Supporting Information for: Transition State Differences in Hydrolysis Reactions of Alkyl versus Aryl Phosphate Monoester Monoanions
Piotr K. Grzyska, Przemyslaw G. Czyryca, Jamie Purcell, and Alvan C. Hengge*

Kinetic Isotope Effect Determinations.

The dicyclohexylammonium salt (43 mg) of the appropriate isotopically labeled form of m-nitrobenzyl phosphate was dissolved in 10 ml of 0.5 M acetate buffer at pH 4.0 . The solution was placed in thick-walled glass vessels with a pressure cap, which were placed in oil bath maintained at $115{ }^{\circ} \mathrm{C}$. After partial hydrolysis, the reactions were stopped by cooling to room temperature (where the reaction rate is negligible). The extent of reaction was assayed by ${ }^{31} \mathrm{P}$ NMR. The reaction mixture was extracted four times (25 mL) with diethyl ether to separate the product m-nitrobenzyl alcohol. The ether layers were dried over magnesium sulfate, and the ether removed by rotary evaporation. The aqueous layer, containing the unreacted m-nitrobenzyl phosphate was mixed with Tris buffer and brought to $\mathrm{pH} \sim 9$. About 1 mg of commercial alkaline phosphatase was added to cleave the residual m-nitrobenzyl phosphate. After more than 10 half-lives, this mixture was titrated to $\mathrm{pH} \sim 4$ and treated as described above to recover m-nitrobenzyl alcohol. The m-nitrobenzyl alcohol was further purified by distillation onto a cold finger apparatus at $105^{\circ} \mathrm{C}$ under reduced pressure, before isotopic analysis by isotope ratio mass spectrometry using an ANCA-NT combustion system working in tandem with a Europa 20-20 isotope ratio mass spectrometer.

Kinetic Isotope Effect Data Analysis. For each isotope effect at least three reactions were run. The ${ }^{15} \mathrm{~N} /{ }^{14} \mathrm{~N}$ ratios were measured for the product $\left(\mathrm{R}_{\mathrm{p}}\right)$ and of the remaining starting material $\left(\mathrm{R}_{\mathrm{s}}\right)$ at partial reaction, as well as in the original mixture $\left(\mathrm{R}_{\mathrm{o}}\right)$. The isotope effects were calculated using equations 1 and $2 .{ }^{1}$
isotope effect $=\log (1-f) / \log \left[(1-f)\left(\mathrm{R}_{\mathrm{S}} / \mathrm{R}_{\mathrm{O}}\right)\right]$
isotope effect $=\log (1-f) / \log \left(1-f\left(\mathrm{R}_{\mathrm{p}} / \mathrm{R}_{\mathrm{O}}\right)\right)$
For each isotope effect the value calculated from R_{o} and R_{p} (equation 1) and from R_{o} and R_{s} (equation 2) agreed within experimental error and these were averaged to give the results reported. The ${ }^{15} \mathrm{~N}$ KIE is given directly from these equations. In the ${ }^{18} \mathrm{O}$ isotope effect experiments the observed KIEs given by the above equations were corrected for the ${ }^{15} \mathrm{~N}$ isotope effect and for incomplete levels of isotopic incorporation.

Calculation of corrected ${ }^{18} \mathrm{O}$ kinetic isotope effects

In the ${ }^{18} \mathrm{O}$ isotope effect experiments the observed KIEs were corrected for the ${ }^{15} \mathrm{~N}$ isotope effect and for incomplete levels of isotopic incorporation. The equations used for these corrections and their derivations have been described. ${ }^{2}$ For the labeled substrates and the mixtures used for the ${ }^{18} k_{\mathrm{lg}}$ experiments, the levels of isotopic incorporation and other quantities used in the correction equation were as follows.

The fraction of ${ }^{15} \mathrm{~N},{ }^{18} \mathrm{O}$-labeled compound \mathbf{A} in the remote-labeled mixture of \mathbf{A} and \mathbf{C} (Figure 1S) $=\mathrm{b}=0.003657$
The fraction of ${ }^{15} \mathrm{~N}$ in the ${ }^{15} \mathrm{~N},{ }^{18} \mathrm{O}$-labeled compound $\mathbf{A}=\mathrm{x}=0.99$, The fraction of ${ }^{18} \mathrm{O}$ in the ${ }^{15} \mathrm{~N},{ }^{18} \mathrm{O}$-labeled compound $\mathbf{A}=\mathrm{y}=0.93$, The fraction of ${ }^{15} \mathrm{~N}$ in the ${ }^{14} \mathrm{~N}$-labeled compound $\mathbf{C}=\mathrm{z}=0.0002$

For the labeled substrates and the mixtures used for the ${ }^{18} k_{\text {nonbridge }}$ experiments, the levels of isotopic incorporation and other quantities used in the correction equation were as follows.
The fraction of ${ }^{15} \mathrm{~N}$, ${ }^{18} \mathrm{O}$-labeled compound \mathbf{B} in the remote-labeled mixture of \mathbf{B} and $\mathbf{C}=$ $b=0.003674$
The fraction of ${ }^{15} \mathrm{~N}$ in the ${ }^{15} \mathrm{~N},{ }^{18} \mathrm{O}$-labeled compound $\mathbf{B}=\mathrm{x}=0.99$
The fraction of compound \mathbf{B} with all three nonbridge oxygen atoms labeled $=y=0.95$
The fraction of ${ }^{15} \mathrm{~N}$ in the ${ }^{14} \mathrm{~N}$-labeled compound $\mathbf{C}=\mathrm{z}=0.0002$

A

B

C

Figure 1S. Isotopic isomers used in the KIE experiments

Eyring Plot

The rate constants for hydrolysis of m-nitrobenzyl phosphate measured in the temperature range $95^{\circ} \mathrm{C}$ to $130{ }^{\circ} \mathrm{C}$ are shown in the following table:

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\left.\mathrm{k} \mathrm{(s}^{-1}\right)$
95	1.89×10^{-6}
110	2.07×10^{-5}
115	2.8×10^{-5}
120	5.09×10^{-5}
125	9.71×10^{-5}
130	3.00×10^{-4}

References

(1) Bigeleisen, J.; Wolfsberg, M. Adv. Chem. Phys. 1958, 1, 15-76.
(2) Hermes, J. D.; Morrical, S. W.; O'Leary, M. H.; Cleland, W. W. Biochemistry 1984, 23, 5479-5488.

