Supporting Information for the Communication entitled

Enantioselective Synthesis of "Quaternary" 1,4-Benzodiazepine-2-ones via Memory of Chirality

Paul R. Carlier*, Hongwu Zhao, Joe DeGuzman, Polo C.-H. Lam
Department of Chemistry
Virginia Tech
Blacksburg, VA 24061
pcarlier@vt.edu

Table of Contents:

Section	Description	Page
A	Experimental Procedures	1
B.	Tabulation of chiral stationary phase HPLC conditions and retention times	8
C.	Computational Details, Absolute Energies, and Cartesian Coordinates for Calculated Structures	9
D.	${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra, HPLC Chromatograms	
	HPLC chromatograms for 2a	16
	HPLC chromatograms for 2b	18
	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra, HPLC chromatograms for 2c	20
	HPLC chromatograms for 3a	24
	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra, HPLC chromatograms for 3c	26
	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra, HPLC chromatograms for 4	30
	${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ EXSY, ${ }^{13} \mathrm{C}$ NMR spectra, HPLC chromatograms for 5 (from (3S)-2c)	34
	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra, HPLC chromatograms for 6	42
	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra, HPLC chromatograms for 7	46
	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra, HPLC chromatograms for $\mathbf{8}$	50
	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra, HPLC chromatograms for 9	54
	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra, HPLC chromatograms for $\mathbf{1 0}$	58
	${ }^{1} \mathrm{H}$ spectrum for $\mathbf{1 1}$ (\square-Me-Phe)	62
	${ }^{1} \mathrm{H}$ spectrum for $\mathbf{1 2}$ (\square-Me-($4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$)-Ala)	63
	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ spectra for $\mathbf{1 c}$	64

A. Experimental Procedures

General

THF was distilled from Na /benzophenone immediately before use. (S)-Boc-Ala and (S)-Boc-Phe were purchased from Advanced ChemTech and were used as received. Compounds 1a and 1b were prepared according to the literature method. ${ }^{1}$ Compounds (3S)-2a and (3S)-3a were prepared in 91 and 67% yield from (S)-Boc-Ala and (S)-Boc-Phe using a modification of Shea's protocol; ${ }^{2}$ enantiomeric excess of these compounds was assessed by HPLC (Chiralcel AD and OD). Isopropyl triflate was prepared according to the literature ${ }^{3}$ immediately before use and was dispensed as a solution in $\mathrm{CCl}_{4} .{ }^{1} \mathrm{H}$ NMR Spectra were recorded at 500 and 400 MHz ; the
corresponding ${ }^{13} \mathrm{C}$ NMR resonant frequencies were 125 and 100 MHz respectively. High resolution mass spectra were recorded under FAB conditions (NBA. PEG); in each case the expected molecular formula $\left(\mathrm{M}+1,{ }^{35} \mathrm{Cl}\right)$ gave the closest match among all possible formulas.

General procedure for \boldsymbol{N}-alkylation of \mathbf{N} - $\mathbf{H - 1 , 4}$-benzodiazepine-2-ones

At $0{ }^{\circ} \mathrm{C}$ to a stirred solution of (3S)-2a ($5.1 \mathrm{mmol}, 1.0$ equiv.) in dry THF (30.0 mL) was added NaH (5.7 mmol , 1.12 equiv., 60% suspension in mineral oil) in one portion. The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min before the dropwise addition of alkyl triflate ($15 \mathrm{mmol}, 3.0$ equiv.). The reaction mixture was stirred for a further 10 min at $0^{\circ} \mathrm{C}$, at which point TLC $(1: 5$ EtOAc:hexanes) indicated the reaction was complete. The reaction was quenched at $0{ }^{\circ} \mathrm{C}$ with 20 ml of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash column chromatography on silica gel.

$N-i-\mathrm{Pr}$ benzodiazepine 1c

The procedure above was followed with $\mathbf{1 a}(102 \mathrm{mg}, 0.376 \mathrm{mmol})$ in anhydrous THF (2 mL), HMPA ($390 \quad \square \mathrm{~L}, 2.26 \mathrm{mmol}$), $\mathrm{NaH}(0.451 \mathrm{mmol}), i$-PrOTs ($241.7 \mathrm{mg}, 1.13 \mathrm{mmol}$). After stirring overnight, aqueous workup and chromatography ($20 \% \mathrm{EtOAc} / \mathrm{Hexane}$) afforded $65.2 \mathrm{mg}(55 \%)$ of 1c as a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \square 1.21(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.55(\mathrm{~m}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.61(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \square 20.62,22.39,51.08,58.05,125.23,128.59,129.31,129.55,130.42,130.72$, $130.76,132.44,138.16,140.72,168.68,169.52$;
HRMS (FAB) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+} 313.1108$, found $313.1123(+4.8 \mathrm{ppm},+1.5 \mathrm{mmu})$
N-Me benzodiazepine (3S)-2b
The procedure above was followed with ($3 S$) $\mathbf{- 2 a}(0.12 \mathrm{~g}, 0.42 \mathrm{mmol}$) in anhydrous THF (2.0 mL), $60 \% \mathrm{NaH}(19 \mathrm{mg}, 0.47 \mathrm{mmol})$ and methyl triflate $(58 \mu \mathrm{~L}, 0.51 \mathrm{mmol})$. Purification with flash column chromatography on silica gel (1:2 Hexanes/EtOAc) provided $118 \mathrm{mg}(94 \%)$ of (3S)-2b, which was identical by ${ }^{1} \mathrm{H}$ NMR to the literature material. ${ }^{4}$ Chiral stationary phase HPLC (Chiralcel AD) indicated 100 \%ee.
$N-i-P r$ benzodiazepine (3S)-2c
The procedure above was followed with (3S)-2a ($1.44 \mathrm{~g}, 5.08 \mathrm{mmol}$) in anhydrous THF (30.0 ml), $60 \% \mathrm{NaH}(228.0 \mathrm{mg}, 5.69 \mathrm{mmol})$ and isopropyl triflate ($2.92 \mathrm{~g}, 15.2 \mathrm{mmol}$, solution in 2 mL CCl). Purification with flash column chromatography on silica gel (1:5 Hexanes/EtOAc) provided 1.36 g (82%) of (3S)-2c as a white solid, $\mathrm{mp} 113.8-114.9^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \square 7.61-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 4.55$ (septet, $J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.67(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, 3H).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \square 170.8,166.6,140.4,138.1,133.0,130.64,130.58,130.3,129.4,129.3,128.6$, 125.3, 59.7, 51.4, 22.3, 20.7, 17.3.

