J. Am. Chem. Soc., 1996, 118(43), 10571-10576, DOI:10.1021/ja9613973

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

Table S1. Calculated Total Energies (Hartrees)

		Sym	State	UHFa	PMP4 ${ }^{\text {b }}$	G2(MP2,SVP) G2(MP2,SVP)		
		$0 \mathrm{~K}^{\text {c }}$				$298 \mathrm{~K}^{\text {c }}$		
	Components							
1	Cl	K_{h}	${ }^{2} \mathrm{P}$	-459.44796	-459.57027	-459.66759	-459.66520	
2	CH_{3}	$\mathrm{D}_{3 \mathrm{~h}}$	${ }^{2} \mathrm{~A}_{2}{ }^{\prime \prime}$	-39.55899	-39.69057	-39.74215	-39.73790	
3	NH_{3}	$\mathrm{C}_{3 \mathrm{v}}$	${ }^{1} \mathrm{~A}_{1}$	-56.18436	-56.37126	-56.45667	-56.45286	
4	NMe_{3}	$\mathrm{C}_{3 \mathrm{v}}$	${ }^{1} \mathrm{~A}_{1}$	-173.26930	-173.89366	-174.09622	-174.08974	
5	NCl_{3}	$\mathrm{C}_{3 \mathrm{v}}$	${ }^{1} \mathrm{~A}_{1}$	-1432.73551	-1433.36450	-1433.75673	-1433.75132	
6	$\mathrm{HN}=\mathrm{CH}_{2}$	Cs	${ }^{1} \mathrm{~A}^{\prime}$	-94.02846	-94.34554	-94.46083	-94.45696	
7	$\mathrm{HN}-\mathrm{CH}_{2}$	Cs	$3{ }^{3}{ }^{\prime}$	-93.96268	-94.23644	-94.34960	-94.34546	
8	pyridine	$\mathrm{C}_{2 \mathrm{v}}$	${ }^{1} \mathrm{~A}_{1}$	-246.69582	-247.55302	-247.81777	-247.81247	
9	pyridine	C_{s}	$3^{3} \mathrm{~A}^{\prime}$	-246.59325	-247.40072	-247.67627	-247.67016	
Cl -adducts								
10	ClNH_{3}	$\mathrm{C}_{3 \mathrm{v}}$	${ }^{2} \mathrm{~A}_{1}$	-515.63874	-515.95733	-516.13808	-516.13253	
11	ClNMe_{3}	$\mathrm{C}_{3 \mathrm{v}}$	${ }^{2} \mathrm{~A}_{1}$	-632.72759	-633.49478	-633.79817	-633.78982	
12	CINCl_{3}	$\mathrm{C}_{3 \mathrm{v}}$	${ }^{2} \mathrm{~A}_{1}$	-1892.18460	-1892.93953	-1893.43232	-1893.42425	
13a	$\mathrm{ClNH}=\mathrm{CH}_{2}$	C_{s}	${ }^{2} \mathrm{~A}^{\prime}$	-553.48102	-553.92558	-554.14040	-554.13426	
13b	$\mathrm{ClNH}-\mathrm{CH}_{2}$	C_{1}	${ }^{2} \mathrm{~A}$	-553.44396	-553.89406	-554.11701	-554.11199	
14	N-chloropyridinyl	$\mathrm{C}_{2 \mathrm{v}}$	${ }^{2} \mathrm{~A}_{1}$	-706.14836	-707.13953	-707.50347	-707.49563	
Me-adducts								
15	$\mathrm{MeNH}-\mathrm{CH}_{2}$	C_{1}	${ }^{2} \mathrm{~A}$	-133.61524	-134.06753	-134.22925	-134.22385	
16	$\mathrm{MeCH}_{2}-\mathrm{NH}$	$\mathrm{C}_{\text {s }}$	${ }^{2} \mathrm{~A}$ "	-133.63012	-134.07468	-134.23058	-134.22526	
17	N -methylpyridinyl	$\mathrm{C}_{\text {s }}$	${ }^{2} \mathrm{~A}^{\prime}$	-286.26892	-287.25931	-287.57952	-287.57187	
18	4-methylpyridinyl	$\mathrm{C}_{\text {s }}$	${ }^{2} \mathrm{~A}^{\prime}$	-286.27863	-287.26221	-287.57214	-287.56463	

a UHF/6-31G(d) total energies at the UHF/6-31G(d) optimized geometries.
b PMP4/6-31G(d) total energies calculated at the MP2(fc)/6-31G(d) optimized geometries.
${ }^{\text {c }}$ Calculated at the MP2(full)/6-31G(d) optimized geometries.

Table S2. GAUSSIAN Archive Entries for UMP2/(full)6-31G(d) Optimized Geometries for
Species 1-18 and UHF/6-31G(d) Frequency Calculations for the $2 \mathrm{c}-3 \mathrm{e} \mathrm{Cl}$ Adducts $10-14$

Abstract

C1 (1) $1 \backslash 1 \backslash G I N C-R S C Q C 9 \backslash S P \backslash U M P 2-F U \backslash 6-31 G(d) \backslash C l 1(2) \backslash A X N 501 \backslash 09-F e b-1996 \backslash 0 \backslash \backslash$ \#MP2 $=$ FULL/6-31G(D)
chlorine atom
0,2\Cl
Version=IBM-RS6000-G94RevC. $2 \backslash \mathrm{HF}=$ $-459.4479639 \backslash \mathrm{MP} 2=-459.5620568 \backslash \mathrm{PUHF}=-459.4503696 \backslash \mathrm{PMP} 2-0=-459.5631595 \backslash \mathrm{~S} 2$ $=0.755 \backslash S 2-1=0.75 \backslash S 2 A=0.75 \backslash \mathrm{RMSD}=5.367 \mathrm{e}-09 \backslash \mathrm{PG}=\mathrm{KH} \backslash \backslash @$ CH_{3} (2) $1 \backslash 1 \backslash G I N C-R S C Q C 2 \backslash F O p t \backslash U M P 2-F U \backslash 6-31 G(d) \backslash C 1 H 3(2) \backslash A X N 501 \backslash 16-J a n-1996 \backslash 0 \backslash \backslash N$ GEOM=ALLCHECK GUESS=READ MP2 (FULL) $/ 6-31 G(D)$ OPT=RCFC
methyl radical, G2
0, 2\C, 0., 0., O. \H, 0., 0., 1.078274815\H, 0.9338133821, 0., -0. 539137407 $5 \backslash \mathrm{H},-0.9338133821,0 .,-0.5391374075 \backslash \backslash$ Version=IBM-RS6000-G94RevC. $2 \backslash \mathrm{HF}=-3$ $9.5589209 \backslash \mathrm{MP} 2=-39.6730311 \backslash \mathrm{PUHF}=-39.5620213 \backslash \mathrm{PMP} 2-0=-39.6750374 \backslash \mathrm{~S} 2=0.762$ $\backslash S 2-1=0.753 \backslash S 2 A=0.75 \backslash R M S D=4.447 \mathrm{e}-09 \backslash \mathrm{RMSF}=5.067 \mathrm{e}-05 \backslash \mathrm{Dipole}=0 ., 0 ., 0 . \backslash \mathrm{PG}=$ D03H [O(C1), 3C2 (H1)]
@

NH_{3} (3)
$1 \backslash 1 \backslash$ ANU-VP\FOPT\RMP2-FC\6-31G(D) \H3N1 \AXN501\5-NOV-1993\1
\# MP2=DIRE CT/6-31G* FOPT SCF=DIRECT GEOM=CHECK
amonia, structure $\backslash 10,1 \backslash N \backslash \mathrm{X}, 1,1 . \$ $\mathrm{H}, 1, \mathrm{nh}, 2, \mathrm{w} \backslash \mathrm{H}, 1, \mathrm{nh}, 2 \mathrm{w}, 3,120 \ldots 0 \backslash \mathrm{H}, 1, \mathrm{nh}, 2, \mathrm{w}, 3,-120.0 \backslash \backslash \mathrm{nh}=1.0170451 \backslash \mathrm{w}=11$ $2.46412835 \backslash$ \Version=Fujitsu-VP-Unix-G92RevE. $2 \backslash \mathrm{HF}=-56.1838218 \backslash \mathrm{MP} 2=-56.3$ $542116 \backslash \mathrm{RMSD}=9.211 \mathrm{e}-09 \backslash \mathrm{RMSF}=7.157 \mathrm{e}-06 \backslash \mathrm{Dipole}=0.0 .,-0.7733075 \backslash \mathrm{PG}=\mathrm{C03V}$ [C3 (N1) , 3SGV(H1)]
@
NMe_{3} (4)
$1 \backslash 1 \backslash G I N C-R S C Q C 9 \backslash F O p t \backslash R M P 2-F U \backslash 6-31 G(d) \backslash C 3 H 9 N 1 \backslash A X N 501 \backslash 14-N O V-1995 \backslash 0 \backslash \ M P$ 2=FULL/6-31G* GEOM=CHECK MAXDISK $=460000000$ FOPT \backslash NMe3 C3v structure $\backslash 10$ $.1 \backslash \mathrm{~N}, 0.0 \ldots,-0.3965901884 \backslash \mathrm{C}, 1.3780249294,0 \ldots 0.065360005 \backslash \mathrm{C},-0.6890124647$ $, 1.1934045959,0.065360005 \backslash \mathrm{C},-0.6890124647,-1.1934045959,0.065360005 \backslash \mathrm{H}$, $1.460217466,0.1 .1680142209 \backslash \mathrm{H},-0.730108733,1.2645854206,1.1680142209 \backslash \mathrm{H}$, $-0.730108733,-1.2645854207,1.1680142209 \backslash \mathrm{H}, 1.8908306394,0.8862250878$, $0.3173985722 \backslash \mathrm{H}, 1.8908306394,-0.8862250878,-0.3173985722 \backslash \mathrm{H},-1.712908759$ $2,1.1943948241,-0.3173985722 \backslash \mathrm{H},-0.1779218802,2.0806199119,-0.317398572$ $2 \backslash \mathrm{H},-0.1779218802,-2.0806199119,-0.3173985722 \backslash \mathrm{H},-1.7129087592,-1.19439$ $48241,-0.3173985722 \backslash \backslash$ Version=IBM-RS6000-G94RevC. $2 \backslash \mathrm{HF}=-173.2682753 \backslash \mathrm{MP} 2=$ $-173.846463 \backslash \mathrm{RMSD}=4.021 \mathrm{e}-09 \backslash \mathrm{RMSF}=8.488 \mathrm{e}-05 \backslash \mathrm{Dipole}=0 ., 0 ., 0.2919384 \backslash \mathrm{PG}=\mathrm{C} 0$ 3V [C3(N1),3SGV(C1H1),X(H6)]
@
NCl_{3} (5)
$1 \backslash 1 \backslash G I N C-R S C Q C 8 \backslash F O p t \backslash R M P 2-F U \backslash 6-31 G(d) \backslash C 13 N 1 \backslash A X N 501 \backslash 23-N o v-1995 \backslash 1 \backslash \ \#$ MP $2=F U L L / 6-31 G^{*} \mathrm{SCF}=\mathrm{DIRECT}$ FOPT=Z-MATRIX \backslash Inc $13 \backslash \backslash 0,1 \backslash \mathrm{X} \backslash \mathrm{N}, 1,1 . \backslash \mathrm{Cl}, 2, \mathrm{r} 1,1$, a $1 \backslash C 1,2, r 1,1, a 1,3,120 \ldots 0 \backslash C 1,2, r 1,1, a 1,3,240 \ldots 0 \backslash \backslash 1=1.77251457 \backslash a 1=111.25$ $879799 \backslash$ VVersion=IBM-RS6000-G94RevC. $2 \backslash \mathrm{HF}=-1432.7320341 \backslash \mathrm{MP} 2=-1433.338309$ $3 \backslash \mathrm{RMSD}=3.585 \mathrm{e}-09 \backslash \mathrm{RMSF}=3.181 \mathrm{e}-05 \backslash \mathrm{Dipole}=0.0 .0 .2773441 \backslash \mathrm{PG}=\mathrm{C} 03 \mathrm{~V} \quad[\mathrm{C} 3(\mathrm{~N} 1)$, 3SGV(C11)]
@

$\mathrm{HN}=\mathrm{CH}_{2}$ (6)

