J. Am. Chem. Soc., 1996, 118(32), 7513-7528, DOI:10.1021/ja961071u

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

Supporting Information

Allylic Sulfide 31. To a stirred solution of $1.0 \mathrm{~g}(2.60 \mathrm{mmol})$ of diene 32 in 20 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ was added 1.8 g (21.43 mmol) of solid sodium bicarbonate. The mixture was cooled to $-78^{\circ} \mathrm{C}$ and a solution of freshly prepared phenylsulfenyl chloride ($429 \mathrm{mg}, 2.96 \mathrm{mmol}$) 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise. After stirring for 3 h at $-78^{\circ} \mathrm{C}$ the reaction was quenched by the addition of 20 mL of saturated sodium bicarbonate. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4} and concentrated. The residue was chromatographed (98:2 petroleum ether:EtOAc to provide $999 \mathrm{mg}(78 \%)$ of sulfide 31 as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.03(6 \mathrm{H}, \mathrm{s}), 0.17(9 \mathrm{H}, 2), 0.87(9 \mathrm{H}, \mathrm{s}), 1.83(3 \mathrm{H}, \mathrm{br}$ s), $2.42(1 \mathrm{H}, \mathrm{m}), 3.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.1 \mathrm{~Hz}), 3.95(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.3,4.1 \mathrm{~Hz}), 3.98(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=17.8 \mathrm{~Hz}), 4.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.1 \mathrm{~Hz})$, , $4.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.8 \mathrm{~Hz}), 4.26(\mathrm{dd}, \mathrm{J}=$ $19.2,10.3 \mathrm{~Hz}$), $5.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.1 \mathrm{~Hz}), 7.10-7.30(5 \mathrm{H}$, band) . IR 3045, 2945, 2920, 2885, 1772, 1730, 1670, 1580, 1470, 1439, 1380, 1288, $1058 \mathrm{~cm}^{-1}$. Anal: Calcd. for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{~S}: \mathrm{C}, 60.93 ; \mathrm{H}, 8.18 ; \mathrm{Si}, 11.40 ; \mathrm{S}, 6.51$. Found: $\mathrm{C}, 60.78 ; \mathrm{H}, 8.58 ; \mathrm{Si}$, 10.65; S, 6.72.

Allylic Alcohol 47. To a stirred, cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $50 \mathrm{mg}(0.10 \mathrm{mmol})$ of sulfide 31 in 5 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise via syringe a solution of 29.2 mg (0.10 mmol) of 60% m-chloroperoxybenzoic acid in 1 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After 1 h the reaction mixture was warmed to room temperature and concentrated. The residue was chromatographed ($9: 1$ hexanes:EtOAc) to provide $50.1 \mathrm{mg}(100 \%)$ of the sulfoxide. ${ }^{1} \mathrm{H}$ ${ }^{\prime} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.07(3 \mathrm{H}, \mathrm{s}), 0.11(3 \mathrm{H}, \mathrm{s}), 0.19(9 \mathrm{H}, 2), 0.91(9 \mathrm{H}, \mathrm{s}), 1.50(3 \mathrm{H}, \mathrm{br} \mathrm{s})$, $2.37(1 \mathrm{H}$, ddd, $\mathrm{J}=1.2,4.7,4,7 \mathrm{~Hz}), 3.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.7 \mathrm{~Hz}), 4.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=18.6$ $\mathrm{Hz}), 4.06(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.2,3.7 \mathrm{~Hz}), 4.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=18.6 \mathrm{~Hz}), 4.30(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz})$, $4.36(\mathrm{dd}, \mathrm{J}=22.3,11.2 \mathrm{~Hz}), 5.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}), 7.35-7.82(5 \mathrm{H}$, band $)$. IR
$3045,2945,2920,2885,1772,1730,1670,1580,1470,1439,1380,1288,1058 \mathrm{~cm}^{-1}$. A solution of $25 \mathrm{mg}(0.05 \mathrm{mmol})$ of the sulfoxide from above and $58 \mu \mathrm{~L}(0.5 \mathrm{mmol})$ of trimethylphosphite in 6 mL of methanol was heated at reflux under argon for 3 h . The solvent was evaporated under vacuum and the residue was chromatographed (9:1 hexanes:EtOAc) to provide $19.7 \mathrm{mg}(100 \%)$ of the allylic alcohol 47 as a colorless oil which was identical to that prepared by the oxidation of selenide $\mathbf{4 8}$ described above.