HRMS calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O}(\mathrm{M}+1) 327.1264$, found 327.1264.
$[\square]^{21}{ }_{\mathrm{D}}=+222.7^{\circ}\left(\mathrm{c}=0.55, \mathrm{CHCl}_{3}\right)$. Chiral stationary phase HPLC (Chiralcel AD) indicated 100 \%ee.

$N-i-P r$ Benzodiazepine (3S)-3c

The procedure above was followed with ($3 S$)-3a ($0.683 \mathrm{~g}, 1.89 \mathrm{mmol}$) in anhydrous THF (14 mL), $60 \% \mathrm{NaH}(84.7 \mathrm{mg}, 2.12 \mathrm{mmol}$) and isopropyl triflate ($1.0921 \mathrm{~g}, 5.68 \mathrm{mmol}$ (neat)). Purification with flash column chromatography on silica gel (1:4 EtOAc:hexanes) provided $0.439 \mathrm{~g}(58 \%)$ of (3S)-3c as a pale yellow solid, $\mathrm{mp} 67-69{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \square 7.56-7.15$ (several multiplets, 13 H), 4.58 (septet, $\left.J=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.70(\mathrm{dd}, J=$ $8.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.586(\mathrm{dd}, J=13.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.525(\mathrm{dd}, J=13.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H})$, 1.47 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.19$ (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR $\left(\mathrm{CDCl}_{3}\right): 169.8,166.8,140.2,139.5,138.1,132.7,130.66,130.62,130.4,129.9,129.39$, $129.33,128.5,128.2$, 126.1, 125.4, 66.0, 51.5, 37.8, 22.3, 20.6.
HRMS: calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OCl}(\mathrm{M}+1) 403.1577$, found 403.1583 ($+1.4 \mathrm{ppm},+0.6 \mathrm{mmu}$).
$[\square]^{21}{ }_{\mathrm{D}}=+64.4^{\circ}\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. Chiral stationary phase HPLC (Chiralcel AD) indicated 100 \%ee.

General Protocol for the C3-alkylation of 3-alkyl-1,4-benzodiazepine-2-ones.

At $-78{ }^{\circ} \mathrm{C}$ under nitrogen, to a stirred solution of (3S)-2c ($0.15 \mathrm{mmol}, 1.0$ equiv) and HMPA (0.90 mmol, 6.0 equiv) in anhydrous THF (3.0 mL) was added LDA ($0.15 \mathrm{mmol}, 1.2$ equiv, 1.5 M in hexanes). After 15 minutes, $n-\operatorname{BuLi}(0.15 \mathrm{mmol}, 1.2$ equiv, 2.5 M in hexanes) was added and the mixture stirred for a further 15 min . The electrophile ($1.5 \mathrm{mmol}, 10$ equiv.) was then added dropwise via syringe at $-78^{\circ} \mathrm{C}$ and the reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ until the starting benzodiazepine was consumed (TLC). The reaction was quenched at $-78^{\circ} \mathrm{C}$ by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5.0 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash column chromatography on silica gel.

N-Me Benzodiazepine benzylation product (\pm)-4

The procedure above was followed with (3S)-2b ($44.0 \mathrm{mg}, 0.15 \mathrm{mmol}$), HMPA ($155 \square \mathrm{~L}, 0.90$ mmol), LDA ($118 \square \mathrm{~L}, 0.18 \mathrm{mmol}, 1.5 \mathrm{M}$ in hexanes), $n-\mathrm{BuLi}(71.0 \square \mathrm{~L}, 0.18 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) and benzyl bromide ($176.8 \square \mathrm{~L}, 1.5 \mathrm{mmol}$). The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 3 h . Purification with flash column chromatography on silica gel ($1: 5 \mathrm{Hexanes} / \mathrm{EtOAc}$) provided $37.5 \mathrm{mg}(72 \%)$ of $(\pm)-4$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ indicated a $56: 44$ mixture of the axial-Me and equatorial-Me conformers: $\square 7.6-$ $7.1(\mathrm{~m}, 12 \mathrm{H}), 6.85(\mathrm{br} \mathrm{d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=13.5,1 \mathrm{H} \square 0.56 \mathrm{ax}-\mathrm{Me}), 3.48$ (s, 3H $\square 0.44$ eq-Me), 3.46 ($\mathrm{s}, 3 \mathrm{H} \square 0.56 \mathrm{ax}-\mathrm{Me}$, overlapping with signal at 3.48), 3.28 ($\mathrm{d}, J=13.3,1 \mathrm{H} \square 0.56 \mathrm{ax}-$ Me) $2.58(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H} \times 0.44 \mathrm{eq}-\mathrm{Me}), 2.52(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H} \times 0.44 \mathrm{eq}-\mathrm{Me}), 1.75(\mathrm{~s}, 3 \mathrm{H} \square$ 0.44 eq-Me), 0.79 (s, 3H $\square 0.56 \mathrm{ax}-\mathrm{Me}$)
${ }^{3} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ was consistent with an approximate $1: 1$ mixture of axial-Me and equatorial-Me conformers (35 resonances found for a possible 2×20 unique carbons): 173.9, 172.9, 165.5, 164.9, $142.4,139.9,138.4,136.6,132.3,131.8$ (2 partially resolved peaks), 131.7, 131.5, 130.4, 129.9, $129.8,129.5,128.9,128.7,128.5,128.33,128.26,127.5,126.7,126.3,122.4,122.2,67.9,65.8$, 47.7, 37.7 (2 partially resolved peaks), $37.5,28.3,17.6$;