$1 \backslash 1 \backslash G I N C-R S C Q C 2 \backslash F O p t \backslash R M P 2-F U \backslash 6-31 G(d) \backslash C 1 H 3 N 1 \backslash A X N 501 \backslash 25-O c t-1995 \backslash 1 \backslash \backslash \# M$ P2=FULL/6-31G* FOPT=Z-MATRIX SCF=DIRECT \backslash formaldimine HN=CH2 structure $\backslash 10,1 \backslash C \backslash N, 1, r 1 \backslash H, 2, r 2,1, a 1 \backslash H, 1, r 3,2, a 2,3,0.0 \backslash H, 1, r 4,2, a 3,3,180 \ldots 0 \backslash \backslash 1$ $=1.28093277 \backslash r 2=1.02637719 \backslash r 3=1.09440539 \backslash r 4=1.08890475 \backslash a 1=109.73928772 \backslash$ $a 2=125.46279997 \backslash \mathrm{a} 3=118.39289704 \backslash \backslash$ Version=IBM-RS6000-G94RevC. $2 \backslash$ State $=1-$ $A^{\prime} \backslash H F=-94.0265361 \backslash M P 2=-94.3230776 \backslash R M S D=3.853 e-09 \backslash R M S F=5.799 e-05 \backslash$ Dipole $=0.5866445,0 .,-0.5755192 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}(\mathrm{C} 1 \mathrm{H} 3 \mathrm{~N} 1)] \backslash \backslash$
$\mathrm{HN}-\mathrm{CH}_{2}$ (7)
$1 \backslash 1 \backslash G I N C-R S C Q C 9 \backslash F O p t \backslash U M P 2-F U \backslash 6-31 G(d) \backslash C 1 H 3 N 1(3) \backslash A X N 501 \backslash 26-O c t-1995 \backslash 0 \backslash \backslash$ \# UMP2=FULL/6-31G* FOPT SCF=DIRECT FREQ $\backslash \mathrm{HN}=\mathrm{CH} 2$ triplet structure $\backslash \backslash 0,3$ $\backslash \mathrm{C},-0.0186823585,0 \ldots-0.6605887185 \backslash \mathrm{~N},-0.0183125131,0.0 .7291787097 \backslash \mathrm{H}, 0$. $9330448474,0.1 .1176586745 \backslash \mathrm{H},-0.3463815523,-0.9246664864,-1.1291886658$ $\backslash \mathrm{H},-0.3463815523,0.9246664864,-1.1291886658 \backslash \backslash$ Version=IBM-RS6000-G94ReV C. $2 \backslash$ State $=3-\mathrm{A}^{\prime \prime} \backslash \mathrm{HF}=-93.9621921 \backslash \mathrm{MP} 2=-94.2087077 \backslash \mathrm{PUHF}=-93.9655632 \backslash \mathrm{PMP} 2-0=$ $-94.2105989 \backslash S 2=2.012 \backslash S 2-1=2.001 \backslash S 2 A=2 . \backslash R M S D=7.609 e-09 \backslash R M S F=1.281 e-04 \backslash D$ ipole=0.4047946,0.,-0.2039806\PG=CS [SG(C1H1N1),X(H2)]
@

Pyridine (8)
$1 \backslash 1 \backslash G I N C-R S C Q C 8 \backslash F O p t \backslash R M P 2-F U \backslash 6-31 G(d) \backslash C 5 H 5 N 1 \backslash R O O T \backslash 13-O c t-1995 \backslash 0 \backslash \ \#$ MP2 $=$ FULL/6-31G* FOPT SCF=DIRECT MAXDISK=460000000 $1 \backslash$ Pyridine structure $\backslash \backslash 0$, $1 \backslash N, 0 \ldots 0 .,-1.4249604615 \backslash C, 0 \ldots 0.1 .3861168541 \backslash C, 1.1440844254,0 \ldots, 0.7200$ $886482 \backslash C,-1.1440844254,0 \ldots-0.7200886482 \backslash C,-1.1961773942,0.0 .672891071$ $6 \backslash \mathrm{C}, 1.1961773942,0.0 .6728910716 \backslash \mathrm{H}, 0.0 ., 2.4729370387 \backslash \mathrm{H},-2.1550440648$, $0.1 .1830497012 \backslash \mathrm{H}, 2.1550440648,0 ., 1.1830497012 \backslash \mathrm{H}, 2.0603848887,0 .,-1.30$ $73217082 \backslash \mathrm{H},-2.0603848887,0 \ldots-1.3073217082 \backslash$ VVersion=IBM-RS6000-G94RevC. $2 \backslash$ State $=1-A 1 \backslash H F=-246.6937746 \backslash \mathrm{MP} 2=-247.5106788 \backslash R M S D=3.377 e-09 \backslash R M S F=9.61$ $4 \mathrm{e}-05 \backslash \mathrm{Dipole}=0.0 .0 .9108545 \backslash \mathrm{PG}=\mathrm{C} 02 \mathrm{~V}[\mathrm{C} 2(\mathrm{H} 1 \mathrm{C} 1 \mathrm{~N} 1), \operatorname{SGV}(\mathrm{C} 4 \mathrm{H} 4)] \backslash \backslash @$

Triplet pyridine (9)
$1 \backslash 1 \backslash G I N C-R S C Q C 8 \backslash F O p t \backslash U M P 2-F U \backslash 6-31 G(d) \backslash C 5 H 5 N 1$ (3) \ROOT\12-Oct-1995\0
\# MP2 $=$ FULL/6-31G* FOPT SCF=DIRECT MAXDISK=460000000
pyridine 3A' Cs str ucture $\backslash \backslash 0,3 \backslash N,-0.5098704728,0 .,-1.2429713902 \backslash C,-0.5088628585,1.1906119$ $68,-0.5008959001 \backslash C,-0.5088628585,-1.190611968,-0.5008959001 \backslash \mathrm{C}, 0.319522$ $1795,1.226685034,0.5400465726 \backslash C, 0.3195221795,-1.226685034,0.5400465726$ \C.0.9108237206,0.,0.9986369979\H, -1.0898295236, 2.0216945617, -0.883880 $6613 \backslash \mathrm{H},-1.0898295236,-2.0216945617,-0.8838806613 \backslash \mathrm{H}, 0.4881051543,2.1539$ $988986,1.0783864901 \backslash \mathrm{H}, 0.4881051543,-2.1539988986,1.0783864901 \backslash \mathrm{H}, 1.5796$ $878728,0.1 .8501580163 \backslash$ VVersion=IBM-RS6000-G94RevC. $2 \backslash$ State=3-A' $\backslash \mathrm{HF}=-24$ $6.5898159 \backslash \mathrm{MP} 2=-247.3317331 \backslash \mathrm{PUHF}=-246.6079186 \backslash \mathrm{PMP} 2-0=-247.347401 \backslash \mathrm{~S} 2=2.3$ $09 \backslash S 2-1=2.219 \backslash S 2 A=2.042 \backslash R M S D=2.079 e-09 \backslash R M S F=8.579 e-05 \backslash$ Dipole $=-0.260659$ $9,0.0 .4146723 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}(\mathrm{C} 1 \mathrm{H} 1 \mathrm{~N} 1), \mathrm{X}(\mathrm{C} 4 \mathrm{H} 4)] \backslash \backslash$

ClNH_{3} (10)

$1 \backslash 1 \backslash G I N C-I X \backslash F R E Q \backslash U H F \backslash 6-31 G(D) \backslash C 11 H 3 N 1(2) \backslash A X N 501 \backslash 23-O c t-1995 \backslash 1 \backslash \backslash$ HF/631G(D) FREQ SCF=DIRECT GEOM=CHECK GUESS=READ
Clnh3 at C3v symmetry $\backslash 10$ $, 2 \backslash C l \backslash N, 1, r 1 \backslash H, 2, r 2,1, a 1 \backslash H, 2, r 2,1, a 1,3,120 \ldots 0 \backslash H, 2, r 2,1, a 1,3,240 \ldots 0 \backslash \backslash 1$ $=2.68365137 \backslash r 2=1.00177245 \backslash \mathrm{a1}=110.54957432 \backslash \backslash$ Version=HP-PARisc-HPUX-G92/ DFT-RevG. $1 \backslash \mathrm{HF}=-515.6387434 \backslash \mathrm{~S} 2=0.758 \backslash \mathrm{~S} 2-1=0 . \backslash \mathrm{S} 2 \mathrm{~A}=0.75 \backslash \mathrm{RMSD}=8.389 \mathrm{e}-10 \backslash \mathrm{RM}$ $\mathrm{SF}=6.125 \mathrm{e}-05 \backslash$ Dipole $=0 \ldots 0.1 .1726342 \backslash$ DipoleDeriv $=-0.0973616,0 \ldots 0 \ldots, 0 .,-0$ $.0973616,0 \ldots 0 \ldots 0 \ldots 0.4716816,-0.36988,0 \ldots 0 \ldots 0 \ldots-0.36988,0 \ldots 0 \ldots 0 \ldots,-0.911$ $1742,0.1167488,0 \ldots-0.022024,0.0 .1947456,0 \ldots,-0.1385502,0,0.1464975,0$. $1752464,0.0337736,0.011012,0.0337736,0.136248,-0.0190733,0.0692751,-0$. $119988,0.1464975,0.1752464,-0.0337736,0.011012,-0.0337736,0.136248,0.0$ $190733,0.0692751,0.119988,0.1464975 \backslash$ Polar $=13.8146178,0.13 .8146178,0 .$, $0 ., 28.3607528 \backslash$ PolarDeriv=0.0078001,0.,-0.0078001, -3.4226978,0.,-0.0000 $002,0 \ldots,-0.0078,0 \ldots, 0 \ldots-3.4226978,0 \ldots, 0.2578881,0 \ldots,-0.2578883,0 \ldots, 0 \ldots 19.2$ $817341,-3.4196731,0.3 .419673,-3.4064474,0.0 .0000008,0.3 .4196731,0 .$, $0 .,-3.4064468,0 \ldots,-4.0618527,0 \ldots-4.0618527,-0.0000003,0 \ldots 0.7549362,7.06$ $5555,0.0 .0073537,3.1974092,0.4 .8277345,0.1 .2545185,0.0 .11 .3553545$, $0 ., 2.2777094,0.0 .6021178,2.764126,0 \ldots-6.6788899,-1.826841,2.0713678,-$ $1.7096133,1.815868,-0.7976331,-2.4138676,0.9912915,-2.3331958,5.134027$ $2,-0.7976329,2.736895,4.1809408,1.0210157,-0.7255524,1.8588116,-1.3820$ $629,2.3938029,-6.6788902,-1.826841,-2.0713678,-1.7096133,1.815868,0.79$ $76331,-2.4138676,-0.9912915,-2.3331958,-5.1340272,0.7976329,2.736895,-$ $4.1809408,1.0210157,0.7255524,1.8588116,-1.3820629,-2.3938029,-6.67889$ $02 \backslash$ HyperPolar $=19.7191489,0 \ldots,-19.7191489,0 ., 22.298154,0 ., 22.2981598,-0$. $0000005,0 .,-1168.7934342 \backslash \mathrm{PG}=\mathrm{C0} 3 \mathrm{~V}$ [C3(N1C11), 3SGV(H1)] \NIMAG=0
0.00053 $227,0.0,0.00053227,0.0,0.0,0.00779400,-0.00103896,0.0,0.0,0.76544968,0$ $.0,-0.00103896,0.0,0.0,0.76544968,0.0,0.0,-0.01373820,0.0,0.0,0.270860$ $51,0.00043020,0.0,-0.00123478,-0.43095196,0.0,-0.12934012,0.46395076,0$
$.0,-0.00009240,0.0,0.0,-0.07865518,0.0,0.0,0.07151677,-0.00088469,0.0$, $0.00198140,-0.18907441,0.0,-0.08570744,0.15030296,0.0,0.07711953,0.000$ 03825, -0.00022629, 0.00061739, -0.16672938, 0.15254898, 0.06467006, -0.0167 $1449,0.03915955,0.01982807,0.16962527,-0.00022629,0.00029955,-0.001069$ $35,0.15254898,-0.34287777,-0.11201183,-0.00394713,0.00361540,0.0000577$ $4,-0.16992890,0.36584226,0.00044234,-0.00076616,0.00198140,0.09453720$, $-0.16374324,-0.08570744,-0.00986403,0.01720048,0.00330325,-0.07515148$, $0.13016618,0.07711953,0.00003825,0.00022629,0.00061739,-0.16672938,-0$. $15254898,0.06467006,-0.01671449,-0.03915955,0.01982807,0.01378035,0.02$ 155334, -0.00996404, 0.16962527,0.00022629,0.00029955,0.00106935, -0.1525 $4898,-0.34287777,0.11201183,0.00394713,0.00361540,-0.00005774,-0.02155$ $334,-0.02687944,0.01714274,0.16992890,0.36584226,0.00044234,0.00076616$, 0.00198140, 0.09453720, 0.16374324, -0.08570744, -0.00986403, -0.01720048, $0.00330325,-0.00996404,-0.01714274,0.00330325,-0.07515148,-0.13016618$, $0.07711953 \backslash \backslash 0.0,0.0,-0.00001025,0.0,0.0,0.00005040,0.00013302,0.0,-0.0$ $0001338,-0.00006651,0.00011520,-0.00001338,-0.00006651,-0.00011520,-0$. $00001338 \backslash \backslash 1$ @
$1 \backslash 1 \backslash$ ANU-VP\FOpt \UMP2-FU\6-31G(d) \Cl1H3N1 (2) \AXN501\12-Oct-1995\1
\# U MP2=FULL/6-31G(D) FOPT=Z-MATRIX SCF=DIRECT
clnh3 C3v structure (10)
 $0,2 \backslash C 1 \backslash N, 1, r 1 \backslash H, 2, r 2,1, a 1 \backslash H, 2, r 2,1, a 1,3,120,0 \backslash H, 2, r 2,1, a 1,3,240 \ldots, 0 \backslash \backslash r$ $1=2.38318897 \backslash r 2=1.01426742 \backslash a 1=108.09783626 \backslash \backslash$ Version=Fujitsu-VP-Unix-G9 4 RevC. $2 \backslash \mathrm{HF}=-515.6358114 \backslash \mathrm{MP} 2=-515.9359968 \backslash \mathrm{PUHF}=-515.6397312 \backslash \mathrm{PMP} 2-0=-515$ $.938104 \backslash S 2=0.762 \backslash \mathrm{~S} 2-1=0.751 \backslash \mathrm{~S} 2 \mathrm{~A}=0.75 \backslash \mathrm{RMSD}=5.388 \mathrm{e}-09 \backslash \mathrm{RMSF}=3.117 \mathrm{e}-05 \backslash \mathrm{Dip}$

