Nitrogen-Atom Insertion into Ir–S and C–S Bonds Initiated by Photolysis of Iridium(III)-Azido-Dithiocarbamato Complexes

Takayoshi Suzuki,^{*} Antonio G. DiPasquale, and James M. Mayer^{*} Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195-1700 E-mai: suzuki@chem.sci.osaka-u.ac.jp; mayer@chem.washington.edu

Measurements

NMR spectra were acquired on Bruker DMX-750, AF-300 and AC-200 spectrometers at 298 K (unless otherwise noted). Proton NMR chemical shifts were referenced to the residual ¹H NMR signals of the deuterated solvents and are reported vs. TMS. External CD_3NO_2 and internal solvent CD_3CN was used as a reference for ¹⁵N NMR chemical shifts. Absorption spectra were obtained using a HP 8453 UV-vis spectrophotometer at 293 K.

Materials

The following chemicals are used as received; $IrCl_3 \cdot nH_2O$ from Pressure Chemical Co.; $C_5(CH_3)_5H$ (HCp^{*}), Na(Me₂dtc)·2H₂O and Na(Et₂dtc)·3H₂O from Aldrich, NaN₃ from J. T. Baker; ¹³CS₂ (¹³C 97–99%) and NaN₂¹⁵N (singly ¹⁵N-labeled sodium azide, 1-¹⁵N 98%) from CIL; HN(CH₃)₂ from Matheson Gas Product Inc.; solvents for preparation of complexes from Fisher Chemicals. Acetonitrile- d_3 was purchazed from CIL, and dried by successive vacuum distillation over CaH₂, followed by P₂O₅ and again over CaH₂.

Preparation of complexes

The complex, $[{Cp^*IrCl}_2(\mu-Cl)_2]$ was prepared by the literature method.⁽¹⁾ Sodium *N*,*N*-dimethyldithiocarbamate-¹³C, Na[S₂¹³CN(CH₃)₂], was prepared from ¹³CS₂ and HN(CH₃)₂ by a similar method for sodium *N*,*N*-dimethylthiocarbamate, Na[SC(O)N(CH₃)₂].⁽²⁾

 $Cp^*Ir(R_2dtc)Cl$ (**R** = Me or Et). These complexes were prepared by a similar method to that for the rhodium(III) analogues.⁽³⁾ To an orange suspention of [{Cp*IrCl}₂(μ -Cl)₂] (923 mg, 1.16 mmol) in methanol (60 cm³) was added Na(Me₂dtc)·2H₂O (416 mg, 2.32 mmol) with stirring. The mixture was stirred at room temperature for 2 h, giving a red solution. The filtered solution was evaporated to dryness under reduced pressure, and the residue was extracted with dichloromethane (5 cm³). The extract was evaporated, again, to dryness under reduced pressure, and redissolved in methanol/dichloromethane (5:1, 6 cm³).

(S1/11)

Diffusion of diethyl ether vapor into the solution gave orange-red crystals, which were collected by filtration and dried in air. Yield: 1.068 g (95%). Anal. Found: C, 32.38; H, 4.44; N, 2.95%. Calcd for $C_{13}H_{21}$ ClIrNS₂: C, 32.32; H, 4.38; N, 2.90%.

Complexes of Cp^{*}Ir(Me₂dtc-¹³C)Cl and Cp^{*}Ir(Et₂dtc)Cl were prepared similarly with Na[S₂¹³CN(CH₃)₂] or Na(Et₂dtc)·3H₂O in yields of 77–84%.