HRMS calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}(\mathrm{M}+1) 389.1421$, found 389.1419.
Chiral stationary phase HPLC (Chiralcel AD-H) indicated 0 \%ee.
(3R)-5 from Ala-derived benzodiazepine (3S)-2c
The general procedure was followed with (3S)-2c ($16.6 \mathrm{mg}, 0.05 \mathrm{mmol}$), HMPA ($53.4 \square 1,0.30$ mmol), LDA ($41 \square \mathrm{~L}, 0.06 \mathrm{mmol}, 1.5 \mathrm{M}$ in hexanes), $n-\mathrm{BuLi}(25 \square \mathrm{~L}, 0.06 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) and benzyl bromide ($61 \square \mathrm{~L}, 0.50 \mathrm{mmol}$). The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 3 h .

Purification with flash column chromatography on silica gel (1:6 Hexanes/EtOAc) provided 23.7 $\mathrm{mg}(74 \%)$ of $(3 R)-5$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ indicated a 55:45 mixture of the axial-Me and equatorial-Me conformers: $\square 7.60-7.15(\mathrm{~m}, 12 \mathrm{H}), 6.94-6.86(\mathrm{~m}, 1 \mathrm{H}), 4.62-4.52$ (two overlapping septets, 1 H), $3.74(\mathrm{~d}, J=13.5$ $\mathrm{Hz}, 1 \mathrm{H} \square 0.55 \mathrm{ax}-\mathrm{Me}), 3.22(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H} \square 0.55 \mathrm{ax}-\mathrm{Me}), 2.54(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H} \square 0.45 \mathrm{eq}-$ Me), 2.39 (d, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H} \square 0.45 \mathrm{eq}-\mathrm{Me}$), 1.71 ($\mathrm{s}, 3 \mathrm{H} \square 0.45 \mathrm{eq}-\mathrm{Me}$), 1.54 (two overlapping doublets, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H} \square 0.45 \mathrm{eq}-\mathrm{Me}), 1.33(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \square 0.55 \mathrm{ax}-\mathrm{Me}), 1.29(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $0.55 \mathrm{ax}-\mathrm{Me}$), 0.72 (s, 3H $\square 0.55 \mathrm{ax}-\mathrm{Me}$).
${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}\left(\mathrm{CDCl}_{3}\right)$: Among other correlations, spin-coupling between the following benzylic protons is evident: $\square 3.74$ and 3.22 ; $\square 2.54$ and 2.39.
${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ EXSY $\left(\mathrm{CDCl}_{3}\right)$: EXSY confirms that the two species present in solution interconvert, consistent with our assignment as (M) - and (P)-conformers. Chemical exchange between the following equatorial and axial diastereotopic benzylic protons is evident: $\square 3.74$ and 2.39; $\square 3.22$ and 2.54. Chemical exchange between the accidentally equivalent isopropyl methyls (2) at $\square 1.54$ with the diastereotopic methyls at $\square 1.33$ and 1.29 is seen. Finally, chemical exchange between the equatorial Me at $\square 1.71$ and the axial Me at 0.72 is also evident. See end of experimental section of the Supporting Information for determination of exchange rate.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ was consistent with an approximate $1: 1$ mixture of axial-Me and equatorial-Me conformers (44 resonances found for a possible 2×22 unique carbons): $\square 173.4,172.1,165.3$, $164.9,140.64,140.58,139.77,139.7,138.6,137.0,134.2,133.9,132.3,131.1,130.8,130.43$, 130.40 , 129.9, 129.77, 129.71, 129.47, 129.45, 129.39, 129.2, 128.5, 128.4, 128.2, 127.5, 126.7, $126.2,124.7,124.6,68.5,66.3,53.6,53.3,47.6,37.7,28.5,22.3,22.0,20.8,20.6,17.6$.
HRMS calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}(\mathrm{M}+1) 417.1734$, found $417.1743(+2.2 \mathrm{ppm},+0.9 \mathrm{mmu})$. $[\square]^{24}=+31.4^{\circ}\left(\mathrm{c}=0.15, \mathrm{CHCl}_{3}\right)$. Chiral stationary phase HPLC (Chiralcel AD-H) indicated 97 \%ee. Conversion to the corresponding quaternary amino acid confirmed (R)-stereochemistry (see below).
(3S)-5 from Phe-derived benzodiazepine (3S)-3c
The general procedure was followed with (3S)-3c ($50 \mathrm{mg}, 0.124 \mathrm{mmol}$), HMPA ($130 \mu \mathrm{~L}, 0.745$ mmol), LDA ($99 \mu \mathrm{~L}, 0.149 \mathrm{mmol}, 1.5 \mathrm{M}$ in hexanes), $n-\mathrm{BuLi}(60 \mu \mathrm{~L}, 0.149 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) and methyl iodide ($77 \mu \mathrm{~L}, 1.24 \mathrm{mmol}$). The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2.5 hours. Purification with flash column chromatography on silica gel (1:6 EtOAc:hexanes) provided 32.9 mg (64%) of ($3 S$)-5 as a pale yellow oil.