ClNME_{3} (11)
$1 \backslash 1 \backslash A N U-V P \backslash F r e q \backslash U H F \backslash 6-31 G(d) \backslash C 3 H 9 C 11 N 1(2) \backslash A X N 501 \backslash 25-O c t-1995 \backslash 0 \backslash \backslash \# N$ GE OM=ALLCHECK GUESS=READ UHF/6-31G(D) FREQ
clnme3 C3v structure (11) +f rq. anl. $\backslash \backslash 0,2 \backslash C l, 0 ., 0 .,-1.8152201699 \backslash \mathrm{~N}, 0.0 ., 0.5869347989 \backslash \mathrm{C}, 1.40197883$ $94,0.0 .9607260779 \backslash \mathrm{C},-0.7009894197,1.2141492905,0.9607260779 \backslash \mathrm{C},-0.7009$ $894197,-1.2141492905,0.9607260779 \backslash \mathrm{H}, 1.5170239514,0 ., 2.0451420174 \backslash \mathrm{H},-0$. $7585119757,1.3137812801,2.0451420174 \backslash \mathrm{H},-0.7585119757,-1.3137812801,2.0$ $451420174 \backslash \mathrm{H}, 1.8835308,0.8773695418,0.5536173069 \backslash \mathrm{H}, 1.8835308,-0.8773695$ $418,0.5536173069 \backslash \mathrm{H},-1.7015897117,1.1925007507,0.5536173069 \backslash \mathrm{H},-0.181941$ 0883, 2.0698702925,0.5536173069 \H, -0.1819410882, $-2.0698702925,0.5536173$ $069 \backslash \mathrm{H},-1.7015897117,-1.1925007507,0.5536173069 \backslash \backslash$ Version=Fujitsu-VP-Uni $\mathrm{x}-\mathrm{G} 94 \mathrm{RevC} .2 \backslash \mathrm{HF}=-632.7275889 \backslash \mathrm{~S} 2=0.768 \backslash \mathrm{~S} 2-1=0 . \backslash \mathrm{S} 2 \mathrm{~A}=0.75 \backslash \mathrm{RMSD}=1.694 \mathrm{e}-09 \backslash \mathrm{R}$ $\mathrm{MSF}=2.396 \mathrm{e}-05 \backslash \mathrm{Dipole}=0.0 .1 .8361675 \backslash$ DipoleDeriv $=-0.3223425,0 .,-0.0000$ $003,0,-0.3223426,0.0000004,-0.0000003,0.0000001,1.0089174,-0.5568699$, $0 ., 0.0000017,0 .,-0.5568698,-0.0000024,-0.0000005,0.0000002,0.7863102,0$ $.5250996,0.0000002,1.2655501,0 ., 0.1380193,0.0000019,0.0727929,-0.00000$ $01,-0.3115103,0.2347896,-0.1676107,-0.632788,-0.1676108,0.4283295,1.09$ 60056, -0.0363965,0.0630406, -0.311493,0.2347895, 0.1676107,-0.6327821,0. 1676105,0.4283297,-1.0960076,-0.0363966,-0.0630402,-0.3114951,-0.03055 $32,0 .,-0.4372418,0 \ldots 0.0502549,0.0000001,-0.0803907,0,-0.3530399,0.030$ $0528,0.0349909,0.2186196,0.034991,-0.0103512,-0.3786606,0.0401955,-0.0$ $696204,-0.3530456,0.0300529,-0.0349909,0.2186206,-0.0349909,-0.0103512$ $.0 .3786652,0.0401954,0.0696204,-0.3530448,0.0077604,-0.0394165,-0.1392$ $302,-0.0943583,-0.0561,-0.0553874,0.0166283,0.0601333,0.0330693,0.0077$ 604,0.0394165,-0.139229,0.0943584, -0.0561, 0.0553844,0.0166283,-0.06013 $34,0.0330677,-0.0980611,0.0332623,0.1175875,-0.0216797,0.0497216,-0.09$ 28809, -0.0603911, -0.0156662, 0.0330662,0.0177912, -0.088567,0.0216581, -0 $.0336252,-0.0661309,-0.1482705,0.0437629,0.0444672,0.0330658,0.0177912$ $.0 .0885671,0.0216525,0.0336252,-0.066131,0.1482694,0.0437629,-0.044467$ $3,0.0330664,-0.0980612,-0.0332623,0.1175814,0.0216797,0.0497215,0.0928$ $818,-0.0603911,0.0156661,0.0330643 \backslash \operatorname{Polar}=43.2970118,-0.0000002,43.2970$ 111, $-0.0000309,0.0000154,172.2430384 \backslash$ PolarDeriv $=0.2119211,-0.0000004,-$. $0.2119191,-26.8439712,0.0000015,0.0000931,0.0000007,-0.2119218,0.00000$ $08,0.0000037,-26.8439379,-0.000024,-0.795661,0.0000051,-0.7956585,0.00$ $00178,0.000046,-160.7924525,-2.9024332,-0.0000035,2.9024358,14.598114$, $0.000103,0.000222,-0.0000021,2.9024395,-0.000004,0.0001071,14.5980638$,
$-0.000832,-3.3773772,0.0000091,-3.3773744,0.0000805,-0.000047,602.1529$ 656,1.3935456,0.0000068,-2.5999706,-5.1740214,0.0000623,161.9566949,0. 0000031,-3.901031,0.0000015,-0.00018,-0.5480412,-0.000137,2.0901286,-0 $.0000038,3.1358175,-2.8724762,0.0000984,-138.8174258,3.726566,-0.82457$ $22,-3.1233509,-1.7046499,2.0031076,-80.9783494,0.3021796,-2.472829,-1$. 346972,2.0030321,-4.0175179,140.2585855,2.874392,0.4527939,2.3515549,1 $.4362605,-2.4876163,-138.8173236,3.7265716,0.8245758,-3.1233578,-1.704$ $6862,-2.0031238,-80.978336,-0.3021722,-2.4728256,1.3469645,-2.003098,-$ $4.0174774,-140.2579231,2.8743977,-0.4527933,2.3515492,1.4362359,2.4878$ $098,-138.818103,1.5340233,-0.0000018,0.3319939,4.6676327,-0.0000106,-6$ $6.8390415,0 ., 1.1597358,0,-0.0000004,3.5712772,0.0000577,1.6481757,-0$. $0000011,0.1270865,6.0262077,-0.0000003,-5.9700897,-1.186052,0.762427,0$ $.253042,3.8453016,-0.4747484,33.419562,0.045581,-0.1608274,1.5704391,-$ $0.4747375,4.3935237,-57.884426,0.5073583,-0.6586509,1.2679051,-3.01313$ $97,5.2188958,-5.9698312,-1.1860538,-0.7624286,0.2530442,3.8453194,0.47$ $47309,33.4196077,-0.0455843,-0.1608281,-1.5704341,0.4747627,4.3935007$, $57.8843284,0.5073601,0.6586513,1.2679019,-3.0131419,-5.2188793,-5.9699$ $36,2.9976343,2.5872719,1.308243,1.1506179,1.3054152,-19.2793997,1.8613$ 175, 2.61739,4.525162,1.6985287,1.6729446,-14.5190732,-1.0256014,-0.363 $4968,-1.0839906,0.4382911,0.2389659,-1.1667044,2.9976339,-2.5872719,1$. $3082432,1.1506389,-1.3054612,-19.2795709,-1.8613191,2.6173898,-4.52516$ $22,-1.6984699,1.6729276,14.5191915,-1.0256028,0.3634972,-1.0839895,0.4$ 383946,-0.2390961,-1.1665581,-7.2908262,1.1470046,-0.3929696,2.843163, $-0.721361,22.2134475,0.3762262,-1.6762343,0.1595318,-0.3282618,-0.0195$ $597,-9.4368732,-1.3841898,0.1564665,-0.7254016,-0.4262171,0.2601665,-1$.1661637,1.6341492,1.8512507,1.7437642,0.2417036,1.1736933,-2.9344616, $0.3545194,1.7178868,6.5677196,0.7806989,2.5819298,-23.9560102,-0.75459$ $52,-0.2070294,-1.3549964,-0.0121638,0.4991625,-1.1662893,1.6341489,-1$. $8512501,1.7437656,0.2417132,-1.1736672,-2.9344266,-0.3545196,1.717886$, $-6.5677205,-0.7806763,2.5819474,23.9561246,-0.7545959,0.2070305,-1.354$ $9974,-0.0121343,-0.4992263,-1.1662933,-7.2908259,-1.1470043,-0.3929681$ $, 2.8431447,0.7213488,22.2138764,-0.3762255,-1.6762347,-0.1595328,0.328$ $2366,-0.0196144,9.4369858,-1.3841901,-0.156466,-0.7254019,-0.4261991,-$ $0.2601607,-1.1661785 \backslash$ HyperPolar=-16.6033057,0.000006,16.6033074,0.0000 $065,59.7945231,-0.000531,59.7943229,-0.0012647,-0.0041375,-19146.14232$ $35 \backslash \mathrm{PG}=\mathrm{CO} 03 \mathrm{~V}[\mathrm{C} 3(\mathrm{~N} 1 \mathrm{Cl1}), 3 \mathrm{SGV}(\mathrm{C} 1 \mathrm{H} 1), \mathrm{X}(\mathrm{H} 6)] \backslash \mathrm{NImag}=0 \backslash \backslash 0.00597988,0,0.00597$ 987,0.,0.,0.04386031,-0.00527570,0.,-0.00000002,0.65700598,0.,-0.00527 $568,0.00000002,0.0 .65700593,0 .,-0.00000001,-0.05137151,0.0 .00000004$, $0.31205826,-0.00134001,0 .,-0.01240731,-0.24979816,0.00000001,-0.041911$ $37,0.56933576,0 .,-0.00061133,-0.00000002,0 \ldots,-0.12204441,-0.00000002,-0$ $.00000002,0.72037384,-0.00562956,0 .,-0.00067753,-0.06176189,-0.0000000$ $2,-0.08744440,-0.03800892,0.00000001,0.63025297,-0.00079351,0.00031561$ $.0 .00620378,-0.15398285,0.05531886,0.02095587,-0.01973343,0.03721123,0$ $.01023639,0.68261431,0.00031554,-0.00115786,-0.01074512,0.05531896,-0$. $21785970,-0.03629643,0.00103841,0.00234997,0.00527130,0.06540141,0.607$ $09530,0.00281479,-0.00487526,-0.00067769,0.03088096,-0.05348748,-0.087$ $44461,-0.00055315,0.01150068,-0.00064479,0.01900445,-0.03291670,0.6302$ 5297,-0.00079352,-0.00031561, 0.00620373,-0.15398288, -0.05531884, 0.0209 5582, -0.01973346,-0.03721121,0.01023646,0.01339170,0.01808639,-0.00968 $328,0.68261434,-0.00031553,-0.00115785,0.01074514,-0.05531900,-0.21785$ $972,0.03629646,-0.00103840,0.00235000,-0.00527130,-0.01808642,-0.03077$ $516,0.00622933,-0.06540140,0.60709527,0.00281478,0.00487522,-0.0006776$ $7,0.03088093,0.05348753,-0.08744458,-0.00055311,-0.01150063,-0.0006447$ $9,-0.00968330,-0.00622938,-0.00064479,0.01900447,0.03291668,0.63025297$ $,-0.00008021,0 ., 0.00410952,-0.01796571,0 .,-0.04049773,-0.05913608,0 .,-$ $0.01672688,0.00048834,0.00052512,-0.00453989,0.00048839,-0.00052509,-0$ $.00453988,0.06919688,0.0 .00040387,0.0 ., 0.00118487,0 ., 0 .,-0.06530611$, $0 .,-0.00043560,0.00045813,0.00148332,0.00043559,0.00045812,-0.00148333$ $, 0.0 .05642349,-0.00059846,0 ., 0.00237288,-0.01157072,0 \ldots,-0.00831832,-0$ $.01431197,0 .,-0.32661534,0.00032302,-0.00032895,-0.00040940,0.00032304$, 0.00032893, $-0.00040942,0.02774270,0.0 .35686836,0.00028286,0.00020961$ $,-0.00205475,-0.00360278,0.00829245,0.02024888,0.00042693,-0.00047108$, $0.00355454 .-0.06376360 .-0.00267170 .0 .00836344 .0 .00050445 .0 .00044490 .0$.