Diol 51. To $634 \mathrm{mg}(1.29 \mathrm{mmol})$ of sulfide 31 was added 10 mL of a freshly prepared mixture of acetonitrile and 40% aqueous HF (ratio 95:5). The resulting solution was stirred at room temperature for 20 min . The reaction was then quenched by adding solid sodium bicarbonate in small batches until the carbon dioxide evolution stopped. The mixture was then filtered through a pad of Celite / MgSO_{4} and concentrated to provide 394 $\mathrm{mg}(100 \%)$ of diol 51 as a white solid. $\mathrm{Rf}_{\mathrm{f}}\left(50 \%\right.$ EtOAc/hexanes): 0.24. $1_{\mathrm{H}} \mathrm{NMR}$ $\left.\mathrm{CDCl}_{3}\right) \delta 1.92(3 \mathrm{H}, \mathrm{br} . \mathrm{s}), 2.37(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=5.26,3.76 \mathrm{~Hz}), 3.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.26 \mathrm{~Hz})$, 3.95-4.17 (2 H , band, 2 H), $4.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=18.05 \mathrm{~Hz}), 4.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.51 \mathrm{~Hz}), 4.30$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=18.05 \mathrm{~Hz}), 5.69(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, \mathrm{J}=4.51 \mathrm{~Hz}), 7.19-7.37$ and 7.47-7.57(5H, band). IR (film) $3420,3060,2975,2945,2920,2880,1772,1672,1590,1485,1383$, 1296, 1171, 1114, 1084, 1037, $952 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O} 4 \mathrm{~S}: \dot{\mathrm{C}}, 62.72 ; \mathrm{H}$, 5.92; S, 10.47. Found: C, 63.08; H, 6.05; S, 10.12.

Alcohol 52 To a stirred solution of $64.2 \mathrm{mg}(0.21 \mathrm{mmol})$ of diol 51 in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature under argon was added $0.195 \mathrm{~mL}(1.68 \mathrm{mmol})$ of 2,6-lutidine dropwise via syringe, followed by $0.16 \mathrm{~mL}(0.84 \mathrm{mmol})$ trimethylsilyl trifluoromethanesulfonate via syringe. The solution was for 12 h . The reaction was then quenched with a saturated aqueous sodium bicarbonate solution (5 mL) and brine. The aqueous layers were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were combined, dried over MgSO_{4}, filtered and concentrated under high vacuum ($<1 \mathrm{~mm} . \mathrm{Hg}$). The
residue was chromatographed on a silica gel column over 2 hours (2 to 5% EtOAc / petroleum ether) to provide $71.4 \mathrm{mg}(90 \%)$ of alcohol 52 as an oil. $\mathrm{Rf}_{\mathrm{f}}(25 \%$ EtOAc/hexanes): 0.09. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.15(9 \mathrm{H}, \mathrm{s}), 1.84(3 \mathrm{H}, \mathrm{br} . \mathrm{s}), 2.50(1 \mathrm{H}, \mathrm{dt}$, $\mathrm{J}=7.43,5.58 \mathrm{~Hz}), 3.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.58 \mathrm{~Hz}$), $3.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=18.59 \mathrm{~Hz}), 4.06-4.22$ $(3 \mathrm{H}$, band), $4.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=18.59 \mathrm{~Hz}), 5.57(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, \mathrm{J}=4.65 \mathrm{~Hz}), 7.14-7.30$ and 7.49-7.55 (5H, band). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4}$ SSi: C, 58.98 ; H, 7.15. Found: C, 58.97; H, 7.10.

Aldehyde 54. Method A: To a stirred solution of $39.93 \mu \mathrm{~L}(0.08 \mathrm{mmol})$ of oxalyl chloride (2.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ under argon was added dropwise $11.33 \mu \mathrm{~L}(0.16 \mathrm{mmol})$ of DMSO in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ via syringe, while maintaining the temperature below $-65^{\circ} \mathrm{C}$. The solution was allowed to stir 5 min and then $30 \mathrm{mg}(0.07$ mmol) of alcohol 520.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise. After stirring for 35 min at $-78^{\circ} \mathrm{C}$, neat triethylamine ($46.38 \mu \mathrm{~L}, 0.33 \mathrm{mmol}$) was added slowly and dropwise via syringe so as to maintain a temperature below $-65^{\circ} \mathrm{C}$. After the reaction was stirred for 15 \min at $-78^{\circ} \mathrm{C}$, it was slowly warmed to room temperature by removing the cooling bath. The mixture was then extracted with water (5 mL) and the aqueous layer was back extracted twice with fresh $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The combined organic layers were then washed with brine, dried on MgSO_{4}, filtered and concentrated. The residue was chromatographed ($5 \% \mathrm{EtOAc} /$ petroleum ether) to provide aldehyde 54 ($25.4 \mathrm{mg}, 85 \%$) as an oil.

Method B: Solid tetra- n-propylammonium perruthenate ($2.5 \mathrm{mg}, 7 \mathrm{mmol}$) was added in one portion to a stirred solution of 32 mg of alcohol $52(0.07 \mathrm{mmol})$ and powdered $4 \AA$ molecular sieves (433 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at room temperature under argon. A solution of N-methylmorpholine N-oxide ($12.5 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5$ mL) was added dropwise. The solution was stirred for 3 hours. Upon completion, the reaction mixture was filtered through a pad of silica, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was condensed and the residue was chromatographed ($5 \% \mathrm{EtOAc} /$ petroleum ether) to provide
aldehyde 54 ($29 \mathrm{mg}, 91 \%$) as an oil. $\mathrm{Rf}\left(25 \%\right.$ EtOAc/hexanes): 0.48. ${ }^{1} \mathrm{H}$ NMR (CDCl 3) $\delta 0.13(9 \mathrm{H}, \mathrm{s}), 1.78(3 \mathrm{H}, \mathrm{br} . \mathrm{s}), 2.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.41,2.70 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.41$ $\mathrm{Hz}), 3.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=18.02 \mathrm{~Hz}), 4.17(1 \mathrm{H}, \mathrm{d} \mathrm{J}=18.02 \mathrm{~Hz}), 5.35(1 \mathrm{H}, \mathrm{m}), 7.16-7.30$ and 7.37-7.44 (5 H , band), $10.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.7 \mathrm{~Hz}$).