Chiral stationary phase HPLC (Chiralcel AD-H) indicated 96 \%ee and (3S)-stereochemistry (comparison with ($3 R$)-5 synthesized from (3S)-2c above).
(3R)-6
The general procedure was followed with (3S)-2c $(50.0 \mathrm{mg}, 0.15 \mathrm{mmol})$, HMPA ($160 \square \mathrm{~L}, 0.90$ mmol), LDA ($123 \square \mathrm{~L}, 0.18 \mathrm{mmol}, 1.5 \mathrm{M}$ in hexanes), $n-\mathrm{BuLi}(74 \square \mathrm{~L}, 0.18 \mathrm{mmol})$ and $4-$ methylbenzyl bromide ($284.5 \mathrm{mg}, 1.5 \mathrm{mmol}$). The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 6 h . Purification with flash column chromatography on silica gel (1:8 Hexanes/EtOAc) provided 45.0 $\mathrm{mg}(68 \%)$ of ($3 R$)-6 as a colorless oil,
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ indicated a 53:47 ratio of axial-Me and equatorial-Me conformers: $\square 7.58(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.50-7.06 (unassigned aromatic protons, 8 H), $7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.60-4.53 (two overlapping septets, 1 H), $3.70(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H} \square 0.53 \mathrm{ax}-\mathrm{Me}$), 3.17 (d, J $=13.5 \mathrm{~Hz}, 1 \mathrm{H} \square 0.53 \mathrm{ax}-\mathrm{Me}), 2.49(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H} \square 0.47 \mathrm{eq}-\mathrm{Me}), 2.35$ (s, $3 \mathrm{H} \square 0.53 \mathrm{ax}-\mathrm{Me}$),
2.33 (d, $J=13.7 \mathrm{~Hz}, 1 \mathrm{H} \square 0.47 \mathrm{eq}-\mathrm{Me}), 2.28$ (s, $3 \mathrm{H} \square 0.47 \mathrm{eq}-\mathrm{Me}$), 1.70 (s, $3 \mathrm{H} \square 0.47 \mathrm{eq}-\mathrm{Me}$), $1.56-$ 1.52 (m, 6H x $0.53 \mathrm{ax}-\mathrm{Me}$), 1.327 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H} \times 0.47 \mathrm{eq}-\mathrm{Me}$), 1.289 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H} \times 0.47$ eq-Me), 0.71 (s, 3H $\square 0.52 \mathrm{ax}-\mathrm{Me}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ was consistent with an approximate $1: 1$ mixture of conformers (44 resonances found for a possible 2×23 unique carbons): $\square 173.4,172.3,165.2,164.8,140.7,140.6,139.8$, 139.7, 136.2, 135.7, 135.4, 134.3, 133.9, 133.8, 132.1, 131.0, 130.8, 130.4, 129.9, 129.7, 129.6, $129.5,129.4,129.2,128.9,128.5,128.4,128.3,124.7,124.6,68.6,66.3,53.6,53.2,47.1,37.3$, 28.4, 22.3, 22.0, 21.2, 21.1, 20.7, 20.6, 17.6.

HRMS calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{ClN}_{2} \mathrm{O}(\mathrm{M}+1) 431.1890$, found 431.1892 ($+0.4 \mathrm{ppm},+0.2 \mathrm{mmu}$). $[\square]^{21}=+31.2^{\circ}\left(\mathrm{c}=0.16, \mathrm{CHCl}_{3}\right)$. Chiral stationary phase HPLC (Chiralcel AD-H) indicated 95 \%ee. Stereochemistry assigned as (R) - based on the sign of rotation of the corresponding quaternary amino acid (see below).

(3R)-7

The general procedure was followed with (3S)-2c ($50.0 \mathrm{mg}, 0.15 \mathrm{mmol}$), HMPA ($160 \square \mathrm{~L}, 0.90$ $\mathrm{mmol})$, LDA ($123 \square \mathrm{~L}, 0.18 \mathrm{mmol}$), $n-\operatorname{BuLi}(74 \square \mathrm{~L}, 0.18 \mathrm{mmol})$ and 2-phenylbenzyl bromide (284.5 $\mathrm{mg}, 1.5 \mathrm{mmol}$). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 h . Purification with flash column chromatography on silica gel (1:8 Hexanes/EtOAc) provided $53.0 \mathrm{mg}(70 \%)$ of (3R)-7 as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ indicated a $50: 50$ mixture of axial-Me and equatorial-Me conformers: $\square 8.11$ (dd, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H} \times 0.5$), $7.58-6.99$ (unassigned protons, 16.5 H), 4.56 (septet, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H} \square$ 0.50), 4.49 (septet, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H} \square 0.50$), 3.68 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H} x 0.5 \mathrm{ax}-\mathrm{Me}$), 3.63 (d, $J=13.5$ $\mathrm{Hz}, 1 \mathrm{H} \times 0.5 \mathrm{ax}-\mathrm{Me}$) 2.51 (apparent s, actually collapsed AB pattern of benzylic protons of eq-Me conformer, $2 \mathrm{H} \times 0.5$), $1.54(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H} \square 0.5), 1.46(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H} \square 0.5), 1.40(\mathrm{~s}, 3 \mathrm{H} \square$ 0.5 eq-Me), 1.29 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \square 0.5$), $1.21(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \square 0.5), 0.33(\mathrm{~s}, 3 \mathrm{H} \square 0.50 \mathrm{ax}-$ Me).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ was consistent with a 1:1 mixture of conformers (55 resonances found for a possible 2×28 unique carbons): $\square 172.8,172.1,165.0,164.5,144.1,143.2,142.8,141.7,140.6$, $140.5,139.9,139.5,135.9,134.7,134.0,133.9,133.6,131.0,130.7,130.6,130.4,130.3,130.1$, 129.9 , 129.8, 129.7, 129.5, 129.4, 129.3, 129.2, 129.1, 128.4, 128.21, 128.19, 128.16, 127.2, 126.9, $126.5,126.37,126.30,126.2,124.7,124.6,69.0,67.3,53.5,53.2,42.4,33.6,28.0,22.2,22.0,20.8$, 20.5, 17.2.

