Supporting Information for

Single Molecular Imaging of Iron-Phthalocyanine Catalyzed Oxygen Reduction Reaction by *in situ* Scanning Tunneling Microscopy

Jing-Ying Gu[§], Zhen-Feng Cai[§], Dong Wang*, and Li-Jun Wan*

[§]These authors contributed equally.

Figure S1. Typical cyclic voltammograms of bare (black line) and FePc-modified (red line) Au(111) electrodes in 0.1 HClO₄ saturated by nitrogen. Scan rate is 50 mV/s.

Figure S2. Histograms of the percentage of high-contrast spots and low-contrast spots in $0.1\ M\ HClO_4$ saturated by air, O_2 and N_2 .

Figure S3. Sequential STM images of the FePc monolayer on Au(111) in 0.1 M HClO₄ saturated by nitrogen at different potential. Image conditions: (a) Upper region: E = 350 mV, $E_{bias} = -278.0$ mV, $I_t = 1.000$ nA, data scale = 500.0 pm. Lower region: E = 100 mV, $E_{bias} = -278.0$ mV, $I_t = 1.000$ nA, data scale = 500.0 pm; (b) Upper region: E = 350 mV, $E_{bias} = -278.0$ mV, $I_t = 1.000$ nA, data scale = 500.0 pm. Lower region: E = 113 mV, $E_{bias} = -278.0$ mV, $I_t = 1.000$ nA, data scale = 500.0 pm; (c) Upper region: E = 350 mV, $E_{bias} = -278.0$ mV, $I_t = 1.000$ nA, data scale = 500.0 pm. Lower region: E = 115 mV, $E_{bias} = -278.0$ mV, $I_t = 1.000$ nA, data scale = 500.0 pm.

Figure S4. Sequential STM images and cross-section profiles of the FePc monolayer on Au(111) in 0.1 M HClO₄ saturated by oxygen at different set-current. (d – f) are cross-section profiles along the white dotted line in (a – c). Image conditions: (a) E = 306 mV, $E_{bias} = -184.0$ mV, $I_t = 1.000$ nA, data scale = 500.0 pm; (b) E = 306 mV, $E_{bias} = -184.0$ mV, $I_t = 1.200$ nA, data scale = 500.0 pm; (c) E = 306 mV, $E_{bias} = -184.0$ mV, $I_t = 1.500$ nA, data scale = 500.0 pm.

Figure S5. Sequential STM images and cross-section profiles of the FePc monolayer on Au(111) in 0.1 M HClO₄ saturated by oxygen at different set-current. (e – h) are cross-section profiles along the white dotted line in (a – d). Image conditions: (a) E = 306 mV, $E_{bias} = -339.0$ mV, $I_t = 1.000$ nA, data scale = 500.0 pm; (b) E = 306 mV, $E_{bias} = -339.0$ mV, $I_t = 1.200$ nA, data scale = 500.0 pm; (c) E = 306 mV, $E_{bias} = -184.0$ mV, $I_t = 1.500$ nA, data scale = 500.0 pm; (d) E = 306 mV, $E_{bias} = -339.0$ mV, $E_{bias} = -339.$

Figure S6. Sequential STM images and cross-section profiles of the FePc monolayer on Au(111) in 0.1 M HClO₄ saturated by nitrogen at different set-current. (d – f) are cross-section profiles along the white dotted line in (a – c). Image conditions: (a) E = 292 mV, $E_{bias} = -281.0$ mV, $I_t = 1.500$ nA, data scale = 500.0 pm; (b) E = 292 mV, $E_{bias} = -281.0$ mV, $I_t = 1.800$ nA, data scale = 500.0 pm. (c) E = 292 mV, $E_{bias} = -281.0$ mV, $I_t = 2.100$ nA, data scale = 500.0 pm.

Figure S7. Sequential STM images and cross-section profiles of the FePc monolayer on Au(111) in 0.1 M HClO₄ saturated by nitrogen at different set-current. (d – f) are cross-section profiles along the white dotted line in (a – c). Image conditions: (a) E = 306 mV, $E_{bias} = -490.0$ mV, $I_t = 1.800$ nA, data scale = 500.0 pm; (b) E = 306 mV, $E_{bias} = -490.0$ mV, $I_t = 2.000$ nA, data scale = 500.0 pm; (c) E = 306 mV, $E_{bias} = -490.0$ mV, $I_t = 2.200$ nA, data scale = 500.0 pm.

Figure S8. Steady-state ORR polarization curve (bottom) in O₂-saturated 0.1 M HClO₄ at a scan rate of 10 mV s⁻¹ and corresponding electron transfer number (n, top) during ORR process catalyzed by FePc modified Au(111) surface.

Figure S9. Sequential STM images of the Au(111) single-crystal substrate in 0.1 M HClO₄ saturated by oxygen at different potential. Image conditions: (a) E = 350 mV, $E_{bias} = -116.0$ mV, $I_t = 1.000$ nA; (b) Upper region: E = 350 mV, $E_{bias} = -116.0$ mV, $I_t = 1.000$ nA. Lower region: E = 113 mV, $E_{bias} = -55.3$ mV, $I_t = 1.000$ nA; (c) E = 113 mV, $E_{bias} = -55.3$ mV, $I_t = 1.000$ nA.