Unsaturated ester 55. Carbethoxymethylenetriphenylphosphine ($7.67 \mathrm{~g}, 22 \mathrm{mmol}$) was added in one portion to a stirred solution of 1.089 g (2.2 mmol) of ketone 31 in 25 mL of toluene at room temperature under argon. The reaction mixture was heated to reflux and allowed to stir for 4 days. The mixture was then cooled and the solvent removed at reduced pressure. The crude residue was taken up in a minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and this diluted with methyl butane until precipitation ceased. This mixture was cooled to $0^{\circ} \mathrm{C}$, filtered and the residue washed with ice cold methyl butane (30 mL). This process was repeated once more and the filtrate was reduced under vacuum and chromatographed (5% EtOAc/petroleum ether) to provide $1.04 \mathrm{~g}(84 \%)$ of ester 55 as an oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 0.02(3 \mathrm{H}, \mathrm{s}), 0.04(3 \mathrm{H}, \mathrm{s}), 0.16(9 \mathrm{H}, \mathrm{s}), 0.90(9 \mathrm{H}, \mathrm{s}), 1.34(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 1.83$ $(3 \mathrm{H}, \mathrm{s}), 2.26(1 \mathrm{H}, \mathrm{m}), 3.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.6 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.3,3.7 \mathrm{~Hz}), 4.07$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(2 \mathrm{H}, \mathrm{m}), 4.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.3,9.3 \mathrm{~Hz}), 4.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $1.9 \mathrm{~Hz}), 5.53(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, \mathrm{J}=5.6 \mathrm{~Hz}), 5.87(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=3.7 \mathrm{~Hz}), 7.13-7.45$ and 7.40-7.64 (5H, band). Anal. Calcd. for $\mathrm{C}_{2} 9 \mathrm{H} 46 \mathrm{O} 5 \mathrm{SSi}_{2}$: C, 61.88; H, 8.24. Found: C, 61.75; H, 8.31.

Allylic alcohol 56. To a stirred suspension of $310 \mathrm{mg}(10 \mathrm{mmol})$ lithium aluminum hydride in 20 mL of diethyl ether at $-78^{\circ} \mathrm{C}$ under argon was added dropwise 2.56 g (4.55 mmol) of ester 55 in 5 mL of diethyl ether so as to maintain the temperature below $-70^{\circ} \mathrm{C}$. After the addition was complete, the suspension was stirred for 8 hours at $-78^{\circ} \mathrm{C}$, overnight at room temperature and then quenched by cautious addition of $5 \% \mathrm{NaOH}$ until only a flocculent white salt remained in suspension. The reaction mixture was then filtered
and the salts rinsed with fresh diethyl ether ($2 \times 10 \mathrm{~mL}$). The filtrate was washed with water (10 mL) and brine, then dried over MgSO_{4} and filtered. The solvents were concentrated and the residue was chromatographed (5 to 10 to $30 \% \mathrm{EtOAc}$ /petroleum ether) to provide $2.01 \mathrm{~g}(85 \%)$ of alcohol 56 as an oil. $\mathrm{R}_{\mathrm{f}}(50 \% \mathrm{EtOAc} /$ hexanes $): 0.57 .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\boldsymbol{\delta} 0.03(3 \mathrm{H}, \mathrm{s}), 0.04(3 \mathrm{H}, \mathrm{s}), 0.17(9 \mathrm{H}, \mathrm{s}), 0.9(9 \mathrm{H}, \mathrm{s}), 1.7(1 \mathrm{H}, \mathrm{br} . \mathrm{s}$), $1.8(3 \mathrm{H}, \mathrm{br} . \mathrm{s}), 2.14(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=9.8,4.5,3.8 \mathrm{~Hz}), 3.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}), 4.02$ $(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, \mathrm{J}=3.8 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.8,3.8 \mathrm{~Hz}), 4.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}), 4.39$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.8,9.8 \mathrm{~Hz}), 4.52(2 \mathrm{H}, \mathrm{br} . \mathrm{s}), 5.5(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, \mathrm{J}=3.8 \mathrm{~Hz}), 5.60(1 \mathrm{H}, \mathrm{m})$, 7.15-7.29 and 7.61-7.65 (5H, band). Anal. Calcd. for $\mathrm{C}_{2} \mathrm{HH}_{44} \mathrm{O}_{4} \mathrm{SSi}_{2}$: $\mathrm{C}, 62.26 ; \mathrm{H}$, 8.52. Found: C, 62.02; H, 8.19.