HRMS calcd. for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{ClN}_{2} \mathrm{O}(\mathrm{M}+1) 493.2047$, found 493.2051 ($+0.9 \mathrm{ppm},+0.4 \mathrm{mmu}$).
$[\square]^{24}=+163.7^{\circ}\left(\mathrm{c}=0.14, \mathrm{CHCl}_{3}\right)$. Chiral stationary phase HPLC (AD-H) indicated 99% ee. The stereochemistry is assumed to be (R) based on other retentive alkylations.

(3R)-8

The general procedure was followed with (3S)-2c (145.8 mg, 0.45 mmol), HMPA (481 $\square 1,2.69$ mmol), LDA ($370 \square \mathrm{~L}, 0.54 \mathrm{mmol}, 1.5 \mathrm{M}$ in hexanes), $n-\mathrm{BuLi}(221 \square \mathrm{~L}, 0.54 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) and allyl bromide ($350 \square \mathrm{~L}, 4.5 \mathrm{mmol}$). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 4 h . Purification with flash column chromatography on silica gel (1:10 Hexanes/EtOAc) provided 124.7 $\mathrm{mg}(76 \%)$ of ($3 R$)-8 as a colorless oil,
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ indicated a $50: 50$ mixture of axial-Me and equatorial-Me conformers: $\square 7.62-$ $7.55(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.31$ (dd, $J=8.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (dd, $J=7.6 \mathrm{~Hz}, 2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.29-6.20 (m, 1H $\square 0.5$), 5.61-5.52 (m, 1H $\square 0.5$), 5.22 (apparent d, $J=16.3 \mathrm{~Hz}, 1 \mathrm{H} \square 0.5$), 5.17 (apparent d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{Hx} 0.5$), 4.94 (apparent d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H} \square 0.5$), 4.63 (apparent d, $J=$
$16.3 \mathrm{~Hz}, 1 \mathrm{H} \square 0.5$), 4.56-4.45 (two overlapping septets, 1 H), 3.101 (dd, $J=13.9,5.7 \mathrm{~Hz}, 1 \mathrm{H} \square 0.5$ ax-Me), 2.737 (dd, $J=13.9,8.3 \mathrm{~Hz}, 1 \mathrm{H} \square 0.5 \mathrm{ax}-\mathrm{Me}), 1.93-1.83$ (m, 2H x 0.5), 1.83 ($\mathrm{s}, 3 \mathrm{H} \square 0.5 \mathrm{eq}-$ Me), $1.510(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 3 \mathrm{H} x 0.5), 1.497(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 3 \mathrm{H} x 0.5), 1.287(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} x 0.5)$, $1.267(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} x 0.5), 0.78$ ($\mathrm{s}, 3 \mathrm{H} \square 0.5 \mathrm{ax}-\mathrm{Me}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ was consistent with a $50: 50$ mixture of conformers (40 resonances found from 2 x 20 unique carbons): $\square 173.1,172.3,165.2,165.0,140.6,140.3,139.6,139.5,135.8,134.1,133.9$, $134.1,133.9,132.9,130.9,130.8,130.5,130.4,129.8,129.7,129.4,129.34,129.30,128.5,124.8$, $124.7,118.3,118.0,67.5,65.8,53.4,53.1,47.3,37.2,28.6,22.2,22.1,20.7,20.6,18.0$.
HRMS calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}(\mathrm{M}+1)$ 367.1577, found 367.1577.
$[\square]]^{24}=+50.0\left(\mathrm{c}=0.33, \mathrm{CHCl}_{3}\right)$. Chiral stationary phase HPLC (Chiralcel OD) indicated 94 \%ee.
The stereochemistry is assumed to be (R) based on other retentive alkylations.
(3S)-10 from (3S)-3c
The general procedure was followed with (3S)-3c ($20 \mathrm{mg}, 0.0496 \mathrm{mmol}$), HMPA ($52 \mu \mathrm{~L}, 0.298$ mmol), LDA ($40 \mu \mathrm{~L}, 0.0595 \mathrm{mmol}, 1.5 \mathrm{M}$ in hexanes), $\mathrm{n}-\mathrm{BuLi}(24 \mu \mathrm{~L}, 0.0595 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) and allyl bromide ($43 \mu \mathrm{~L}, 0.496 \mathrm{mmol}$). The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 minutes. Purification with flash column chromatography on silica gel (1 EtOAc 8 Hex) provided $12.1 \mathrm{mg}(57 \%)$ of ($3 S$)-5 as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ indicated a 60:40 mixture of conformers: $\square 7.6-6.96$ (several multiplets, 13 H), 6.41-6.32 (m, $1 \mathrm{H} \times 0.4$), $5.71-5.62(\mathrm{~m}, 1 \mathrm{H} \times 0.6), 5.27$ (apparent d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H} \times 0.4), 5.23$ (apparent d, $J=16.3 \mathrm{~Hz}, 1 \mathrm{H} \times 0.4), 5.01(\mathrm{dd}, J=10.0,1.6 \mathrm{~Hz}, 1 \mathrm{H} \times 0.6), 4.65(\mathrm{dd}, J=16.8,1.6 \mathrm{~Hz}$, $1 \mathrm{H} x 0.6$), 4.56 (two overlapped septets, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (d, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H} \times 0.6$), 3.39 (d, J $=14.6 \mathrm{~Hz}, 1 \mathrm{H} x 0.6$), 3.03 (complex d, $J=14.7 \mathrm{~Hz}, 1 \mathrm{Hx} 0.4$), 2.69 (dd, $J=14.7,8.7 \mathrm{~Hz}, 1 \mathrm{H} x 0.4$), 2.46 (d, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H} x 0.4), 2.42(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{Hx} 0.4), 1.88(\mathrm{dd}, J=15.0,6.8 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{x}$ 0.6), 1.59-1.54 (m, $1 \mathrm{H} \times 0.6$), 1.52 (two overlapped doublets, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H} \times 0.4$), 1.30 (d, $J=7.0$ $\mathrm{Hz}, 3 \mathrm{H} \times 0.6$), 1.285 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H} \times 0.6$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ was consistent with a near 1:1 mixture of conformers (48 resonances found for 2 x 24 unique carbons): $\square 171.9,171.6,165.0,164.7,140.4,140.0,139.8,139.6,138.5,136.6,135.9$, $134.1,133.6,132.9,132.3,130.9,130.50,130.48,130.4,129.8,129.7,129.6,129.5,129.4,129.3$, $129.2,128.43,128.36,128.2,127.5,126.6,126.3,124.74,124.70,118.4,118.2,70.4,70.0,53.4$, 53.3, 43.2, 42.6, 34.5, 32.5, 22.1, 21.9, 20.5, 20.4 .