Cp^{*}**Ir**(**R**₂**dtc**)(**N**₃) {**R** = **Me** (1) or **Et** (1')}. To a solution of Cp^{*}Ir(**R**₂dtc)Cl (100 mg, 0.204 mmol) in a mixture of methanol and acetonitrile (1:1, 2 cm³) was added a methanol solution (1 cm³) of AgOTf (53.2 mg, 0.207 mmol) with stirring. The mixture was stirred in the dark at room temperature for 20 min, and filtered to remove a white precipitate of AgCl. The precipitate was washed with methanol (3×1 cm³) and acetonitrile (1 cm³), and the filtrate and washings were combined. Sodium azide NaN₃ (14.8 mg, 0.230 mmol) was added, and the mixture was stirred in the dark at room temperature for 10 min. After the solution was evaporated to dryness under reduced pressure, the residue was extracted with dichloromethane (2 cm³). Methanol (2 cm³) was added to the filtered extract, and the mixture was concentrated to ca. 2 cm³ by flow of N₂ gas. The concentrate was kept in a freezer for a while, and the deposited orange crystals were collected by filtration, and dried in vacuo. Yield: 77.8 mg (77%). Anal. Found: C, 31.97; H, 4.32; N, 11.35%. Calcd for C₁₃H₂₁IrN₄S₂: C, 31.89; H, 4.32; N, 11.44%. Crystals of 1 suitable for X-ray analysis were grown from a CH₂Cl₂ solution by vapor diffution of Et₂O at ambient temperature.

The Et₂dtc complex (**1**') and the ¹⁵N labeled complexes, $Cp^*Ir(Me_2dtc)(N_3-{}^{15}N)$ (**1**- ${}^{15}N$) and $Cp^*Ir(Et_2dtc)(N_3-{}^{15}N)$ (**1**'- ${}^{15}N$) (singly labeled NaN₃- ${}^{15}N$ was used), were prepared similarly in the yields of 75–80%.

Photolysis

Sample solutions for photolysis experiments were prepared under a nitrogen atmosphere with dry acetonitrile- d_3 (10 mg of sample in 1 cm³ of CD₃CN; ca. 20 mM), and placed in a screw-top (J-Young brand) NMR tube. A Hg lamp was used for photolysis, and the lamp and the samples were cooled in an aqueous ethanol bath with a Neslab cryocool. During photolysis the bath temperature was monitored beside the samples.

Isolation of the photochemical product, $Cp^*Ir{NSC(NMe_2)S}$ (2)

An acetonitrile- d_3 solution of Cp^{*}Ir(Me₂dtc)(N₃) (**1**, 10 mg in 1 cm³) was photolyzed at -10 °C for 5 h. The ¹H NMR spectrum of this photolyzed solution confirmed that more than 70% of **1** turned to **2** without detectable formation of thermal product **3** (a few byproducts were also detected <10%). The solution was allowed to stand in a freezer (-30°C)

(S2/11)

for a couple of days, giving a small amount of red columnar crystals (~0.3 mg), which were suitable for X-ray analysis.

Isolation of the dimer product, $\{Cp^*Ir[SN=C(NMe_2)S]\}_2$ (4)

An acetonitrile solution of **1** was photolyzed in the same manner as the above, and the solution was allowed to stand at ambient temperature for two days. The initial red reaction solution (containing **2** as a main photochemical product) turned to reddish purple on standing (**2** converted quantitatively to **3**, as revealed by the ¹H NMR spectrum). The solution was evaporated slowly in an inert atmosphere, affording yellow plate crystals of **4** suitable for X-ray analysis. More microcrystals of **4** were obtained by evaporation of the reddish purple solution to nearly dryness, followed by washing the residue with a small amount of acetonitrile, in a ~40% isolated yield.

Cross reaction between $Cp^*Ir\{^{15}NSC(NMe_2)S\}$ (2- ^{15}N) and $Cp^*Ir\{NSC(NEt_2)S\}$ (2')