Cis-trans diene $\mathbf{5 7 Z}$. A solution of $0.85 \mathrm{~mL}(1.28 \mathrm{mmol})$ of methyllithium-lithium bromide complex (1.5 M solution in diethyl ether) was added dropwise to a stirred solution of $1.12 \mathrm{~g}(1.16 \mathrm{mmol})$ phosphonium salt 4 in 10 mL of tetrahydrofuran at $-78^{\circ} \mathrm{C}$ under argon. The solution was stirred 1 h at $-78^{\circ} \mathrm{C}$ and $602 \mathrm{mg}(1.16 \mathrm{mmol})$ of the freshly chromatographed aldehyde 5 in 2 mL of tetrahydrofuran was added dropwise. The mixture was stirred 3.5 h at $-78^{\circ} \mathrm{C}$ and warmed to $25^{\circ} \mathrm{C}$. The reaction was then quenched with a solution of saturated ammonium chloride (10 mL), extracted with diethyl ether (15 mL), brine, dried over MgSO_{4} and filtered. The solvent was concentrated and the residue was chromatographed ($5 \% \mathrm{EtOAc} / \mathrm{petroleum}$ ether) to afford the 1.04 g (83%) of cis-trans diene 61Z. Rf_{f} (25\% EtOAc/hexanes): 0.75. IR (CDCl3) 2960, 2933, 2859, 1462, 1385, $1254,1107,1084 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.03(3 \mathrm{H}, \mathrm{s}), 0.04(3 \mathrm{H}, \mathrm{s}), 0.14(9 \mathrm{H}$, $\mathrm{s}, 9 \mathrm{H}), 0.69(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.20 \mathrm{~Hz}), 0.70(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.20 \mathrm{H}), 0.76(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz})$, $0.90(9 \mathrm{H}, \mathrm{s}, 9 \mathrm{H}), 0.98(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.30 \mathrm{H}), 1.08(9 \mathrm{H}, \mathrm{s}, 9 \mathrm{H}), 1.22-2.22(15 \mathrm{H}$, band), $1.59(3 \mathrm{H}, \mathrm{s}), 1.82(3 \mathrm{H}, \mathrm{s}), 2.85(1 \mathrm{H}, \mathrm{m}), 2.92(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.00,2.00 \mathrm{~Hz}), 3.32(1 \mathrm{H}$, $\mathrm{m}), 3.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.80 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{br} . \mathrm{s}), 4.13(1 \mathrm{H}, \mathrm{m}), 4.44(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=10.00$ $\mathrm{Hz}), 4.55(\mathrm{~b} 1 \mathrm{H}, \mathrm{r} . \mathrm{s}), 5.17(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 5.33(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=10.4,10.0 \mathrm{~Hz}), 5.51$
($1 \mathrm{H}, \mathrm{br} . \mathrm{s}$), $5.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.6,10.8 \mathrm{~Hz}$), $6.24(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}), 7.14-7.44$ and 7.64-7.92 (15 H , band). ${ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{d} 2.28,13.95,16.02,17.40$, 18.33, 19.14, 20.60, 20.76, 22.57, 25.97, 26.98, 28.14, 30.07, 31.46, 34.38, 35.61, $41.03,44.53,45.25,47.84,51.11,59.91,66.72,67.67,67.99,76.70,78.56,79.28$, 97.06, 118.63, 121.78, 122.94, 125.72, 127.45, 128.50, 129.41, 130.71, 134.60, 134.47, 134.54, 135.65, 139.45, 141.55. Anal. Calcd. for $\mathrm{C}_{64} \mathrm{H}_{96} \mathrm{O}_{6} \mathrm{SSi}_{3}: \mathrm{C}, 71.13 ; \mathrm{H}$, 8.98. Found: C, 71.45; H, 9.06.