HRMS: calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OCl} 443.1890$, found 443.1898 ($+1.7 \mathrm{ppm},+0.8 \mathrm{mmu}$). $[\square]^{21}{ }_{\mathrm{D}}=+72.1^{\circ}\left(\mathrm{c}=0.315, \mathrm{CHCl}_{3}\right)$. Chiral stationary phase HPLC (Chiralcel AD-H) indicated 86 \%ee. The stereochemistry is assumed to be (S) on the basis of other retentive alkylations.
(3S)-9: deuteration of enolate derived from (3S)-2c
A solution of ($3 S$) $\mathbf{- 2 c}(16.6 \mathrm{mg}, 0.05 \mathrm{mmol})$ and HMPA ($53 \square 1,0.3 \mathrm{mmol}$) in anhydrous THF (1.0 mL) was cooled to $-78^{\circ} \mathrm{C}$ under nitrogen in a dry ice-acetone bath and LDA ($41.0 \square 1,0.06 \mathrm{mmol}$, 1.5 M in hexanes) was added dropwise via syringe at $-78^{\circ} \mathrm{C}$. After the mixture was stirred for 30 $\mathrm{min}, n-\mathrm{BuLi}(25 \square \mathrm{l}, 0.06 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) was added and then the reaction mixture was stirred for 20 min . The enolate was quenched at $-78^{\circ} \mathrm{C}$ with a mixture of deuteriotrifluoroacetic acid and deuterium oxide ($4 \mu \mathrm{~L}$ of D-OTFA in $200.0 \mu \mathrm{~L}$ of $\mathrm{D}_{2} \mathrm{O}$). Workup and purification with flash column chromatography on silica gel (1:5 Hexanes/EtOAc) provided $14.2 \mathrm{mg}(85 \%)$ of (3S)-9 as a pale yellow oil ($96 \% \mathrm{D}$ by ${ }^{1} \mathrm{H}$ NMR).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \square 7.62-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 4.56$ (septet, $J=6.8$ $\mathrm{Hz}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=7.1 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \square 170.8,166.7,140.4,138.1,133.0,130.64,130.59,130.3,129.4,129.3,128.6$, $125.3,59.7\left(\mathrm{t},{ }^{1} J_{\mathrm{CD}}=19.6 \mathrm{~Hz}\right), 20.7,17.1$.
FABMS $m / z 328.1(\mathrm{M}+1)$,
$[\square]^{24}{ }_{\mathrm{D}}=+219.2^{\circ}\left(\mathrm{c}=0.37, \mathrm{CHCl}_{3}\right)$. Chiral stationary phase HPLC (Chiralcel AD) indicated 99% ee and (3S)-stereochemistry

General procedure for hydrolysis of $N-i-\mathrm{Pr}-1,4$-benzodiazepine2-ones to the corresponding quaternary amino acids.

The benzodiazepine to be hydrolyzed (0.1 mmol) was combined with hydrochloric acid (9.0M, 2.0 mL) in a pressure tube (Teflon screw cap) and heated at $140{ }^{\circ} \mathrm{C}$ (bath temperature) for 3 days. Water (2.0 mL) was added and then the mixture was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$). The water layer was separated, concentrated in vacuo and the residue was dissolved in $\mathrm{EtOH}(2.0 \mathrm{~mL})$.
Propylene oxide $(0.3 \mathrm{~mL})$ was added, and the resulting solution was heated at reflux for 30 minutes. Upon cooling the precipitated solid was collected and washed with ethyl acetate and acetone, affording the corresponding free amino acid.