Separate solutions of $Cp^*Ir(Me_2dtc)(N_3^{-15}N)$ (1-¹⁵N) and $Cp^*Ir(Et_2dtc)(N_3)$ (1') in dry CD_3CN (10 mg cm⁻³) were photolyzed at temperatures below $-2^{\circ}C$ for 5 h. The existance of the photochemical product, $Cp^*Ir\{NSC(NMe_2)S\}$ (2) or $Cp^*Ir\{NSC(NEt_2)S\}$ (2'), in each reaction mixture was confirmed by ¹H NMR spectroscopy. These solutions were mixed together, and kept in a freezer ($-20^{\circ}C$) overnight. The ¹H NMR spectrum of this mixture showed that less than 5% of 2 and 2' had converted to 3 and 3', respectively. In the ¹⁵N NMR spectrum of this mixture (measured at $-20^{\circ}C$) a resonance corresponding to $Cp^*Ir\{^{15}NSC(NMe_2)S\}$ (2'-¹⁵N) was observed as a main peak, but a weak (1/6 in height) signal due to $Cp^*Ir\{^{15}NSC(NEt_2)S\}$ (2'-¹⁵N) was also detected. Then, this solution was kept at room temperature for 4 h; at that time ca. 1/4 of each 2 and 2' were converted thermally to 3 and 3', which was confirmed by ¹H NMR. The mixture was, again, cooled to $-20^{\circ}C$ to measure the ¹⁵N NMR spectrum, in which two resonances due to 2-¹⁵N and 2'-¹⁵N were observed in almost equal intensities (height ratio was ca. 7:5). After complete thermal convertion, the resonance c for 3 and 3' were also of almost equal intensity.

Crystal structure analyses

Each crystal of 1, 2, and 3 suitable for X-ray analysis was mounted on a glass capillary with oil. X-ray diffraction data were collected on a Nonius KappaCCD diffractometer. One set of ψ -scan exposure was collected (details: see Table S1). The data were integrated and scaled using hkl-2000,⁽⁴⁾ and empirical absorption corrections were applied with the same program. The structures were solved by direct method (SIR97⁽⁵⁾), and refined by full-matrix least-squares⁽⁶⁾ with anisotropic thermal parameters for all non-

(S3/11)

hydrogen atoms. Hydrogen atoms were placed using a riding model. Crystal data, experimental conditions, and refinement details are collected in Table S1. Perspective views of complexes **1**, **2**, and **4** are shown in Figures S1–S3, and selected bond lengths and angles are listed in Tables S2–S4, respectively.

References

- (1) White, C.; Yates, A.; Maitlis, P. M. Inorg. Synth. 1992, 29, 228–234.
- (2) Hawthorne, S. L.; Bruder, A. H.; Fay, R. C. Inorg. Chem. 1978, 17, 2114–2120.
- (3) (a) Robertson, D. R.; Stephenson, T. A. J. Chem. Soc., Dalton Trans. 1978, 486–495.
 (b) Russell, M. J. H.; White, C.; Yates, A.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1978, 849–857.
- Otinowski, Z.; Minor, W. *Methods in Enzymology*, Carter, Jr., C. W.; Sweet, R. M. Eds. 1996, 276, 307–325, Academic Press.
- (5) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Burla, M. C.; Polidori, G.; Camalli, M. *J. Appl. Cryst.* **1994**, 27, 435–442.
- (6) Sheldrich, G. M. SHELXL97, Univ. of Göttingen, Germany, 1997.