Trans-trans diene 57E A few drops of diluted solution of iodine in benzene-d 6 were added to a stirred solution of $1.04 \mathrm{~g}(0.96 \mathrm{mmol})$ of cis-trans diene 61 Z in 5 mL of benzene-d 6 at room temperature under argon. The reaction was followed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. Upon completion, the reaction was quenched with a solution of 10% sodium thiosulfate (10 mL), extracted with ether (10 mL), brine, dried over MgSO_{4} and filtered. The solvent were concentrated and the residue was chromatographed ($5 \% \mathrm{EtOAc} /$ petroleum ether) to afford $1.04 \mathrm{~g}(100 \%)$ of the trans-trans diene $61 E \mathrm{Rf}_{\mathrm{f}}(25 \%$ EtOAc/hexanes): 0.71 . IR $\left(\mathrm{CDCl}_{3}\right) 2956,2933,2859,1466,1385,1254,1107,1073.1^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \mathrm{d} 0.01(3 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}), 0.02(3 \mathrm{H}, \mathrm{s}), 0.10(9 \mathrm{H}, \mathrm{s}), 0.12(9 \mathrm{H}, \mathrm{s}), 0.67(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $6.8 \mathrm{~Hz}), 0.69(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 0.72(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 0.87(9 \mathrm{H}, \mathrm{s}), 0.95(3 \mathrm{H}, \mathrm{m})$, $1.06(9 \mathrm{H}, \mathrm{s}), 1.19-1.90$ and $1.95-2.24(15 \mathrm{H}$, band), $1.56(3 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}), 1.80(3 \mathrm{H}, \mathrm{s})$, $2.37(1 \mathrm{H}, \mathrm{m}), 2.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.7,2.58 \mathrm{~Hz}), 3.31(1 \mathrm{H}, \mathrm{m}), 3.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.6 \mathrm{~Hz})$, $4.00(1 \mathrm{H}, \mathrm{br} . \mathrm{s}), 4.11(1 \mathrm{H}, \mathrm{m}), 4.34(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=9.84,2.08 \mathrm{~Hz}), 4.54(2 \mathrm{H}, \mathrm{br} . \mathrm{s}), 5.13$ $(1 \mathrm{H}, \mathrm{m}), 5.47(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, \mathrm{J}=3.95 \mathrm{~Hz}), 5.63(1 \mathrm{H}, \mathrm{m}), 5.83(1 \mathrm{H}, \mathrm{m}), 5.86(1 \mathrm{H}, \mathrm{m})$, 7.12-7.44 and 7.60-7.70 (15 H , band). ${ }^{13} \mathrm{C}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d 2.22, 11.41, 13.95, 16.39, 17.38, 18.29, 19.14, 19.42, 19.54, 20.41, 20.59, 22.54, 22.59, 25.98, 28.97, 27.63, 28.16, 29.03, 31.48, 34.33, 35.10, 35.15, 35.84, 40.99, 44.91, 45.27, $47.35,51.30,60.00,66.78,67.79,68.02,77.88,78.88,79.09,97.11,122.88,123.11$, $123.82,125.71,127.45,128.52,129.41,130.72,134.47,134.53,134.81,135.88$,
140.33, 141.97, 142.05. Anal. Calcd. for $\mathrm{C}_{64} \mathrm{H}_{96} \mathrm{O}_{6} \mathrm{SSi}_{3}$: C,71.13; H, 8.98. Found: C, 71.27; H, 8.72.

Diol 58. To a stirred solution of $337 \mathrm{mg}(0.3 \mathrm{mmol})$ of diene $57 E$ in 5 mL of methanol at room temperature under argon was added $4 \mathrm{mg}(0.029 \mathrm{mmol})$ of potassium carbonate in one portion. The mixture was stirred for 5 days at $25^{\circ} \mathrm{C}$. The solvent was concentrated and the residue was then diluted with 10 mL of ether, washed with a solution of saturated ammonium chloride ($2 \times 5 \mathrm{~mL}$) and brine. The organic layer was dried over MgSO_{4}, filtered, the solvent were and concentrated. The residue was chromatographed (5 to 20\% EtOAc/petroleum ether) to provide 256 mg (89%) of diol 58 as an oil. $\mathrm{Rf}^{(25 \%}$ EtOAc/hexanes): 0.2. IR (CDCl_{3}) 3426, 2959, 2930, 2859, 1732, 1460, 1439, 1385. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.64(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 0.66(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 0.70$ $(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 0.90(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.04(9 \mathrm{H}, \mathrm{s}), 1.18-2.36(18 \mathrm{H}$, band), $1.53(1 \mathrm{H}, \mathrm{s}), 1.91(1 \mathrm{H}, \mathrm{s}), 2.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.8,1.75 \mathrm{~Hz}, 1 \mathrm{H}, 3.29(1 \mathrm{H}, \mathrm{m}), 3.50$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.58 \mathrm{~Hz}), 3.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.52 \mathrm{~Hz}), 3.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.21 \mathrm{~Hz}), 4.11(1 \mathrm{H}$, $\mathrm{m}), 4.34(1 \mathrm{H}, \mathrm{m}), 4.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.23 \mathrm{H}), 4.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.23 \mathrm{H}), 5.11(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=7.04 \mathrm{~Hz}), 5.66(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, \mathrm{J}=3.56 \mathrm{~Hz}), 5.71(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}), 5.83(1 \mathrm{H}, \mathrm{m}), 6.12(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=10.79,1.1 \mathrm{~Hz}$), 7.25-7.40 and 7.55-7.67 (15H, band). ${ }^{13} \mathrm{C}$ NMR (250 MHz , CDCl_{3}) $83.10,13.93,14.16,16.28,17.37,19.12,19.25,19.39,20.56,21.01,22.31$, $26.96,28.12,31.46,34.30,34.81,34.91,35.60,40.92,42.29,45.23,47.16,52.58$, $57.02,60.35,61.41,66.74,68.01,68.05,76.62,77.32,77.66,77.89,79.79,88.84$, $97.10,120.03,122.82,123.13,123.17,123.24,127.40,127.44,129.32,129.41$, $131.21,134.40,134.45,134.58,135.66,137.27,140.83,140.87,141.08,141.13$, 142.98. Anal. Calcd. for $\mathrm{C}_{55} \mathrm{H}_{74} \mathrm{O}_{6}$ SSi: C, 74.12; H, 8.37. Found: C, 74.00 ; H, 8.62.