(R)-]-methylphenylalanine 11

$41.6 \mathrm{mg}(0.1 \mathrm{mmol})$ of $(3 R)-5$ was treated as above to afford 9.0 mg of (R) - \square-methylphenylalanine 11 (50\%).
${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO) $\square 7.60-7.15(\mathrm{br} \mathrm{m}, 7 \mathrm{H}), 2.79(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.23(\mathrm{~s}, 3 \mathrm{H})$. This spectrum was identical in every aspect to commercial \square-methylphenylalanine. $[\square]]_{\mathrm{D}}^{26}=+25.6\left(\mathrm{c}=1.25, \mathrm{H}_{2} \mathrm{O}\right)$. Acros (S) - \square-methylphenylalanine (item\# 27543-2500) is
levorotatory: $[\square]^{25}{ }_{\mathrm{D}}=-24.8^{\circ},\left(\mathrm{c}=1.25, \mathrm{H}_{2} \mathrm{O}\right)$. We thus assign (R)-stereochemistry to our synthesized amino acid.

(R)-D-methyl-(4-methylphenyl)alanine 12

$33.1 \mathrm{mg}(0.77 \mathrm{mmol})$ of $(3 R)-6$ was treated as above to afford 9.2 mg of \square-methyl-(4methylphenyl)alanine 12 (62\%).
${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO) $\square 7.50-6.80(\mathrm{br} \mathrm{m}, 6 \mathrm{H}), 2.96(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.26 (s, 3H), 1.22 (s, 3H).

HRMS: calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$ 194.1181, found 194.1185 ($+2.0 \mathrm{ppm},+0.4 \mathrm{mmu}$).
$[\square]{ }^{19}{ }_{\mathrm{D}}=+16.6^{\circ}\left(\mathrm{c}=0.10, \mathrm{H}_{2} \mathrm{O}\right)$.
The optical rotations of the enantiomers of this compound are not known in the literature-we assigned the (R)-configuration based on the positive sign of the optical rotation, and the structural similarity with \square-methylphenylalanine 11.

Dynamic NMR Studies of 1b,1c, and 5

NMR probe temperatures were determined by calibration with ethylene glycol. The barriers to inversion of $\mathbf{1 b}$ and $\mathbf{1 c}$ were determined by achieving coalescence in d_{6}-DMSO on a 400 MHz spectrometer. $\mathbf{1 b}: T_{\mathrm{c}}($ methylene protons $)=117^{\circ} \mathrm{C}, \Delta \square=316.4 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, \Delta \mathrm{G}^{\ddagger}=18.0$ $\mathrm{kcal} / \mathrm{mol}$ (lit. ${ }^{5} 17.6 \mathrm{kcal} / \mathrm{mol}$ in d_{5}-pyridine). 1c: $T_{\mathrm{c}}\left(i-\operatorname{Pr}\right.$ methyl protons) $=159{ }^{\circ} \mathrm{C}, \Delta \square=89.4 \mathrm{~Hz}$, $\Delta \mathrm{G}^{\ddagger}=21.1 \mathrm{kcal} / \mathrm{mol}$. The barrier to inversion in 5 in CDCl 3 at $24^{\circ} \mathrm{C}$ was determined by EXSY ${ }^{6}$ $(400 \mathrm{MHz})$, using a mixing time of 1 sec and a relaxation delay of 2 sec . Since the M and P conformers exist in a nearly 1:1 ratio, we made the simplifying assumption that the $\mathrm{M}->\mathrm{P}$ and $\mathrm{P}->\mathrm{M}$ exchange rates are equal.

B. Tabulation of HPLC Conditions and Retention Times

Reported retention times are determined from racemic and enantiomerically enriched/pure samples. The HPLC columns are not thermostatted and as a consequence retention times are subject to day to day variability (cf. cpds $\mathbf{2 c}, \mathbf{9} ; \mathbf{9}$ is the deuterated analogue of $\mathbf{2 c}$).

compound	column	solvent, flow rate	fast enantiomer (config) retention time	slow enantiomer (config) retention time
$\mathbf{2 a}$	AD	10% isopropanol-hexane $1 \mathrm{~mL} / \mathrm{min}$	$11.0 \mathrm{~min}(3 R)$	$13.9 \mathrm{~min}(3 S)$
3a	OD	3% isopropanol-hexane $1 \mathrm{~mL} / \mathrm{min}$	$27.4 \mathrm{~min}(3 R)$	$30.9 \mathrm{~min}(3 S)$

C. Computational Details, Absolute Energies, and Cartesian Coordinates for Calculated Structures

B3LYP/6-31G* equilibrium geometries and ring inversion transition structures of the enolates, and single point electronic energies (\square_{0}) at the B3LYP/6-31+G*//B3LYP/6-31G* level were obtained using Gaussian 98 (v.A.11). Vibrational frequency analysis was used to identify stationary points as minima (no imaginary frequencies) or transition states (1 imaginary frequency). Displacement vectors associated with the sole imaginary frequencies confirmed that the located transition structures were associated with the ring inversion process. The standard Gaussian 98 statistical mechanics calculations were used to determine the enthalpic corrections ($\mathrm{H}_{\text {corr }}$) and total entropy ($\mathrm{S}_{\text {tot }}$) from the B3LYP/6-31G* vibrational frequencies and temperature (195 K). The free energy correction $\left(\mathrm{G}_{\text {corr }}\right)$ was obtained from $\mathrm{G}_{\text {corr }}=\mathrm{H}_{\text {corr }}-\mathrm{TS}_{\text {tot }}$; relative free energies $\Delta \mathrm{G}_{195}$ were obtained by comparing values of ($\mathrm{D}+\mathrm{G}_{\text {corr }}$)