$00098536,0.00087541,-0.00002349,-0.00060752,0.05961684,0.00020961,0.00$ 004080,0.00355893,0.00829245, -0.01317804, -0.03507209, 0.00048960,0.0005 1958,-0.00318999,-0.00267171,-0.06067859,-0.01448590,-0.00051582,0.000 $44203,-0.00467332,-0.00106236,0.00024848,0.00060767,-0.00553104,0.0660$ 0353, 0.00029922,-0.00051831,0.00237293,0.00578537,-0.01002049,-0.00831 $825,-0.00044638,0.00011529,-0.00040942,0.00715598,-0.01239453,-0.32661$ 534, 0.00012337,0.00044422,-0.00040940,0.00083001, -0.00022230,0.0004889 $2,-0.01387135,0.02402589,0.35686836,0.00028286,-0.00020961,-0.00205476$ $,-0.00360278,-0.00829246,0.02024887,0.00042692,0.00047106,0.00355453,0$ $.00050444,-0.00044486,0.00098534,-0.06376361,0.00267171,0.00836344,0.0$ $0087540,0.00002350,-0.00060752,-0.00006497,0.00051943,-0.00022250,0.05$ 961684,-0.00020961, 0.00004081,-0.00355898, -0.00829244, -0.01317807,0.03 507202,-0.00048966,0.00051955,0.00319000,0.00051582,0.00044207,0.00467 $332,0.00267170,-0.06067858,0.01448590,0.00106236,0.00024849,-0.0006076$ $6,-0.00051944,0.00118886,-0.00082997,0.00553104,0.06600353,0.00029923$, $0.00051834,0.00237292,0.00578536,0.01002045,-0.00831826,-0.00044639,-0$ $.00011527,-0.00040940,0.00012334,-0.00044423,-0.00040942,0.00715599,0$. $01239453,-0.32661534,0.00083002,0.00022229,0.00048892,-0.00022249,0.00$ $082996,0.00048892,-0.01387135,-0.02402589,0.35686836,0.00029623,0.0002$ $6567,0.00168126,-0.02392460,-0.03663397,0.01473129,-0.11097541,-0.0954$ 0075,0.04573805,0.00041991,-0.00168076,0.00013137,-0.00719384,0.002563 $76,-0.00323300,0.00239633,0.00334124,-0.00027056,0.00013467,-0.0000616$ $3,-0.00012463,0.00021047,0.00037348,0.00019483,0.12944994,0.00065101,0$ $.00028288,0.00115128,-0.00000963,0.00099287,-0.00057062,-0.10565151,-0$ $.26303087,0.09340419,0.00097946,0.00123817,-0.00097062,-0.00018361,0.0$ $0024233,-0.00095191,0.00153562,0.00293699,-0.00067551,0.00013019,-0.00$ $043268,-0.00003370,0.00022203,0.00032333,0.00001321,0.11492946,0.27715$ $875,-0.00019321,-0.00019222,0.00040421,-0.00731111,-0.01244789,0.00443$ $358,0.05324764,0.09818045,-0.10633928,0.00015656,0.00019211,-0.0001703$ $4,-0.00221130,0.00014089,-0.00019392,0.01582308,0.03106925,-0.01246463$ $, 0.00009739,0.00018119,-0.00017169,-0.00041428,-0.00029750,0.00040298$, $-0.05082971,-0.10397073,0.10609002,0.00029623,-0.00026567,0.00168125,-$ $0.02392461,0.03663397,0.01473128,-0.11097542,0.09540075,0.04573806,-0$. $00719384,-0.00256377,-0.00323298,0.00041989,0.00168072,0.00013135,0.00$ $239634,-0.00334124,-0.00027056,0.00021047,-0.00037347,0.00019484,0.000$ $13467,0.00006164,-0.00012463,0.00943843,-0.01312416,-0.00793635,0.1294$ 4994, -0.00065102,0.00028287, -0.00115125, 0.00000964, 0.00099289, 0.000570 $66,0.10565154,-0.26303087,-0.09340421,0.00018359,0.00024237,0.00095187$ $,-0.00097947,0.00123814,0.00097059,-0.00153563,0.00293699,0.00067550,-$ $0.00022202,0.00032331,-0.00001322,-0.00013018,-0.00043266,0.00003369,0$ $.01312416,-0.02148478,-0.01233715,-0.11492946,0.27715875,-0.00019320,0$ $.00019222,0.00040422,-0.00731111,0.01244788,0.00443360,0.05324765,-0.0$ 9818045,-0.10633929,-0.00221132, -0.00014087,-0.00019394, 0.00015656, -0. 00019212, $-0.00017034,0.01582307,-0.03106925,-0.01246463,-0.00041428,0$. $00029749,0.00040298,0.00009739,-0.00018119,-0.00017169,-0.00793635,0.0$ $1233715,0.00706252,-0.05082971,0.10397073,0.10609002,0.00068315,-0.000$ $42768,-0.00183772,-0.02110363,0.00163841,-0.00687156,-0.00058608,0.003$ $99860,0.00244088,-0.31207519,-0.01045350,-0.10375943,0.00072993,-0.000$ 80047, 0.00077490,0.00055298, -0.00002428, -0.00010886, 0.00491357, -0.0000 $8230,0.00072029,-0.00026115,-0.00035872,0.00009150,0.00060918,0.000173$ $55,-0.00003636,-0.00084102,0.00009134,-0.00049836,0.33976338,-0.000042$ $28,-0.00010404,0.00088035,0.03826267,-0.00182810,0.01304294,0.00125123$ $,-0.00636544,-0.00232390,-0.02070426,-0.06193109,-0.00709178,0.0018597$ $5,0.00092815,0.00059908,-0.00017574,-0.00001918,0.00016213,-0.00188791$ $, 0.00041975,0.00010344,-0.00016690,-0.00003686,-0.00009108,0.00001718$, $0.00036043,-0.00030388,0.00193226,0.00032731,0.00042010,0.00649506,0.0$ $6684531,0.00026307,-0.00007122,0.00040423,0.01443574,-0.00010764,0.004$ $43361,0.00098364,-0.00198549,-0.00019392,-0.11165058,-0.00297642,-0.10$ $633928,-0.00024465,0.00003953,-0.00017034,0.00046478,-0.00021003,0.000$ 40298, $-0.03481830,-0.00183143,-0.01246463,-0.00020561,-0.00000626,-0.0$ $0017169,-0.00027871,-0.00018192,-0.00002463,0.00061299,-0.00022154,0.0$ $0058969,0.11545615,0.00796554,0.10609002,-0.00011072,0.00041603,0.0001$ $5631.0 .01063066 .0 .01994090 .-0.00785996 .0 .00133723 .0 .00150910 .-0.000906$
$23,-0.13795881,-0.12123041,0.05802138,-0.00264734,0.00244134,0.0007921$ $5,-0.00032051,-0.00013262,0.00003314,0.00069008,0.00055052,-0.00044972$, 0.00003725,0.00012201, -0.00008597, -0.00036033, 0.00045706,0.00012420,0 $.00034003,0.00001815,-0.00001819,-0.01375398,-0.02651430,0.01455247,0$. $14069971,0.00003072,0.00068985,0.00203165,-0.01668348,-0.03356241,0.01$ $247238,-0.00115110,0.00032080,-0.00037155,-0.11097962,-0.23604747,0.08$ $631243,0.00518870,-0.00430414,-0.00327578,-0.00032444,0.00002252,-0.00$ $012478,0.00235613,0.00464325,-0.00057206,0.00027346,0.00049653,0.00017$ $535,0.00095619,0.00045562,-0.00012675,-0.00013822,0.00062958,-0.000332$ $33,-0.00026599,0.00170763,-0.00070451,0.12142452,0.26590897,-0.0000698$ $6,-0.00026344,0.00040424,-0.00712463,-0.01255554,0.00443362,0.00008810$. $0.00023164,-0.00017034,0.05840294,0.09520404,-0.10633929,0.00122766,-$ $0.00184462,-0.00019394,0.00010822,0.00017494,-0.00017169,0.01899522,0$. 02923781, -0.01246463,-0.00005050, -0.00050752, 0.00040298, -0.00017187, 0. $00004419,0.00040608,-0.00024499,-0.00018343,-0.00002463,-0.00671611,-0$ $.01304166,0.00706252,-0.06462644,-0.09600519,0.10609002,-0.00011071,-0$ $.00041605,0.00015637,0.01063065,-0.01994087,-0.00785988,0.00133728,-0$. $00150910,-0.00090627,-0.00264735,-0.00244131,0.00079212,-0.13795882,0$. 12123039, 0.05802137, -0.00032053, 0.00013262,0.00003313,0.00003725,-0.00 012202,-0.00008598, 0.00069008, -0.00055052, -0.00044972, 0.00034003, -0.00 $001815,-0.00001819,-0.00036033,-0.00045706,0.00012420,0.00050520,-0.00$ $007721,0.00028135,0.00091147,-0.00092046,-0.00011464,0.14069971,-0.000$ $03072,0.00068986,-0.00203164,0.01668347,-0.03356240,-0.01247235,0.0011$ $5112,0.00032080,0.00037155,-0.00518868,-0.00430416,0.00327581,0.110979$ $63,-0.23604746,-0.08631241,0.00032444,0.00002252,0.00012478,-0.0002734$ $8,0.00049655,-0.00017534,-0.00235614,0.00464324,0.00057207,0.00013822$, $0.00062958,0.00033233,-0.00095619,0.00045562,0.00012675,-0.00023358,0$. $00046441,0.00012046,0.00092046,-0.00142518,-0.00064164,-0.12142452,0.2$ 6590897, $-0.00006986,0.00026344,0.00040423,-0.00712463,0.01255554,0.004$ $43361,0.00008810,-0.00023164,-0.00017034,0.00122767,0.00184460,-0.0001$ $9392,0.05840294,-0.09520403,-0.10633928,0.00010822,-0.00017494,-0.0001$ 7169, -0.00005050,0.00050753, 0.00040298, 0.01899522,-0.02923781,-0.01246 $463,-0.00024499,0.00018343,-0.00002463,-0.00017187,-0.00004419,0.00040$ $608,0.00029690,-0.00015041,-0.00002463,-0.00011464,0.00064164,0.000589$ $69,-0.06462644,0.09600519,0.10609002,0.00068316,0.00042769,-0.00183766$ $,-0.02110362,-0.00163843,-0.00687149,-0.00058604,-0.00399860,0.0024408$ $3,0.00072993,0.00080047,0.00077488,-0.31207520,0.01045348,-0.10375945$, $0.00055295,0.00002428,-0.00010887,-0.00026115,0.00035871,0.00009149,0$. $00491358,0.00008231,0.00072028,-0.00084102,-0.00009134,-0.00049836,0.0$ $0060918,-0.00017355,-0.00003636,0.00086359,-0.00024956,0.00004767,0.00$ $050520,0.00023358,0.00029690,-0.01375398,0.00026599,-0.00671611,0.3397$ $6338,0.00004228,-0.00010405,-0.00088036,-0.03826266,-0.00182807,-0.013$ $04296,-0.00125124,-0.00636544,0.00232391,-0.00185972,0.00092810,-0.000$ 59904,0.02070426,-0.06193109,0.00709178,0.00017574,-0.00001918, -0.0001 6213, 0.00016689, -0.00003684,0.00009109, 0.00188791,0.00041975, -0.000103 $44,-0.00193226,0.00032731,-0.00042010,-0.00001718,0.00036043,0.0003038$ $8,0.00024956,-0.00076830,0.00017094,0.00007721,0.00046441,0.00015041,0$ $.02651430,0.00170763,0.01304166,-0.00649506,0.06684531,0.00026307,0.00$ $007124,0.00040425,0.01443573,0.00010763,0.00443364,0.00098366,0.001985$ $49,-0.00019394,-0.00024466,-0.00003952,-0.00017034,-0.11165059,0.00297$ $641,-0.10633929,0.00046478,0.00021003,0.00040298,-0.00020561,0.0000062$ $5,-0.00017169,-0.03481829,0.00183144,-0.01246463,0.00061299,0.00022154$ $, 0.00058969,-0.00027871,0.00018192,-0.00002463,0.00004767,-0.00017094$, $0.00040608,0.00028135,-0.00012046,-0.00002463,0.01465247,0.00070451,0$. $00706252,0.11545615,-0.00796554,0.10609002 \backslash 10 ., 0,-0.00001959,0 \ldots, 0.0$. $00011740,-0.00002843,0 \ldots-0.00004646,0.00001421,-0.00002462,-0.00004646$ $, 0.00001421,0.00002462,-0.00004646,0.00000574,0 \ldots 0.00001477,-0.0000028$ $7,0.00000497,0.00001477,-0.00000287,-0.00000497,0.00001477,-0.00000434$ $, 0.00000554,-0.00000045,-0.00000434,-0.00000554,-0.00000045,-0.0000026$ $3,-0.00000653,-0.00000045,0.00000697,-0.00000099,-0.00000045,0.0000069$ $7,0.00000099,-0.00000045,-0.00000263,0.00000653,-0.00000045 \backslash 11$ @
$1 \backslash 1 \backslash$ ANU-VP\FODt \backslash UMP2-FU $6-31 G(d) \backslash C 3 H 9 C 11 N 1(2) \backslash A X N 501 \backslash 12-O c t-1995 \backslash 0 \backslash \backslash \#$