Abstract

 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature under argon was added 0.29 mL (2.46 mmol) of 2,6-lutidine dropwise followed by $0.24 \mathrm{~mL}(1.23 \mathrm{mmol})$ of trimethylsilyl trifluoromethanesulfonate. The solution was stirred for 2 hours at $25^{\circ} \mathrm{C}$. The reaction was then quenched with a saturated aqueous sodium bicarbonate solution (10 mL) and brine. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{X} 10 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4}, filtered and concentrated under high vacuum ($<1 \mathrm{~mm} . \mathrm{Hg}$). The residue was chromatographed over 2 hours (5 to 15% EtOAc/petroleum ether) to provide 258 mg (87%) of alcohol 59 as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.11(9 \mathrm{H}, \mathrm{s}), 0.64(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 6.80 Hz), $0.66(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.80 \mathrm{~Hz}), 0.70(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 0.90(9 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz})$, $1.04(9 \mathrm{H}, \mathrm{s}), 1.18-2.38(18 \mathrm{H}$, band), $1.54(3 \mathrm{H}, \mathrm{s}), 1.80(3 \mathrm{H}, \mathrm{s}), 2.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $9.95,1.94 \mathrm{~Hz}$), $3.30(1 \mathrm{H}, \mathrm{m}), 3.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.78 \mathrm{~Hz}), 4.00-4.18$ (3 H , band), 4.26 $(1 \mathrm{H}, \mathrm{m}), 4.51(1 \mathrm{H}, \mathrm{br} . \mathrm{s}), 5.10(1 \mathrm{H}, \mathrm{m}), 5.49(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, \mathrm{J}=4.46 \mathrm{~Hz}), 5.66(1 \mathrm{H}$, $\mathrm{m}), 5.79(1 \mathrm{H}, \mathrm{m}), 5.94(1 \mathrm{H}$, br. d, J = 10.82 Hz$), 7.13-7.40$ and $7.52-7.67(15 \mathrm{H}$, band). ${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.19,14.00,16.39,17.44,19.18,19.37,19.46$, 20.62, 22.5, 27.03, 28.20, 31.53, 34.38, 34.91, 35.16, 35.67, 40.97, 44.33, 45.31, $47.25,47.38,51.39,60.78,66.80,67.96,68.06,77.73,79.10,79.73,118.17,122.93$, $123.11,123.19,123.57,126.41,127.51,129.00,129.48,130.69,130.75,134.49$, 134.64, 135.73, 139.68, 140.33, 142.64, 142.69, 142.99. Anal. Calcd. for $\mathrm{C}_{58} \mathrm{H}_{82} \mathrm{O}_{6} \mathrm{SSi}_{2}$: C,72.30; H, 8.58. Found: C, 72.66; H, 8.31.

Aldehyde 60 . Solid tetra- n-propylammonium perruthenate ($0.6 \mathrm{mg}, 10 \%$) was added in one portion to a stirred solution of $17 \mathrm{mg}(0.02 \mathrm{mmol})$ of alcohol 59 and powdered $4 \AA$ molecular sieves (0.108 g) in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature under argon. A solution of 2.56 mg (0.02 mmol) of N-methylmorpholine N-oxide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise. The solution was stirred for 30 min . Upon completion the reaction mixture was filtered through a pad of silica, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was condensed and the
residue was chromatographed ($5 \% \mathrm{EtOAc} /$ petroleum ether) to provide $12.7 \mathrm{mg}(75 \%)$ of aldehyde 60 as an oil. $\mathrm{Rf}_{\mathrm{f}}(25 \% \mathrm{EtOAc} /$ hexanes $): 0.48$. IR (CDCl_{3}) 2959, 2958, 1717, $1385,1111,10851067,1011 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d $0.27(9 \mathrm{H}, \mathrm{s}), 0.64(3 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=6.79 \mathrm{~Hz}), 0.66(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.47 \mathrm{~Hz}), 0.70(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.00 \mathrm{~Hz}), 0.80-2.38(17 \mathrm{H}$, band), $1.03(9 \mathrm{H}, \mathrm{s}), 1.52(3 \mathrm{H}, \mathrm{s}), 1.78(3 \mathrm{H}, \mathrm{s}), 2.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=9.84,1.94 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(1 \mathrm{H}, \mathrm{m}), 3.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}), 4.02-4.16(2 \mathrm{H}$, band), $4.51(2 \mathrm{H}, \mathrm{br} . \mathrm{s}), 5.10(1 \mathrm{H}, \mathrm{m}), 5.52(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, \mathrm{J}=4.35 \mathrm{~Hz}), 5.69-5.80(1 \mathrm{H}$, band), $5.99(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.75,1.11 \mathrm{~Hz}), 7.15-7.44$ and $7.58-7.68$ (15 H , band).