Complex	1	2	4
Formula	$C_{13}H_{21}IrN_4S_2$	$C_{13}H_{21}IrN_2S_2$	$C_{26}H_{42}Ir_2N_4S_4$
FW	489.66	461.64	923.28
<i>T /</i> K	130(2)	130(2)	130(2)
λ (Mo K α) / Å	0.71073	0.71073	0.71073
Crystal color/habit	orange/prism	red/prism	orange/prism
Crystal size / mm	0.08×0.04×0.03	0.20×0.20×0.12	0.19×0.17×0.12
Crystal system	Orthorhombic	Monoclinic	Triclinic
Space group	<i>Pnma</i> (no. 62)	<i>P2/c</i> (no. 14)	<i>P</i> 1 (no. 2)
a / Å	15.5070(2)	9.7290(3)	10.4540(4)
<i>b</i> / Å	12.0280(3)	11.2510(4)	11.1600(6)
<i>c</i> / Å	8.8740(6)	14.1330(6)	14.1330(10)
α/°	90	90	84.1170(17)
eta / $^{\circ}$	90	101.8080(14)	87.4570(16)
γ/°	90	90	66.235(4)
$V/\text{\AA}^3$	1655.16(12)	1514.28(10)	1501.08(15)
Z, $ ho_{\rm c}$ / Mg m ⁻³	4, 1.965	4, 2.025	2, 2.043
μ (Mo K α) / mm ⁻¹	8.315	9.078	9.158
<i>F</i> (000)	944	888	888
$\theta_{\min}, \theta_{\max}$ collected	3.49, 28.27	3.62, 28.28	3.37, 24.71
Collect/unique reflns	3363/1892	5827/3575	7062/4658
<i>R</i> _{int}	0.0397	0.0486	0.0609
Completeness	0.883	0.954	0.911
T_{\min}, T_{\max}	0.5560, 0.7885	0.2640, 0.4088	0.2751, 0.4062
Data/parameters	1892/107	3575/170	4658/339
<i>R1</i> , <i>wR2</i> [$I > 2\sigma(I)$]	0.0302, 0.0536	0.0384, 0.0720	0.0505, 0.1115
<i>R1</i> , <i>wR2</i> (all data)	0.0498, 0.0572	0.0629, 0.0776	0.0783, 0.1228
S (GoF)	1.000	1.005	0.999
$\Delta \rho$ / e Å ⁻³	-1.726, 0.962	-1.720, 0.946	-2.733, 2.504

 Table S1
 Crystal data, experimental conditions, and refinement details.

$\frac{1}{\operatorname{Ir}(1) - N(1)}$	2.120(6)	Ir(1)-S(1)	2.390(1)
S(1)–C(7)	1.723(4)		
N(1)-N(2)	1.197(8)	N(2) - N(3)	1.157(9)
N(4)–C(7)	1.322(8)	N(4)-C(8)	1.463(6)
S(1) - Ir(1) - S(1')	72.54(5)	N(1) - Ir(1) - S(1)	90.06(13)
Ir(1) - S(1) - C(7)	88.59(19)	S(1)-C(7)-S(1')	110.3(4)
N(2)-N(1)-Ir(1)	122.5(5)	N(3)-N(2)-N(1)	176.3(8)
C(7)-N(4)-C(8)	121.9(3)	C(8)-N(4)-C(8')	116.2(5)
N(4)-C(7)-S(1)	124.9(2)		
· · · ·			

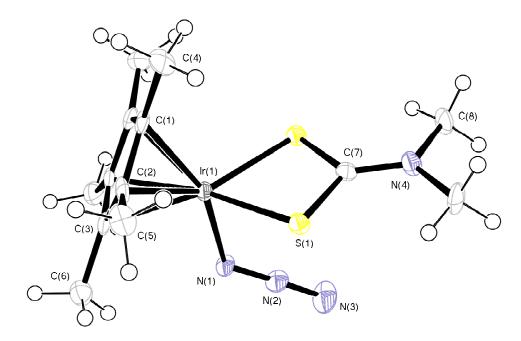

Table S2 Selected bond lengths (Å) and angles (°) for $Cp^*Ir(Me_2dtc)(N_3)$ (1).

Table S3 Selected bond lengths (Å) and angles (°) for $Cp^*Ir{NSC(NMe_2)S}$ (2)

Ir(1)-S(2)	2.272(2)	Ir(1)–N(1)	1.911(5)
S(1)-C(11)	1.706(6)	S(2)-C(11)	1.712(6)
S(1) - N(1)	1.628(5)	N(2)–C(11)	1.359(8)
N(2)–C(12)	1.456(7)	N(2)–C(13)	1.451(8)
S(2) - Ir(1) - N(1)	88.52(14)		
Ir(1)-N(1)-S(1)	123.3(3)	Ir(1)-S(2)-C(11)	105.2(2)
N(1)-S(1)-C(11)	107.2(3)	S(1)-C(11)-S(2)	115.8(3)
S(1)-C(11)-N(2)	121.8(4)	S(2)-C(11)-N(2)	122.4(5)
C(11)-N(2)-C(12)	119.2(5)	C(11)-N(2)-C(13)	121.6(5)
C(12)–N(2)–C(13)	119.2(5)		