MP2=FULL/6-31G* SCF=DIRECT FOPT
clnme3 C3v structure (11) $1 \backslash 0,2 \backslash C 1,0$. , 0., $-1.774978704 \backslash \mathrm{~N}, 0.0 .0 .5741597299 \backslash \mathrm{C}, 1.4078328852,0.0 .9409311711 \backslash \mathrm{C}$ $,-0.7039164426,1.2192190429,0.9409311711 \backslash C,-0.7039164426,-1.2192190429$ $, 0.9409311711 \backslash \mathrm{H}, 1.527767642,0 ., 2.0339285632 \backslash \mathrm{H},-0.763883821,1.323085589$ $1,2.0339285632 \backslash \mathrm{H},-0.763883821,-1.3230855891,2.0339285632 \backslash \mathrm{H}, 1.882905709$ $5,0.8860795729,0.519495515 \backslash \mathrm{~F}, 1.8829057095,-0.8860795729,0.519495515 \backslash \mathrm{H}$, $-1.7088202747,1.1876043909,0.519495515 \backslash \mathrm{H},-0.1740854348,2.0736839638,0$. $519495515 \backslash \mathrm{H},-0.1740854348,-2.0736839638,0.519495515 \backslash \mathrm{H},-1.7088202747,-1$.1876043909, 0.519495515
Version=Fujitsu-VP-Unix-G94RevC. $2 \backslash \mathrm{HF}=-632.726$ $6327 \backslash \mathrm{MP} 2=-633.4408344 \backslash \mathrm{PUHF}=-632.7320815 \backslash \mathrm{PMP} 2-0=-633.4439533 \backslash \mathrm{~S} 2=0.768 \backslash \mathrm{~S}$ $2-1=0.753 \backslash S 2 A=0.75 \backslash \mathrm{RMSD}=4.858 \mathrm{e}-09 \backslash \mathrm{RMSF}=8.400 \mathrm{e}-05 \backslash$ Dipole=0.,0.,1.983676 $3 \backslash P G=C 03 V[C 3(N 1 C 11), 3 S G V(C 1 H 1), X(H 6)] \backslash \ @$
ClNCl_{3} (12)
$1 \backslash 1 \backslash G I N C-R S C Q C 9 \backslash F r e q \backslash U H F \backslash 6-31 G(d) \backslash C 14 N 1(2) \backslash A X N 501 \backslash 17-J a n-1996 \backslash 0 \backslash \backslash$ \#N GE OM=ALLCHECK GUESS=READ UHF/6-31G(D) FREQ
ncl4 structure
0, $2 \backslash C 1,0.0$. $,-2.9087516755 \backslash \mathrm{~N}, 0.0 .0 .3674062814 \backslash \mathrm{Cl}, 1.6316469534,0.0 .9191555787 \backslash \mathrm{Cl}$ $,-0.8158234767,1.4130477116,0.9191555787 \backslash \mathrm{Cl},-0.8158234767,-1.413047711$ $6,0.9191555787 \backslash \backslash$ Version=IBM-RS6000-G94RevC. $2 \backslash \mathrm{HF}=-1892.1845974 \backslash \mathrm{~S} 2=0.755$ $\backslash S 2-1=0 . \backslash S 2 A=0.75 \backslash R M S D=1.819 e-09 \backslash R M S F=2.287 e-06 \backslash \operatorname{Dipole}=0 ., 0 ., 0.3630661$ \DipoleDeriv=-0.0095643,0.,-0.0000009,0.,-0.0095616,0.,-0.0000005,0.,0 $.0565809,0.5522724,0 .,-0.0000003,0.0 .5522857,0 \ldots,-0.0000031,0 \ldots,-0.1830$ $824,-0.3112387,0 \ldots, 0.0243921,0 \ldots-0.050568,0 \ldots,-0.1880408,0 \ldots 0.0421679,-0$ $.1157348,0.1129012,-0.0121959,0.1128748,-0.2460777,0.0211235,0.0940221$, -0.1628578, 0.0421676,-0.1157348,-0.1129012,-0.0121959,-0.1128748,-0.2 $460777,-0.0211235,0.0940221,0.1628578,0.0421676 \backslash \operatorname{Polar}=49.2849289,0 . .49$.2849624, -0.000028, 0., 29.0315152 \PolarDeriv=-0.0071328, 0. . 0.0070096, - 0 $.6222625,0.0 .000026,0 \ldots 0.0072366,0 \ldots 0 \ldots-0.6224822,0 \ldots,-0.3381469,0 \ldots, 0$ $.338175,0.0000093,0.2 .6399966,-10.3938402,0 ., 10.3938909,-5.2464651,0$. $,-0.0000095,0 ., 10.3937582,0 \ldots 0 .,-5.2466186,0 \ldots-9.3882775,0 \ldots-9.3879079$ $,-0.0000023,0 \ldots-6.6359402,26.3547851,0 \ldots 1.3101711,3.3117043,0 \ldots 0.37314$ $68,0 ., 5.5884122,0 \ldots 0.0 .6008148,0 ., 5.597164,0.0 .8877815,6.5351809,0 .$, $1.3319711,-7.9769377,7.8422748,-5.8555789,1.2785268,-1.1738519,-0.1865$ $687,4.13705,-7.9947005,19.8216711,-1.17383,2.6340369,0.3231518,2.06483$ $01,-2.0391961,4.4192136,-3.2675929,5.6596815,1.3319659,-7.9769377,-7.8$ $422748,-5.8555789,1.2785268,1.1738519,-0.1865687,-4.13705,-7.9947005,-$ $19.8216711,1.17383,2.6340369,-0.3231518,2.0648301,2.0391961,4.4192136$, $-3.2675929,-5.6596815,1.3319659 \backslash$ HyperPolar $=44.4968938,0 .,-44.500482,0$. $, 31.7873724,0 ., 31.7947995,-0.0008928,0 .,-90.44458271 \mathrm{PG}=\mathrm{C} 03 \mathrm{~V} \quad[\mathrm{C} 3(\mathrm{~N} 1 \mathrm{Cl1})$,3SGV(C11)] \NImag=0
0.00019521,0.,0.00019507,0.00000002,0.,0.00133442 $,-0.00017262,0 \ldots 0 ., 0.33292277,0 \ldots,-0.00017307,0 ., 0 ., 0.33292283,0.000000$ $11,0 \ldots-0.00133240,0,0,0.13666739,-0.00006575,0.0 .00012291,-0.181719$ $80,0 \ldots-0.04540864,0.24357887,0.0 .00005072,0 \ldots 0 \ldots-0.04011366,0 \ldots, 0.0 .0$ $4839881,-0.00026654,0 \ldots,-0.00000068,-0.07478136,0 \ldots,-0.04511173,0.056163$ $58,0 ., 0.03231326,0.00002157,0.00004948,-0.00006145,-0.07551518,0.06131$ $735,0.02270431,-0.03089667,0.03034884,0.00944214,0.09719382,0.00005040$ $,-0.00003639,0.00010644,0.06131727,-0.14631827,-0.03932501,0.01594670$, $-0.00416792,-0.00082890,-0.08451545,0.19478385,0.00013321,-0.00023049$, $-0.00000069,0.03739069,-0.06476259,-0.04511172,-0.00543892,0.00776268$, $0.00639961,-0.02808179,0.04863909,0.03231326,0.00002157,-0.00004948,-0$ $.00006145,-0.07551518,-0.06131735,0.02270431,-0.03089667,-0.03034884,0$ $.00944214,0.00919645,0.00720107,-0.00400322,0.09719382,-0.00005040,-0$. $00003639,-0.00010644,-0.06131727,-0.14631827,0.03932501,-0.01594670,-0$ $.00416792,0.00082890,-0.00720107,-0.04426104,0.00859158,0.08451545,0.1$ $9478385,0.00013321,0.00023049,-0.00000069,0.03739069,0.06476259,-0.045$ $11172,-0.00543892,-0.00776268,0.00639961,-0.00400322,-0.00859158,0.006$ $39961,-0.02808179,-0.04863909,0.03231326 \backslash 10 \ldots 0,-0.00000015,0 \ldots 0 \ldots-0.0$ $0000636,0.00000282,0.0 .00000217,-0.00000141,0.00000244,0.00000217,-0$. 00000141,-0.00000244,0.00000217
1@
$1 \backslash 1 \backslash G I N C-R S C Q C 9 \backslash F O p t \backslash U M P 2-F U \backslash 6-31 G(d) \backslash C 14 N 1(2) \backslash A X N 501 \backslash 19-J a n-1996 \backslash 1 \backslash \backslash \#$ $M P 2=F U L L / 6-31 G(D) O P T=Z-M A T R I X \backslash \backslash n c 14$ structure $\backslash \backslash 0,2 \backslash C 1 \backslash N, 1, r 1 \backslash C 1,2, r 2$,
$1, a 1 \backslash C 1,2, r 2,1, a 1,3,120 ., 0 \backslash C 1,2, r 2,1, a 1,3,240 \ldots 0 \backslash \backslash 1=2.60478104 \backslash r 2=1.7$ $6510681 \backslash \mathrm{al}=110.63932311 \backslash$ Version=IBM-RS6000-G94RevC. $2 \backslash \mathrm{HF}=-1892.1782285$ $\backslash \mathrm{MP} 2=-1892.9054419 \backslash \mathrm{PUHF}=-1892.1809022 \backslash \mathrm{PMP} 2-0=-1892.9067816 \backslash \mathrm{~S} 2=0.756 \backslash \mathrm{~S} 2$ $-1=0.75 \backslash S 2 \mathrm{~A}=0.75 \backslash \mathrm{RMSD}=6.145 \mathrm{e}-09 \backslash \mathrm{RMSF}=3.702 \mathrm{e}-05 \backslash \mathrm{Dipole}=0 ., 0 ., 0.6655572 \backslash$ $\mathrm{PG}=\mathrm{CO} 0 \mathrm{~V}[\mathrm{C} 3(\mathrm{~N} 1 \mathrm{Cl1}), 3 \mathrm{SGV}(\mathrm{Cl1})] \backslash \backslash \mathrm{a}$

