room temperature, and stirred for 2 h . To the reaction mixture was added $\mathrm{Me}_{3} \mathrm{SiCl}(0.15 \mathrm{~mL}, 1.2 \mathrm{mmol})$. After being stirred for 30 min , the reaction mixture was evaporated and the residue was diluted with hexane (ca. 10 mL) and filtered. The filtrate was concentrated and the residue was subjected to column chromatography on silica gel (25 mL) eluted with hexane to give $25\left(175 \mathrm{mg}, 81 \%\right.$ yield) $\left(\mathrm{R}_{\mathrm{f}}=0.33\right)$ as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.22(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.98-2.10(\mathrm{~m}, 4 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H}), 2.21(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.45-5.54(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}$, $4 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.02,12.51,12.99,17.49,21.53,22.73,29.26$, 116.35, 128.36, 133.71, 134.32, 139.21, 141.71. MS: m/e $396\left(\mathrm{M}^{+}, 4\right), 381\left(\mathrm{M}^{+}-\mathrm{Me}, 0.9\right), 299$ $\left(\mathrm{Me}_{3} \mathrm{SiO}(\mathrm{Tol})_{2} \mathrm{Si}^{+}, 100\right), 207$ (31), 193 (4). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{OSi}_{2}: \mathrm{C}, 72.66 ; \mathrm{H}, 9.15$. Found: C, 72.76; H, 9.26.

Crossover Experiment: Reaction of 1 and 24 with n-Butyllithium. To a mixture of $\mathbf{1}$ ($227 \mathrm{mg}, 0.526 \mathrm{mmol}$) and $24(267 \mathrm{mg}, 0.548 \mathrm{mmol})$ in THF (3.0 mL) was added n-butyllithium in hexane $(1.57 \mathrm{M}, 1.37 \mathrm{~mL}, 2.15 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h , warmed to room temperature, and stirred for 2 h . To the reaction mixture was added $\mathrm{Me}_{3} \mathrm{SiCl}(0.30 \mathrm{~mL}$, 2.4 mmol). After being stirred for 30 min , the reaction mixture was evaporated, diluted with hexane (ca. 10 mL), and filtered. The filtrate was concentrated and the residue was subjected to column chromatography on silica gel (30 mL) eluted with hexane to give a mixture (324 mg) of 5 (81% yield) and $25\left(82 \%\right.$ yield) $\left(\mathrm{R}_{\mathrm{f}}=\mathrm{ca} .0 .3\right)$. The yields were estimated by ${ }^{1} \mathrm{H}$ NMR. The mixture was separated
by means of HPLC eluted with hexane/AcOEt (100/1) into 5 and 25, which were characterized again by ${ }^{1} \mathrm{H}$ NMR, independently. ${ }^{1} \mathrm{H}$ NMR, GLC, and HPLC analyses of the reaction mixture revealed that $\mathbf{2 6}$ and 27 were not formed at all.

$9 \mathrm{a}(E)$

$9 \mathrm{~b}(E)$

9c (E)

(E)-16

10a (Z)

10b (Z)

10c (Z)

$(Z)-16$