Acid 62. To a solution of $15.2 \mathrm{mg}(0.016 \mathrm{mmol})$ of aldehyde 60 in 0.5 mL of tert-butyl alcohol and 0.5 mL of water at $0^{\circ} \mathrm{C}$ was added 0.5 mL of 2-methyl-2-butene. Solid sodium chlorite $(80 \%)(8.9 \mathrm{mg}, 0.079 \mathrm{mmol})$ and $13 \mathrm{mg}(0.094 \mathrm{mmol})$ of sodium phosphate monobasic monohydrate were added sequentially. The resulting biphase mixture was raised to room temperature and stirred vigorously for 5 h . The reaction was poured into pH 4.0 buffer (2 mL) and extracted with ether (3 X 3 mL). The organic layers were combined, dried over MgSO_{4}, filtered and concentrated. The filtrate was condensed and the residue was chromatographed (5% to $20 \% \mathrm{EtOAc} /$ petroleum ether) to provide 11.9 $\mathrm{mg}(83 \%)$ of acid 61. $\mathrm{Rf}_{\mathrm{f}}(100 \% \mathrm{EtOAc} /$ hexanes $): 0.61$. $\mathrm{R}\left(\mathrm{CDCl}_{3}\right) 3250,2930,1725$, $1380,1089,1011 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.62(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.79 \mathrm{~Hz}), 0.65(3 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=6.79 \mathrm{~Hz}), 0.78(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.00 \mathrm{~Hz}), 0.80-2.38(17 \mathrm{H}$, band $), 1.03(9 \mathrm{H}, \mathrm{s}), 1.50$ $(3 \mathrm{H}, \mathrm{s}), 1.88(3 \mathrm{H}, \mathrm{s}), 2.86(1 \mathrm{H}, \mathrm{m}), 3.29(1 \mathrm{H}, \mathrm{m}), 3.38(1 \mathrm{H}, \mathrm{m}), 3.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.7$ $\mathrm{Hz}), 4.02(1 \mathrm{H}, \mathrm{m}), 4.12(1 \mathrm{H}, \mathrm{m}), 4.52(1 \mathrm{H}, \mathrm{AB}, \mathrm{J}=14.81 \mathrm{~Hz}), 4.60(1 \mathrm{H}, \mathrm{AB}, \mathrm{J}=$ $14.81 \mathrm{~Hz}), 5.10(1 \mathrm{H}, \mathrm{m}), 5.57-5.81(3 \mathrm{H}$, band $), 6.24(1 \mathrm{H}, \mathrm{m}), 7.12-7.45$ and 7.58-7.68 (15 H , band).

Tetrabutylammonium fluoride ($0.09 \mathrm{~mL}, 0.09 \mathrm{mmol}$), as a 1 M solution in THF, was added to a solution of acid from above ($11.2 \mathrm{mg}, 0.012 \mathrm{mmol}$) in 0.5 mL of THF. The resulting solution was stirred for 24 h at room temperature. The solution was concentrated
in vacuo and purified by column chromatography on silica gel (25-50\% EtOAc/hexanes) then ($10-30 \% \mathrm{MeOH} /$ hexanes) to provide hydroxy acid $62(8.0 \mathrm{mg}, 97 \%)$ as a white foam. IR (CDCl3) $3250,2930,1725,1380,1089,1011 .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.77(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 0.82(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 0.98(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.00 \mathrm{~Hz}), 1.02(3 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=7.00 \mathrm{~Hz}) ; 0.80-2.48(17 \mathrm{H}$, band $), 1.56(3 \mathrm{H}, \mathrm{s}), 1.89(3 \mathrm{H}, \mathrm{s}), 2.86(1 \mathrm{H}, \mathrm{m}), 3.04$ $(1 \mathrm{H}, \mathrm{m}), 3.19(1 \mathrm{H}, \mathrm{m}), 3.59(1 \mathrm{H}, \mathrm{m}), 3.78(1 \mathrm{H}, \mathrm{m}), 4.01(1 \mathrm{H}, \mathrm{m}), 4.28(1 \mathrm{H}, \mathrm{m}), 4.58$ $(2 \mathrm{H}, \mathrm{AB}, \mathrm{J}=14.81 \mathrm{~Hz}), 4.93(1 \mathrm{H}, \mathrm{m}), 5.42-5.81(3 \mathrm{H}$, band), $6.26(1 \mathrm{H}, \mathrm{m}), 7.17-7.32$ and 7.46-7.55 (5H, band). Anal. Calcd. for $\mathrm{C}_{39} \mathrm{H}_{54} \mathrm{O} 7 \mathrm{~S}: \mathrm{C}, 70.24 ; \mathrm{H}, 8.16$. Found: C, 69.90; H, 8.01.