$\mathrm{ClNH}=\mathrm{CH}_{2}$ (13a)

$1 \backslash 1 \backslash G I N C-R S C Q C 2 \backslash F r e q \backslash U H F \backslash 6-31 G(d) \backslash C 1 H 3 C 11 N 1(2) \backslash A X N 501 \backslash 24-O c t-1995 \backslash 0 \backslash \backslash \#$ N GEOM=ALLCHECK GUESS=READ UHF/6-31G(D) FREQ structure (13a) + frq.anl.
0, 2\C.1.2141371873,0., -1.7227150756\N,1.1 $931254239,0 \ldots-0.4707946584 \backslash \mathrm{H}, 2.1154378982,0 \ldots,-0.0703884208 \backslash \mathrm{H}, 2.1191087$ 848,0.,-2.3176494762 \H, 0.282011836,0.,-2.2653781249\C1, -1.1854858594,0 ., 1.0756040638
Version=IBM-RS6000-G94RevC. $2 \backslash$ State $=2-A^{\prime} \backslash H F=-553.481021$ $4 \backslash S 2=0.779 \backslash S 2-1=0 . \backslash S 2 A=0.75 \backslash R M S D=6.173 \mathrm{e}-10 \backslash \mathrm{RMSF}=8.633 \mathrm{e}-06 \backslash \mathrm{Dipole}=0.855$ 6487,0.,-0.8243268\DipoleDeriv=0.4119777,0.,0.0635807,0.,0.0220824,0., $-0.1282202,0 ., 0.4172825,-0.3952336,0,0.2032854,0 \ldots,-0.4992634,0 ., 0.176$ $7522,0 \ldots-0.5989533,-0.0137619,0 .,-0.0974372,0 \ldots 0.289368,0 \ldots 0.0535882,0$.,0.2024031,-0.1114042,0.,0.1030587,0.,0.1511733,0.,0.0933357,0., -0.07 $05026,-0.0728589,0,-0.0797762,0 \ldots 0.0903625,0 \ldots-0.0451784,0 \ldots,-0.015522$ 3,0.1812809,0.,-0.1927114,0.,-0.0537227,0.,-0.1502774,0.,0.0652927 Pol ar $=27.5634864,0 ., 12.7138286,-4.3730813,0 ., 34.8650476 \backslash$ PolarDeriv $=-4.429$ 6498,0.,0.4464006,7.7896397,0.,-3.8874446,0.,0.4317599,0.,0., -5.378706 $4,0.0 .0409508,0 \ldots-1.3417826,-0.0314076,0 \ldots,-19.5691557,-8.1053651,0 .,-$ $0.2985233,0.4496765,0 .,-3.6272822,0,-0.3712565,0.0 ., 5.0162116,0.3 .0$ 620015,0.,1.5634593,-1.9132893,0.,22.1233626,5.9544143,0.,0.042134, 6.1 $385972,0.0 .9888696,0 \ldots 1.459526,0 \ldots 0.0 .6201984,0 ., 5.5055735,0,-0.113$ $2606,-0.8180358,0 ., 6.1483901,6.3426615,0.0 .2712425,-4.8728859,0 ., 2.70$ $04556,0.1 .5897719,0.0 .,-0.6224308,0 \ldots,-1.7173455,0 .,-0.1199982,2.1153$ 671,0.,-4.07107,-4.8156161,0.,-0.4345082,-3.8894228,0.,-1.6626549, 0., $1.61242,0.0 .,-0.9057795,0 .,-1.7575709,0 .,-0.0226514,-2.4031346,0 .,-3$. 67258,5.0535553,0., -0.0267456, -5.6156047,0.,5.4880565,0., -1.4973812,0. $, 0.1 .2705067,0 .,-5.1336094,0.0 .0342335,3.0505002,0 \ldots,-0.958947 \backslash$ Hyper P olar $=-261.6125779,0.0 .9662119,0 ., 233.0316672,0 .,-7.4801816,-190.06202$ $25,0.127 .077303 \backslash \mathrm{PG}=\mathrm{CS}$ [SG(C1H3C11N1)] \NImag=0\10.74068159,0.,0.173753 $33,0.01553282,0.0 .97431075,-0.14440854,0 \ldots,-0.03431294,0.55263084,0 \ldots-$ $0.05985838,0.0 .0 .07652508,0.04013089,0,-0.67103672,0.14248626,0 ., 0$. $84369562,-0.00200940,0 \ldots 0.01422493,-0.42365608,0 \ldots,-0.18010086,0.417564$ $74,0.0 .00420933,0 \ldots, 0 \ldots-0.04612990,0 \ldots 0.0 .03629564,-0.05513463,0 .,-0$. $02539702,-0.11113301,0 \ldots,-0.11013211,0.16688052,0 \ldots 0.13686156,-0.286491$ $25,0.0 .11999781,0.01037636,0.0 .00447492,0.00443286,0 \ldots,-0.00040844,0$. $29084398,0 .,-0.06252446,0.0 .0 .03807877,0 \ldots 0,-0.01548257,0 ., 0 \ldots, 0.028$ $54413,0.11463760,0 \ldots,-0.14399539,0.03893840,0 .,-0.03369451,0.00097756,0$., 0.00327465,-0.14019871,0.,0.16225802,-0.31044708,0.,-0.12140848, 0.01 $182505,0 .,-0.00621438,0.00279300,0.0 .00169213,-0.01912038,0 .,-0.01336$ 102,0.31504025,0.,-0.05576921, 0.,0., -0.00813654,0.,0.,0.02110255,0.,0. $, 0.01106443,0 \ldots 0 \ldots 0.03200181,-0.11399358,0 \ldots,-0.12976537,-0.03960087,0$. $,-0.02886739,-0.00133875,0 \ldots,-0.00617927,0.01608055,0,0.01152466,0.139$ $19317,0 \ldots, 0.15299956,0.00267468,0 \ldots 0.00596586,-0.00676762,0 \ldots,-0.0007768$ $3,0.00087489,0 .,-0.00189656,-0.00004156,0 \ldots-0.00099383,-0.00009084,0 .$, $-0.00034053,0.00335046,0.0 .00018939,0 \ldots 0 \ldots-0.00047902,0 \ldots 0,0.0000049$ $5,0.0 .0 .00031970,0 \ldots 0 \ldots-0.00026304,0 \ldots 0,0.00022801,-0.00117311,0 \ldots-$ $0.00411624,0.00362217,0.0 .00003511,-0.00064340,0.0 .00157219,0.000053$ $88,0.0 .00063257,0.00009858,0,0.00028781,-0.00195811,0 ., 0.00158856 \backslash 1-$ $0.00000342,0,0.00001710,0.00001716,0 \ldots 0.00000424,-0.00002050,0 \ldots,-0.00$ $001001,-0.00000673,0 \ldots-0.00000411,0.00000981,0,-0.00000542,0.00000368$,0.,-0.00000181\1\@
$1 \backslash 1 \backslash A N U-V P \backslash F O p t \backslash U M P 2-F U \backslash 6-31 G(d) \backslash C 1 H 3 C 11 N 1(2) \backslash A X N 501 \backslash 12-0 c t-1995 \backslash 0 \backslash \backslash \#$
 $(13 \mathrm{a}) \backslash \backslash 0,2 \backslash \mathrm{C}, 1.0856696164,0 .,-1.5757434749 \backslash \mathrm{~N}, 1.0866283107,0 .,-0.334754$ $917 \backslash \mathrm{H}, 2.0176094912,0.0 .0881581009 \backslash \mathrm{H}, 1.9835159771,0 .,-2.202959961 \backslash \mathrm{H}, 0$. $1304654824,0 \ldots-2.099963505 \backslash \mathrm{Cl},-1.0736474602,0 ., 0.9419123902 \backslash \backslash$ Version $=F$
ujitsu-VP-Unix-G94RevC.2 2 State $=2-A^{\prime} \backslash H F=-553.4788255 \backslash \mathrm{MP2}=-553.89266 \backslash \mathrm{PUH}$ $\mathrm{F}=-553.4842851 \backslash \mathrm{PMP} 2-0=-553.8971171 \backslash \mathrm{~S} 2=0.797 \backslash \mathrm{~S} 2-1=0.779 \backslash \mathrm{~S} 2 \mathrm{~A}=0.751 \backslash \mathrm{RMSD}=$ $9.318 \mathrm{e}-09 \backslash \mathrm{RMSF}=1.048 \mathrm{e}-05 \backslash \mathrm{Dipole}=1.1649915,0 .,-1.0948341 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}(\mathrm{C} 1 \mathrm{H} 3$ Cl1N1)]
@
$\mathrm{C} 1 \mathrm{NH}-\mathrm{CH}_{2}$ (13b)
$1 \backslash 1 \backslash G I N C-R S C Q C 2 \backslash F O p t \backslash U M P 2-F U \backslash 6-31 G(d) \backslash C 1 H 3 C 11 N 1(2) \backslash A X N 501 \backslash 15-N o v-1995 \backslash$ 0
\# MP2=FULI/6-31G* SCF=DIRECT FOPT
HClN=CH2 2c-2e, C1 "perpendicula $r^{\prime \prime}(13 b)$ structure $\backslash \backslash 0,2 \backslash C, 1.5550378668,-0.343433283,-0.287892143 \backslash N, 0.5$ $692792164,0.5460361676,0.1364063906 \backslash \mathrm{H}, 0.5428879985,1.393446888,-0.4300$ $20518 \backslash \mathrm{H}, 2.481875708,0.1282613048,-0.5874161992 \backslash \mathrm{H}, 1.5735701152,-1.30632$ 38059,0.2033551384\Cl,-1.0537362081,-0.1162963448,0.093328806\IVersion $=$ IBM - RS $6000-\mathrm{G} 94 \mathrm{RevC} .2 \backslash \mathrm{HF}=-553.4433414 \backslash \mathrm{MP} 2=-553.8645057 \backslash \mathrm{PUHF}=-553.44703$ $93 \backslash \mathrm{PMP} 2-0=-553.8672678 \backslash \mathrm{~S} 2=0.772 \backslash \mathrm{~S} 2-1=0.761 \backslash \mathrm{~S} 2 \mathrm{~A}=0.75 \backslash \mathrm{RMSD}=4.453 \mathrm{e}-09 \backslash \mathrm{RMS}$ $\mathrm{F}=1.857 \mathrm{e}-05 \backslash \mathrm{Dipole}=-0.4710124,0.2952,0.3489364 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 1 \mathrm{H} 3 \mathrm{Cl} 1 \mathrm{~N} 1)] \backslash$ @

N-Chloropyridinyl (14)