Ir(1) - S(1)	2.328(3)	Ir(2)-S(3)	2.333(4)
Ir(1)-S(2)	2.339(3)	Ir(2)-S(4)	2.333(3)
Ir(1)-S(1')	2.370(3)	$Ir(2) - S(3^*)$	2.378(4)
S(1) - N(1)	1.695(10)	S(3) - N(3)	1.718(11)
S(2)-C(11)	1.777(12)	S(4)–C(31)	1.774(13)
N(1)–C(11)	1.305(15)	N(3)–C(31)	1.274(16)
N(2)-C(11)	1.378(16)	N(4)–C(31)	1.356(15)
N(2)–C(12)	1.447(16)	N(4)–C(32)	1.441(17)
N(2)–C(13)	1.445(15)	N(4)–C(33)	1.444(16)
S(1) - Ir(1) - S(2)	82.77(11)	S(3) - Ir(2) - S(4)	83.41(12)
S(1) - Ir(1) - S(1')	80.84(11)	$S(3) - Ir(2) - S(3^*)$	78.33(15)
S(2) - Ir(1) - S(1')	86.07(11)	$S(4) - Ir(2) - S(3^*)$	88.16(12)
Ir(1)-S(1)-Ir(1')	99.16(11)	$Ir(2)-S(3)-Ir(2^*)$	101.67(15)
Ir(1)-S(1)-N(1)	106.8(3)	Ir(2)-S(3)-N(3)	104.9(4)
Ir(1')-S(1)-N(1)	107.8(3)	$Ir(2^*)-S(3)-N(3)$	107.1(4)
Ir(1)-S(2)-C(11)	100.6(4)	Ir(2)-S(4)-C(31)	102.1(4)
S(1)-N(1)-C(11)	116.3(9)	S(3)-N(3)-C(31)	119.4(9)
S(2)-C(11)-N(1)	125.3(10)	S(4)-C(31)-N(3)	123.7(9)
S(2)-C(11)-N(2)	115.8(9)	S(4)-C(31)-N(4)	115.7(9)
N(1)-C(11)-N(2)	118.9(11)	N(3)-C(31)-N(4)	120.6(12)
C(11)-N(2)-C(12)	122.7(19)	C(31)-N(4)-C(32)	123.0(11)
C(11)-N(2)-C(13)	119.6(10)	C(31)-N(4)-C(33)	120.5(11)
C(12)-N(2)-C(13)	114.7(11)	C(32)-N(4)-C(33)	116.4(11)

Table S4 Selected bond lengths (Å)·and angles (°) for $\{Cp^*Ir[SN=C(NMe_2)S]\}_2$ (4).

Figure S1 ORTEP of $Cp^*Ir(Me_2dtc)(N_3)$ (1).

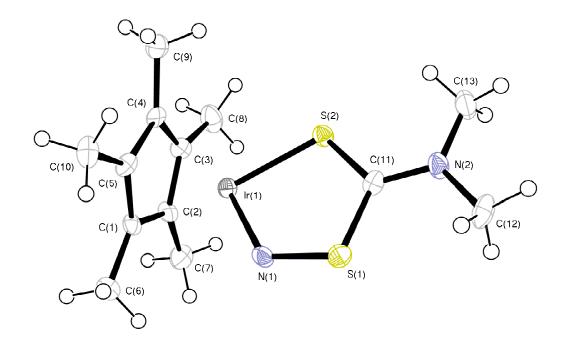


Figure S2 ORTEP of $Cp^*Ir\{NSC(NMe_2)S\}$ (2).