Macrolactone 3 A solution of N, N-dicyclohexylcarbodiimide ($62 \mathrm{mg}, 0.30 \mathrm{mmol}$), 4dimethylaminopyridine ($32 \mathrm{mg}, .26 \mathrm{mmol}$) and DMAP. HCl ($45 \mathrm{mg}, 0.28 \mathrm{mmol}$) in 35 mL of dry (ethanol-free) CHCl_{3} was heated to reflux. Hydroxy acid $62(8.0 \mathrm{mg}, 0.012 \mathrm{mmol})$ in 6 mL of dry (ethanol-free) CHCl_{3} was added to the refluxing solution via a syringe pump over a period of 16 h . The long needle was inserted through the condenser and placed right over the refluxing solution such that the refluxing chloroform washed the substrate droplets forming at its tip. Upon completion of the addition, the flask and syringe containing the substrate were washed by more chloroform ($2 \times 2 \mathrm{~mL}$) and these solutions were delivered by syringe pump over a period of 1 h . The reaction mixture was cooled to room temperature and excess DCC was consumed by adding $\mathrm{MeOH}(0.6 \mathrm{~mL})$ and acetic acid $(0.05 \mathrm{~mL})$. The resulting solution was stirred at room temperature for 2 h , concentrated in vacuo and purified by column chromatography on silica gel (0-5-10\% EtOAc/hexanes) to afford macrolactone $3(4.0 \mathrm{mg}, 57 \%)$ as a white foam: ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.79(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 0.92(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 0.97(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $7.00 \mathrm{~Hz}), 1.07(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.00 \mathrm{~Hz}) ; 0.80-2.42(17 \mathrm{H}$, band $), 1.48(3 \mathrm{H}, \mathrm{s}), 2.08(3 \mathrm{H}, \mathrm{s})$, $2.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}), 3.04(1 \mathrm{H}, \mathrm{m}), 3.58(1 \mathrm{H}, \mathrm{m}), 3.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}), 3.97$ $(1 \mathrm{H}, \mathrm{m}), 4.52(2 \mathrm{H}, \mathrm{AB}, \mathrm{J}=14.8 \mathrm{~Hz}), 4.92(1 \mathrm{H}, \mathrm{m}), 5.08(1 \mathrm{H}, \mathrm{m}), 5.37-5.76(3 \mathrm{H}$,
band), $6.09(1 \mathrm{H}, \mathrm{m}), 7.17-7.45\left(5 \mathrm{H}\right.$, band). Anal. Calcd. for $\mathrm{C}_{39} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 72.19 ; \mathrm{H}$, 8.08. Found: C, 71.92; H, 8.36.

Sulfoxide 63 To a stirred, cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $13 \mathrm{mg}(0.02 \mathrm{mmol})$ of sulfide 62 in 1.5 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise via syringe $0.7 \mathrm{~mL}(0.021 \mathrm{mmol})$ of a 0.03 M solution of $60 \% \mathrm{~m}$-chloroperoxybenzoic acid in of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After 2 h an additional 0.15 mL of m-CPBA solution was added. After an additional 1 h the reaction mixture was warmed to room temperature and concentrated. The residue was chromatographed (9:1 hexanes:EtOAc) to provide $6.0 \mathrm{mg}(45 \%)$ of the sulfoxide. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.79(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 0.95(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 0.98(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.00 \mathrm{~Hz}), 1.07(3 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=7.00 \mathrm{~Hz}) ; 0.80-2.42(17 \mathrm{H}$, band $), 1.49(3 \mathrm{H}, \mathrm{s}), 1.68(3 \mathrm{H}, \mathrm{s}), 3.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5$ $\mathrm{Hz}), 3.13(1 \mathrm{H}, \mathrm{m}), 3.48(1 \mathrm{H}, \mathrm{m}), 4.03(1 \mathrm{H}, \mathrm{m}), 4.55(2 \mathrm{H}, \mathrm{AB}, \mathrm{J}=14.8 \mathrm{~Hz}), 4.92(1 \mathrm{H}$, $\mathrm{m})$, 5.33-5.72 (3H, band), $5.88(1 \mathrm{H}, \mathrm{m}), 6.13(1 \mathrm{H}, \mathrm{m}), 7.43-7.71(5 \mathrm{H}$, band). Anal. Calcd. for $\mathrm{C} 39 \mathrm{H} 52 \mathrm{O} 7 \mathrm{~S}: \mathrm{C}, 70.45 ; \mathrm{H}, 7.89$. Found: $\mathrm{C}, 70.41 ; \mathrm{H}, 7.69$.

Diene 64 A solution of $6 \mathrm{mg}(0.009 \mathrm{mmol})$ of the sulfoxide 63 from above and $10 \mu \mathrm{~L}$ (0.09 mmol) of trimethylphosphite in 2 mL of methanol was heated at reflux under argon for 3 h . The solvent was evaporated under vacuum and the residue was chromatographed ($9: 1$ hexanes:EtOAc) to provide $3 \mathrm{mg}(62 \%)$ of the elimination product 64 as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.82(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 0.87(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz})$, $1.03(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.00 \mathrm{~Hz}), 1.08(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.00 \mathrm{~Hz}) ; 0.80-2.45(17 \mathrm{H}$, band $), 1.48(3 \mathrm{H}$, s), $1.94(3 \mathrm{H}, \mathrm{s}), 3.11(1 \mathrm{H}, \mathrm{m}), 3.63(1 \mathrm{H}, \mathrm{m}), 4.14(1 \mathrm{H}, \mathrm{s}), 4.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4 \mathrm{~Hz}), 4.39$ $(1 \mathrm{H}, \mathrm{AB}, \mathrm{J}=15,2 \mathrm{~Hz}), 4.54(1 \mathrm{H}, \mathrm{AB}, \mathrm{J}=15,2 \mathrm{~Hz}), 4.95(1 \mathrm{H}, \mathrm{m}), 5.36(1 \mathrm{H}, \mathrm{m}), 5.48$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10,15 \mathrm{~Hz}), 5.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11,15 \mathrm{~Hz}), 6.02(1 \mathrm{H}, \mathrm{m}), 6.34(2 \mathrm{H}, \mathrm{m})$. Anal. Calcd. for $\mathrm{C}_{33} \mathrm{H}_{46} \mathrm{O}_{6}$: C, 73.40; H, 8.59. Found: C, 73.81; H, 8.50.