$1 \backslash 1 \backslash G I N C-P C \backslash F r e q \backslash U H F \backslash 6-31 G(d) \backslash C 5 H 5 C 11 N 1(2) \backslash A X N 501 \backslash 23-J a n-1996 \backslash 0 \backslash \ \# N G E$ OM=ALLCHECK GUESS=READ UHF/6-31G(D) FREQ
cl-pyridine structure+frq. a nl.
0, $2 \backslash \mathrm{~N}, 0 ., 0.0 .1759237988 \backslash \mathrm{C}, 0 ., 1.1337112985,-0.5021105034 \backslash \mathrm{C}, 0 .,-1$. $1337112985,-0.5021105034 \backslash C, 0 ., 1.191012896,-1.8855152391 \backslash C, 0,-1.191012$ $896,-1.8855152391$ \C. $0 ., 0 .,-2.5904579503 \backslash \mathrm{H}, 0 ., 2.0360962086,0.0828516745$ \H, O., -2.0360962086, 0.0828516745 \H, 0., 2. 1400659323, -2.3884815072 \H, 0., $-2.1400659323,-2.3884815072 \backslash \mathrm{H}, 0.0 .,-3.6657501926 \backslash \mathrm{Cl}, 0 ., 0 ., 3.014105875$ $2 \backslash$ Version=SGI-G94RevC.3\State=2-A1 \HF=-706.1483574 \S2=0.758 $2 \mathrm{~A}=0.75 \backslash \mathrm{RMSD}=3.163 \mathrm{e}-09 \backslash \mathrm{RMSF}=3.643 \mathrm{e}-05 \backslash \mathrm{Dipole}=0 ., 0 .,-1.2747458 \backslash \mathrm{DipoleDe}$ riv $=-0.3330028,0 ., 0.0 .,-0.4338927,0.0000007,0,0 .,-0.7674332,0.073890$ $4,0.0 .0 ., 0.2862827,-0.0661009,0.0 .3402493,0.3152267,0.0738905,0.0$. $, 0 ., 0.2862828,0.0661006,0 \ldots-0.3402493,0.3152267,-0.1555343,0,0,0 \ldots,-0$ $.100446,-0.1381159,0 .,-0.4045188,-0.2778153,-0.1555343,0 \ldots 0 ., 0 .,-0.100$ $446,0.1381174,0.0 .4045189,-0.2778164,-0.0490061,0,0 \ldots, 0.0 .2946288,0$. $0000002,0 ., 0.0000001,0.3090817,0.0996638,0 \ldots 0 ., 0 \ldots-0.0660995,-0.058386$ $5,0 .,-0.0852358,0.0307823,0.0996638,0.0 ., 0 \ldots-0.0660997,0.0583858,0.0$ $.0852359,0.0307834,0.1396808,0.0 .0,1,-0.0641722,0.0697434,0 ., 0.069430$ $4,0.0307185,0.1396806,0 ., 0 ., 0 .,-0.0641721,-0.0697444,0 \ldots, 0.0694305,0.0$ $307174,0.1205536,0 \ldots 0.0 \ldots 0.0821437,-0.0000002,0 \ldots 0,-0.1043743,-0.053$ $946,0.0 .0 .,-0.0540101,-0.0000001,0 ., 0 ., 0.3649023 \backslash$ Polar $=25.4354661,0$. ,68.9228682,0.,-0.000003,81.1213633\PolarDeriv=0.,-0.0000052,0.,2.1884 $82,0.0 .,-0.0000096,0,0.0000025,0 \ldots-1.8067369,0.00008,-0.0205002,0 \ldots,-$ $0.5226686,0 .,-0.0000021,6.7796919,0 ., 2.0745418,0 \ldots 1.8189759,0 ., 0 ., 0.14$ 89442,0., 0.2304078,0.,0.6896525,9.5660639,0.1529962,0., 2.7486433,0.,0. $7267045,7.6816045,0 .,-2.0745389,0.1 .8189183,0.0 \ldots-0.1489317,0 \ldots,-0.23$ $04146,0 ., 0.689781,-9.5661916,0.1529905,0 ., 2.7486735,0,-0.7267661,7.68$ $17906,0 ., 3.5569327,0 \ldots-1.4502024,0 ., 0 \ldots-0.1541113,0 .,-0.66638,0 \ldots-1.38$ $45733,0.0049698,0.0742979,0 .,-1.338102,0 .,-2.1842532,5.012465,0 \ldots,-3.55$ $69413,0 \ldots-1.4501913,0 \ldots 0.0 .1541034,0 \ldots 0.6663491,0 \ldots,-1.384672,-0.00514$ $21,0.0743025,0 .,-1.3381385,0 ., 2.1844015,5.0123537,0 ., 0.0000066,0 .,-3.6$ $429553,0 \ldots 0,0.000003,0 \ldots 0.0000328,0 \ldots 3.2924126,0.0003316,-0.2482289,0$ $.,-2.6072943,0 .,-0.0001403,-6.5239888,0 ., 1.2624987,0.0 .5294732,0 ., 0 .$, $0.3776435,0 ., 7.3295327,0 ., 3.1936329,0.6061827,0.2683883,0 ., 2.9080557,0$., -0.8492683,-1.1465848,0.,-1.2624963,0., 0.529491,0.,0.,-0.3776439,0., $-7.3295345,0 ., 3.1936254,-0.6061293,0.2683891,0 ., 2.9080618,0 ., 0.8492736$ $,-1.1466962,0 \ldots 1.0968965,0 \ldots-0.6705655,0 \ldots 0 \ldots 0.3540965,0 ., 8.2498607,0$. $,-3.6625353,1.9793523,-0.1821535,0 .,-2.862452,0 .,-0.8278883,2.6056447$, $0 .,-1.096896,0 .,-0.6705598,0 \ldots 0 .,-0.3540979,0 .,-8.2498588,0 \ldots,-3.662557$ $5,-1.9793798,-0.1821542,0 .,-2.8624402,0 \ldots 0.8278762,2.6056261,0 \ldots 0.0000$ $006,0,-1.4523083,0,0 \ldots 0 ., 0.0 .0000002,0,-1.4196041,-0.0001518,-0.46$ $63501,0 .,-0.273447,0.0 .0000365,-2.6564776,0 .,-0.0000004,0 ., 2.4514411$, $0 ., 0 ., 0.0000003,0 \ldots 0.0000005,0 ., 2.2615916,0.000008,0.1080223,0 ., 0.4911$ $096,0.0 .0000077,2.6500587 \backslash$ HyperPolar=0., 0.0000077,0.,-0.0000066,-3.58 $8067,0 .,-37.3503236,0 .,-0.0002267,1026.6847802 \backslash \mathrm{PG}=\mathrm{CO} 2 \mathrm{~V}[\mathrm{C} 2(\mathrm{H} 1 \mathrm{C} 1 \mathrm{~N} 1 \mathrm{Cl} 1)$,
$\operatorname{SGV}(C 4 H 4)] \backslash N I m a g=0 \backslash \backslash 0.11468143,0.0 .75408512,0 .,-0.00000002,0.51040968$ $,-0.08226062,0 ., 0.0 .19524690,0 \ldots-0.32821716,0.14336745,0.0 .85578808$, $0 ., 0.06083690,-0.23308354,0,0.05747303,0.78640245,-0.08226061,0 \ldots, 0.0$ $.00412113,0 ., 0.0 .19524690,0 \ldots,-0.32821715,-0.14336744,0 \ldots,-0.11644623,0$ $.05711018,0.0 .85578808,0 \ldots-0.06083689,-0.23308354,0,-0.05711018,0.11$ $301429,0 .,-0.05747303,0.78640245,0.02646687,0.0 \ldots, 0.08430616,0 \ldots, 0 .,-0$ $.01149588,0.0 .0 .15722960,0 ., 0.05801257,0.04052931,0 .,-0.17640145,0.0$ $5785368,0 .,-0.03536878,-0.04485738,0.0 .84582066,0,0.15465614,-0.0283$ $3419,0 \ldots-0.06089288,-0.35876564,0 \ldots-0.07011434,-0.10133376,0 \ldots,-0.05038$ $284,0.76645471,0.02646688,0 \ldots 0 \ldots-0.01149588,0.0 \ldots,-0.08430616,0 \ldots 0 \ldots 0$. $00786814,0 ., 0.0 .15722960,0.0 .05801260,-0.04052932,0 .,-0.03536878,0.0$ $4485738,0,-0.17640145,-0.05785368,0 \ldots,-0.06432406,-0.03894196,0 \ldots, 0.845$ 82066,0.,-0.15465614, -0.02833418,0.,0.07011434,-0.10133376,0., 0.060892 $88,-0.35876564,0 \ldots 0.03894196,0.11337993,0 \ldots 0.05038284,0.76645471,-0.01$ $116490,0.0 .0 .00850857,0 \ldots 0.0 .00850858,0.0 \ldots,-0.07710047,0 \ldots 0 \ldots-0.07$ $710049,0.0 .0 .17628037,0 \ldots-0.14454949,0.0 .0 .07865586,-0.12633144,0$. $, 0.07865587,0.12633146,0 \ldots-0.32520483,-0.03920431,0 \ldots,-0.32520482,0.039$ $20430,0 \ldots 0.75050202,0 \ldots 0.00000003,0.00296676,0 \ldots,-0.03735092,-0.0261742$ $4,0.0 .03735090,-0.02617423,0 .,-0.14487462,-0.22486368,0 \ldots 0.14487470,-$ $0.22486375,0,0 ., 0.86235581,-0.00316751,0,0 \ldots,-0.05354284,0 \ldots, 0,0.0120$ $7644,0 \ldots 0,0.00906922,0 \ldots 0 \ldots 0.00005554,0 \ldots 0 \ldots 0.00855873,0 \ldots 0 \ldots 0.033657$ $34,0 \ldots-0.03572788,-0.01168392,0 \ldots-0.27430059,-0.14350884,0 \ldots,-0.0025381$ $4,0.00386877,0.0 .00694479,0.00326056,0.0 .00013913,-0.00001534,0.0 .0$ $0085170,0.00105155,0.0 .30474365,0 \ldots 0.02287525,0.01752628,0 \ldots,-0.147678$ $12,-0.17440949,0 \ldots 0.00463229,-0.00014945,0 \ldots,-0.03127518,-0.01069662,0$. $, 0.00118045,-0.00016025,0 \ldots 0.00168792,-0.00712323,0 \ldots 0.14890946,0.1743$ $3769,-0.00316751,0 \ldots 0.0 .01207644,0.0 \ldots-0.05354284,0 \ldots 0.0 .00005554,0$ $\ldots, 0.0 .00906922,0 \ldots 0.0 .00855872,0 \ldots 0 \ldots 0.00003161,0 \ldots 0 \ldots 0.03365734,0 .$, $-0.03572790,0.01168392,0 .,-0.00253814,-0.00386877,0 \ldots-0.27430059,0.143$ $50884,0.0 .00013913,0.00001534,0 \ldots 0.00694479,-0.00326056,0 \ldots 0.00085169$, -0.00105158, 0., -0.00105830,0.00068090,0., 0.30474365, 0., -0.02287522, 0. $01752628,0 .,-0.00463229,-0.00014945,0 \ldots 0.14767812,-0.17440949,0 .,-0.00$ $118045,-0.00016025,0.0 .03127518,-0.01069662,0 \ldots,-0.00168792,-0.0071231$ $8,0 \ldots-0.00068090,0.00041628,0 \ldots-0.14890946,0.17433769,0.00927002,0 \ldots 0$. $, 0.00161643,0 \ldots, 0 .,-0.00008883,0 \ldots, 0 \ldots-0.04423297,0 \ldots 0 \ldots 0.00891249,0 \ldots 0$. $, 0.00390455,0 \ldots 0 \ldots-0.00404184,0 \ldots 0 \ldots-0.00178928,0 \ldots 0 \ldots 0.03108541,0 \ldots 0$. $00194947,-0.00030838,0 \ldots 0.00467152,-0.00266339,0 \ldots 0.00018692,-0.001165$ $05,0 \ldots-0.31508748,0.12917819,0 \ldots,-0.00337332,-0.00454887,0 \ldots-0.01939388$ $.0 .01786075,0.0 .00063759,0.00071379,0.0 .00002877,0.00009433,0 ., 0.330$ $23576,0.0 .00101217,-0.00856657,0 \ldots 0.03554060,-0.00616607,0 \ldots, 0.002103$ $78,-0.00136763,0,0.12835574,-0.14283185,0 \ldots-0.00410534,-0.00158583,0$. $,-0.01855148,0.01606200,0,-0.00078647,0.00073995,0,0.00021052,0.0001$ $4239,0 .,-0.13957537,0.14165263,0.00926999,0.0 .,-0.00008883,0 \ldots, 0.0 .00$ 161643,0.,0.,0.00891249,0.,0.,-0.04423297,0.,0.,0.00390455,0.,0., -0.00 178928,0.,0., $-0.00404184,0 \ldots 0 \ldots 0.00026665,0 \ldots 0.0 .03108541,0 \ldots 0.001949$ $46,0.00030838,0.0 .00018692,0.00116505,0 \ldots 0.00467152,0.00266339,0 \ldots-0$. $00337332,0.00454887,0 \ldots-0.31508748,-0.12917819,0 \ldots,-0.01939388,-0.01786$ $080,0 \ldots 0.00002877,-0.00009433,0.0 .00063759,-0.00071379,0 \ldots,-0.00099449$ $,-0.00094010,0 \ldots, 0.33023576,0 \ldots-0.00101219,-0.00856656,0 \ldots 0.00210378,-0$ $.00136763,0 \ldots-0.03554060,-0.00616607,0 \ldots 0.00410534,-0.00158583,0 .,-0.1$ 2835574,-0.14283185,0., 0.01855148, 0.01606195,0., -0.00021052, 0.00014239 $, 0 ., 0.00078647,0.00073995,0.0 .00094010,0.00063229,0,0.13957537,0.141$ $65263,-0.00380821,0 \ldots 0.0 .01009783,0.0 ., 0.01009783,0 \ldots 0.0 .00734338,0$., 0., 0.00734339,0.,0.,-0.05283287,0.,0.,-0.00077068,0.,0.,-0.00077067, $0.0 \ldots,-0.00491099,0 \ldots 0 \ldots-0.00491099,0 \ldots 0 \ldots 0.03316289,0 \ldots, 0.00088455,0$. $, 0 .,-0.00603637,-0.00335639,0 \ldots-0.00603637,0.00335639,0 \ldots, 0.00878333,-0$ $.03222547,0.0 .00878333,0.03222547,0 \ldots,-0.07565907,0 \ldots 0 \ldots, 0.00020680,-0$. $00165998,0.0 .00020680,0.00165998,0 \ldots 0.00113466,0.00093486,0.0 .001134$ $66,-0.00093486,0 \ldots 0.06835247,0 \ldots 0.0 .00056637,0 \ldots,-0.00371346,0.0005758$ $4,0.0 .00371346,0.00057584,0.0 .00332594,-0.01153773,0,-0.00332594,-0$ $.01153773,0.0 \ldots-0.38102358,0 \ldots 0.00023296,-0.00073780,0 \ldots,-0.00023296,-$ $0.00073780,0 .,-0.00046896,0.00095531,0.0 .00046896,0.00095531,0 \ldots, 0.0$. 40185149.-0.00032581.0.0.0.00002704.0..0.0.00002703.0..0.0.0001902
$4,0 ., 0 ., 0.00019022,0 \ldots, 0,-0.00002534,0 \ldots 0 \ldots-0.00013674,0 \ldots, 0 \ldots-0.000136$ $74,0,0.0 .00000836,0.0 .0 .00000839,0 \ldots 0 \ldots-0.00004092,0 \ldots 0 ., 0.0002142$ $7,0 .,-0.00068515,0.00000001,0.0 .00000635,0.00043264,0 ., 0.00000634,-0$. $00043263,0,0.00005933,0.00010261,0 \ldots 0.00005933,-0.00010262,0 \ldots-0.0001$ $1117,0 ., 0 ., 0.00007253,0.00002761,0,0.00007255,-0.00002763,0 \ldots 0.000004$ $55,0.00000857,0,0.00000455,-0.00000856,0,0.00001432,0,0.0 .00049649$ $, 0 .,-0.00000002,-0.00902678,0.0 .00277866,0.00145724,0 \ldots, 0.00277866,0$. $00145724,0,-0.00054149,0.00027490,0.0 .00054144,0.00027494,0 ., 0 \ldots-0.0$ $0010063,0 \ldots-0.00043732,0.00011425,0 \ldots, 0.00043734,0.00011421,0 \ldots,-0.00005$ $714,0.00033339,0.0 .00005718,0.00033343,0 \ldots 0 \ldots 0.00009448,0 \ldots 0 ., 0.00467$ $333 \backslash 10 ., 0.0 .00012917,0,0.00001070,-0.00000019,0,-0.00001070,-0.0000$ 0019, 0., -0.00006894, -0.00006928, 0., 0.00006894, -0.00006928, 0., 0., -0.000 $08565,0 \ldots-0.00002510,0.00003628,0 \ldots 0.00002510,0.00003628,0 \ldots 0.00000775$ $, 0.00001372,0 \ldots-0.00000775,0.00001372,0 ., 0.0 .00000096,0 \ldots 0 \ldots-0.000005$ 53111 @
$1 \backslash 1 \backslash G I N C-R S C Q C 9 \backslash F O p t \backslash U M P 2-F U \backslash 6-31 G(d) \backslash C 5 H 5 C 11 N 1(2) \backslash A X N 501 \backslash 19-J a n-1996 \backslash$ 0
\# UMP2=FULL/6-31G* SCF=DIRECT FOPT MAXDISK=920000000
ci-pyridine s tructure $\backslash \backslash 0,2 \backslash N,-0.3058369725,0.0 . \ C, 0.3632472034,1.162218664,0 . \backslash C, 0$. $3632472034,-1.162218664,0 . \ C, 1.7606732106,1.2027777849,0 . \ C, 1.76067321$ $06,-1.2027777849,0 . \backslash C, 2.4716782962,0.0 . \backslash H,-0.2450353692,2.0623723841$, $0 . \backslash \mathrm{H},-0.2450353692,-2.0623723841,0 . \backslash \mathrm{H}, 2.2744610899,2.1593910229,0 . \backslash \mathrm{H}, 2$ $.2744610899,-2.1593910229,0 . \backslash \mathrm{H}, 3.5579856426,0.0 . \backslash \mathrm{Cl},-2.6937113542,0 .$, $0 . \backslash \backslash V e r s i o n=I B M-R S 6000-G 94$ RevC. $2 \backslash$ State $=2-A 1 \backslash H F=-706.1422858 \backslash \mathrm{MP} 2=-707.0$ $880065 \backslash \mathrm{PUHF}=-706.1464965 \backslash \mathrm{PMP} 2-0=-707.091125 \backslash \mathrm{~S} 2=0.774 \backslash \mathrm{~S} 2-1=0.762 \backslash \mathrm{~S} 2 \mathrm{~A}=0$. $751 \backslash \mathrm{RMSD}=9.657 \mathrm{e}-09 \backslash \mathrm{RMSF}=2.750 \mathrm{e}-05 \backslash$ Dipole $=2.0954325,0.0 . \backslash \mathrm{PG}=\mathrm{CO} 2 \mathrm{~V} \quad[\mathrm{C} 2(\mathrm{H}$ 1C1N1C11), SGV(C4H4)]
@