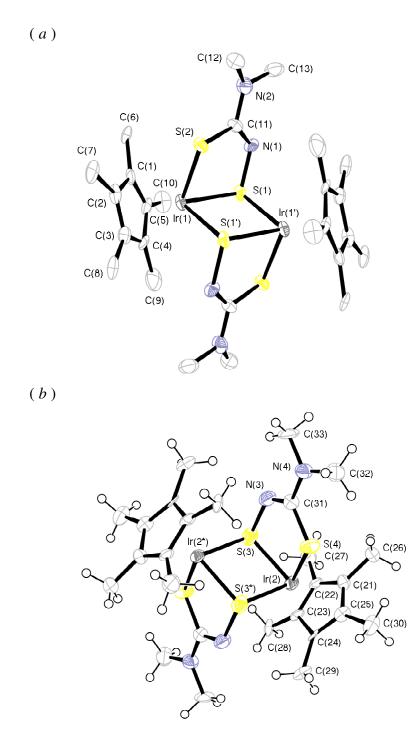
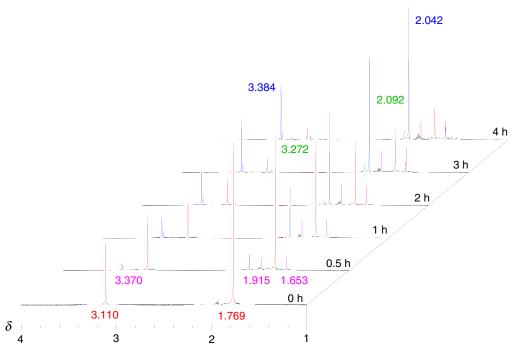
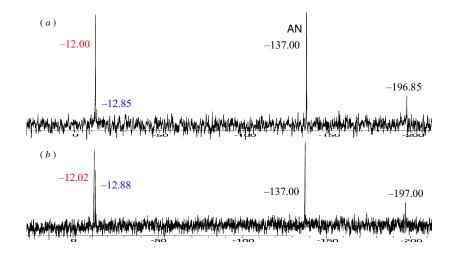




Figure S3 ORTEPs of two crystallographically independent molecules in ${Cp^*Ir[SN=C(NMe_2)S]}_2$ (4).

Figure S4 ¹H NMR spectral change on photolysis of $Cp^*Ir(dtc)(N_3)$ (1) in dry CD_3CN at temperature below 0 °C. Resonances in color are red 1, blue 2, green 3, and purple by-product(s).

Figure S5 ¹⁵N NMR spectra (at -20° C) of a mixture of Cp*Ir[¹⁵NSC(NMe₂)S] (2-¹⁵N) and Cp*Ir[NSC(NMe₂)S] (2'), after standing (*a*) in a freezer overnight and (*b*) at room temperature for 4 h. The resonances at δ –12.0 and –12.9 are due to 2-¹⁵N and 2'-¹⁵N, respectively. The peak at δ –197 is due to a minor by-product.

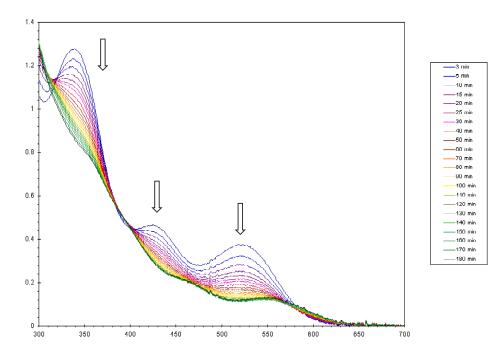
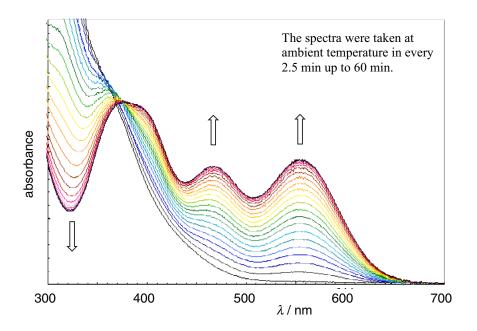



Figure S6 UV-vis absorption spectral change from the photochemical product (2) to the thermal product (3) (some decomposition accompanied) in CH_3CN at room temperature.

Figure S7 UV-vis absorption spectral change of a CH_2Cl_2 solution of yellow dimer product, $\{Cp^*Ir[SN=C(NMe_2)S]\}_2$ (4), to the corresponding monomer 3 at room temperature.