$\mathrm{MeNH}-\mathrm{CH}_{2}$ (15)

$1 \backslash 1 \backslash G I N C-R S C Q C 9 \backslash F O p t \backslash U M P 2-F U \backslash 6-31 G(d) \backslash C 2 H 6 N 1(2) \backslash A X N 501 \backslash 15-N O V-1995 \backslash 1 \backslash \backslash$ \# MP2=FULL/6-31G(D) FOPT=Z-MATRIX SCF=DIRECT GEOM=CHECK \backslash CH3-N (H) =CH2 $2 \mathrm{c}-2 \mathrm{e}, \mathrm{C} 1$ structure (15)
0, 2\C\N,1,r1\H,2,r2,1,a1\H,1,r3,2,a2,3,aa1,0 $\backslash H, 1, r 4,2, a 3,3, a a 2,0 \backslash C, 2, r 5,1, a 4,3, a a 3,0 \backslash H, 6, r 6,2, a 5,1, a a 4,0 \backslash H, 6, r 7,2$, a6, 1, aa $5,0 \backslash \mathrm{H}, 6, \mathrm{r} 8,2, \mathrm{a7}, 1$, aa6, $0 \backslash \backslash r 1=1.392451 \backslash r 2=1.01458455 \backslash r 3=1.0836061$ $7 \backslash r 4=1.08448718 \backslash r 5=1.45383066 \backslash r 6=1.09255983 \backslash r 7=1.09184854 \backslash r 8=1.0982132$ $7 \backslash a 1=112.93244707 \backslash a 2=115.65839059 \backslash a 3=115.23232847 \backslash a 4=117.11805974 \backslash a 5=1$ $08.56629122 \backslash a 6=109.37118229 \backslash a 7=113.40551413 \backslash$ aa $1=40.6658715 \backslash$ aa $2=182.948$ $35315 \backslash$ aa $3=133.22514696 \backslash \mathrm{aa}^{2}=56.87010902 \backslash \mathrm{aa} 5=174.62629352 \backslash \mathrm{aa} 6=296.566761$ $85 \backslash$ Version $=$ IBM-RS6000-G94RevC. $2 \backslash \mathrm{HF}=-133.6146869 \backslash \mathrm{MP} 2=-134.0316485 \backslash \mathrm{PUHF}$ $=-133.6175527 \backslash \mathrm{PMP} 2-0=-134.0333641 \backslash \mathrm{~S} 2=0.76 \backslash \mathrm{~S} 2-1=0.752 \backslash \mathrm{~S} 2 \mathrm{~A}=0.75 \backslash \mathrm{RMSD}=9.1$ $55 \mathrm{e}-09 \backslash \mathrm{RMSF}=3.131 \mathrm{e}-05 \backslash \mathrm{Dipole}=0.1141626,0.1794633,0.3575886 \backslash \mathrm{PG}=\mathrm{C} 01 \quad$ [X(C 2H6N1)]

$\mathrm{MeCH}_{2}-\mathrm{NH}$ (16)

$1 \backslash 1 \backslash G I N C-R S C Q C 2 \backslash F O p t \backslash U M P 2-F U \backslash 6-31 G(d) \backslash C 2 H 6 N 1(2) \backslash A X N 501 \backslash 18-J a n-1996 \backslash 1 \backslash \backslash$
 $\backslash 0,2 \backslash C \backslash C, 1, r 1 \backslash N, 2, r 2,1, a 1 \backslash H, 3, r 3,2, a 2,1,180 ., 0 \backslash H, 1, r 4,2, a 3,3,180 \ldots, 0 \backslash H$, $1, r 5,2, a 4,3$, aa1, O\H, $1, r 5,2, a 4,3,-\mathrm{aa} 1,0 \backslash \mathrm{H}, 2, \mathrm{r} 6,1, \mathrm{a} 5,3, \mathrm{aa} 2,0 \backslash \mathrm{H}, 2, \mathrm{r} 6,1, \mathrm{a} 5$ $, 3,-\mathrm{aa} 2,0 \backslash \backslash r 1=1.51824125 \backslash r 2=1.44929073 \backslash r 3=1.02917917 \backslash r 4=1.09338533 \backslash r 5=$ $1.09193823 \backslash r 6=1.10170394 \backslash a 1=110.81412632 \backslash a 2=106.62818383 \backslash a 3=111.085410$ $72 \backslash \mathrm{a} 4=110.16929665 \backslash \mathrm{a} 5=110.56259115 \backslash \mathrm{aal}=59.5723515 \backslash \mathrm{aa} 2=121.73224733 \backslash \mathrm{Ve}$ rsion $=1 B M-$ RS6000-G94RevC. $2 \backslash$ State $=2-A " \backslash H F=-133.6295291 \backslash M P 2=-134.0343527$ $\backslash \mathrm{PUHF}=-133.6329226 \backslash \mathrm{PMP2}-0=-134.0364505 \backslash \mathrm{~S} 2=0.76 \backslash \mathrm{~S} 2-1=0.752 \backslash \mathrm{~S} 2 \mathrm{~A}=0.75 \backslash \mathrm{RMS}$ $\mathrm{D}=8.335 \mathrm{e}-09 \backslash \mathrm{RMSF}=7.662 \mathrm{e}-05 \backslash \mathrm{Dipole}=-0.6619608,0.0 .3557218 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}(\mathrm{C} 2$ H2N1), X(H4)]
@

N-Methylpyridinyl (17)

$1 \backslash 1 \backslash G I N C-E I G E N \backslash F O p t \backslash U M P 2-F U \backslash 6-31 G(d) \backslash C 6 H 8 N 1(2) \backslash A X N 501 \backslash 30-J a n-1996 \backslash 0 \backslash \backslash \#$ UMP2=FULL/6-31G* FOPT
N-methyl-pyxidine, 2A', (me17b), structure
0, $2 \backslash \mathrm{~N},-0.8955175716,0.0 .0299426435 \backslash \mathrm{C},-0.1792214197,1.1916512625,0.03386$ $85427 \backslash C,-0.1792214197,-1.1916512625,0.0338685427 \backslash \mathrm{C}, 1.1575840047,1.2001$ $912789,0.1271348992 \backslash C, 1.1575840047,-1.2001912789,0.1271348992 \backslash C, 1.9040$
$860171,0.0 .1853546201 \backslash \mathrm{H},-0.7798677067,2.0930622849,-0.0080581478 \backslash \mathrm{H},-0$ $.7798677067,-2.0930622849,-0.0080581478 \backslash \mathrm{H}, 1.6599479989,2.1623436139,0$. $157268397 \backslash \mathrm{H}, 1.6599479989,-2.1623436139,0.157268397 \backslash \mathrm{H}, 2.9838912353,0.0$ $.2464702545 \backslash$ C, $-2.2829871409,0 .,-0.3896533204 \backslash \mathrm{H},-2.3827080897,0 .,-1.482$ $6210542 \backslash \mathrm{H},-2.779832503,-0.8858147459,0.0109413477 \backslash \mathrm{H},-2.779832503,0.885$ 8147459, 0.0109413477
Version=IBM-RS6000-G94RevC. $2 \backslash$ State $=2-A^{\prime} \backslash \mathrm{HF}=-286$. $2662206 \backslash \mathrm{MP} 2=-287.1820253 \backslash \mathrm{PUHF}=-286.2886971 \backslash \mathrm{PMP} 2-0=-287.20156 \backslash \mathrm{~S} 2=1.049 \backslash$ $\mathrm{S} 2-1=0.962 \backslash \mathrm{~S} 2 \mathrm{~A}=0.807 \backslash \mathrm{RMSD}=9.227 \mathrm{e}-09 \backslash \mathrm{RMSF}=1.467 \mathrm{e}-05 \backslash \mathrm{Dipole}=-0.8583896,0$.,-0.1835908\PG=CS [SG(C2H2N1),X(C4H6)]
@

4-Methylpyridinyl (18)

$1 \backslash 1 \backslash G I N C-P C \backslash F O p t \backslash U M P 2-F U \backslash 6-31 G(d) \backslash C 6 H 8 N 1(2) \backslash A X N 501 \backslash 25$-Jan-1996\0
\# UM P2=FULL/6-31G* FOPT SCF=DIRECT
4-me-pyridine (me18), 2A', structure
 $0,2 \backslash \mathrm{~N},-0.2237860171,-1.8670738956,0 . \backslash \mathrm{C},-0.2282022017,-1.1439413854,1.1$ $523073288 \backslash C,-0.2282022017,-1.1439413854,-1.1523073288 \backslash \mathrm{C},-0.2282022017$, $0.1990506923,1.2230566303 \backslash C,-0.2282022017,0.1990506923,-1.2230566303 \backslash \mathrm{C}$, $-0.19585382,1.0502311509,0 . \backslash \mathrm{H},-0.2337235444,-1.7400643915,2.061658187$ $7 \backslash \mathrm{H},-0.2337235444,-1.7400643915,-2.0616581877 \backslash \mathrm{H},-0.2275279198,0.692381$ $3375,2.1914902327 \backslash \mathrm{H},-0.2275279198,0.6923813375,-2.1914902327 \backslash \mathrm{H},-1.0842$ 645232,1.7068673678,0.\C,1.0350013555,1.9790650343,0.\H,1.9503537554,1 $.3835110407,0 . \backslash \mathrm{H}, 1.0324417214,2.6187080874,-0.8871527543 \backslash \mathrm{H}, 1.032441721$ $4,2.6187080874,0.8871527543 \backslash \backslash$ Version=SGI-G94RevC. $3 \backslash$ State $=2-A^{\prime} \backslash H F=-286$. $2763202 \backslash \mathrm{MP} 2=-287.1744411 \backslash \mathrm{PUHF}=-286.3075083 \backslash \mathrm{PMP} 2-0=-287.2020717 \backslash \mathrm{~S} 2=1.16$ $7 \backslash S 2-1=1.056 \backslash S 2 A=0.862 \backslash \mathrm{RMSD}=8.004 \mathrm{e}-09 \backslash \mathrm{RMSF}=1.041 \mathrm{e}-04 \backslash \mathrm{Dipole}=1.1094638$, $0.0 .053451 \backslash \mathrm{PG}=\mathrm{CS}[\mathrm{SG}(\mathrm{C} 2 \mathrm{H} 2 \mathrm{~N} 1), \mathrm{X}(\mathrm{C} 4 \mathrm{H} 6)] \backslash \backslash$