	R_{2}	structure	Q_{0} (hartrees)	$\mathrm{H}_{\text {corr }}(195 \mathrm{~K})$ $(\mathrm{kcal} / \mathrm{mol})$	$\mathrm{S}_{\text {tot }}(195 \mathrm{~K})$ $(\mathrm{cal} / \mathrm{molK})$	$\mathrm{G}_{\text {corr }}(195 \mathrm{~K})$ $(\mathrm{kcal} / \mathrm{mol})$	$\Delta \mathrm{G}_{195}$ $(\mathrm{kcal} / \mathrm{mol})$
13 b	Me	equil. geometry ring inv.	-841.643735	176.99	106.25	156.3	0
13 c	i -Pr	-841.624731	176.63	101.80	156.8	12.4	
transition structure	equil. geometry ring inv. transition	-920.270594	212.51	114.84	190.1	0	
structure							

Coordinates for 13b (B3LYP/6-31G* equilibrium geometry)
HEADER

| REMARK | 13b | B3LYP/6-31G* | equilibrium geometry | | | |
| :--- | ---: | :--- | :--- | :--- | ---: | ---: | ---: |
| HETATM | 1 | C | 1 | 0.000 | 0.000 | 0.000 |
| HETATM | 2 | C | 1 | 0.000 | 0.000 | 1.417 |
| HETATM | 3 | C | 1 | 1.212 | 0.000 | -0.707 |
| HETATM | 4 | N | 1 | -1.249 | -0.074 | -0.695 |
| HETATM | 5 | C | 1 | 2.440 | -0.045 | -0.045 |
| HETATM | 6 | C | 1 | 1.260 | -0.015 | 2.058 |
| HETATM | 7 | H | 1 | 1.191 | 0.006 | -1.792 |
| HETATM | 8 | C | 1 | -1.246 | -0.724 | -1.997 |
| HETATM | 9 | C | 1 | -1.243 | 0.175 | 2.192 |
| HETATM | 10 | C | 1 | -2.084 | 1.095 | -0.638 |
| HETATM | 11 | C | 1 | 2.458 | -0.052 | 1.351 |
| HETATM | 12 | H | 1 | 3.365 | -0.075 | -0.616 |
| HETATM | 13 | H | 1 | 1.284 | 0.008 | 3.143 |
| HETATM | 14 | H | 1 | -0.799 | -0.119 | -2.801 |
| HETATM | 15 | N | 1 | -2.194 | 1.039 | 1.838 |
| HETATM | 16 | C | 1 | -1.389 | -0.417 | 3.532 |
| HETATM | 17 | C | 1 | -2.439 | 1.611 | 0.665 |
| HETATM | 18 | O | 1 | -2.587 | 1.519 | -1.693 |
| HETATM | 19 | H | 1 | -2.279 | -0.925 | -2.289 |
| HETATM | 20 | H | 1 | -0.698 | -1.668 | -1.913 |
| HETATM | 21 | H | 1 | 3.404 | -0.074 | 1.890 |

HETATM	22	C		1	-2.313	0.117	4.467
HETATM	23	C		1	-0.690	-1.579	3.940
HETATM	24	C		1	-3.447	2.743	0.648
HETATM	25	C		1	-0.878	-2.146	5.200
HETATM	26	C		1	-2.495	-0.449	5.722
HETATM	27	H		1	-2.882	0.989	4.163
HETATM	28	H		1	-0.001	-2.052	3.247
HETATM	29	H		1	-3.027	3.661	0.211
HETATM	30	H		1	-3.756	2.959	1.676
HETATM	31	H		1	-4.337	2.503	0.048
HETATM	32	C		1	-1.777	-1.588	6.112
HETATM	33	H		1	-0.320	-3.043	5.466
HETATM	34	H		1	-3.207	0.004	6.411
HETATM	35	H		1	-1.924	-2.032	7.094
CONECT	1	2	3	4			
CONECT	2	1	6	9			
CONECT	3	1	5	7			
CONECT	4	1	8	10			
CONECT	5	3	11	12			
CONECT	6	2	11	13			
CONECT	7	3					
CONECT	8	4	14	19	20		
CONECT	9	2	15	16			
CONECT	10	4	17	18			
CONECT	11	5	6	21			
CONECT	12	5					
CONECT	13	6					
CONECT	14	8					
CONECT	15	9	17				
CONECT	16	9	22	23			
CONECT	17	10	15	24			
CONECT	18	10					
CONECT	19	8					
CONECT	20	8					
CONECT	21	11					
CONECT	22	16	26	27			
CONECT	23	16	25	28			
CONECT	24	17	29	30	31		
CONECT	25	23	32	33			
CONECT	26	22	32	34			
CONECT	27	22					
CONECT	28	23					
CONECT	29	24					
CONECT	30	24					
CONECT	31	24					
CONECT	32	25	26	35			
CONECT	33	25					
CONECT	34	26					
CONECT	35	32					
END							

Coordinates for 13b (B3LYP/6-31G* ring inversion transition structure) HEADER
REMARK 13b B3LYP/6-31G*

| REMARK | ring | inversion | transition | structure | | |
| :--- | ---: | :---: | :---: | :---: | ---: | ---: | ---: |
| HETATM | 1 | C | 1 | 0.000 | 0.000 | 0.000 |
| HETATM | 2 | C | 1 | 0.000 | 0.000 | 1.442 |
| HETATM | 3 | C | 1 | 1.249 | 0.000 | -0.650 |

HETATM	4	N		1	-1.148	-0.071	-0.845
HETATM	5	C		1	2.470	-0.179	0.014
HETATM	6	C		1	1.238	-0.296	2.056
HETATM	7	H		1	1.286	0.127	-1.723
HETATM	8	C		1	-1.162	0.267	2.310
HETATM	9	C		1	-0.907	-0.434	-2.238
HETATM	10	C		1	-2.534	0.166	-0.553
HETATM	11	C		1	2.456	-0.386	1.383
HETATM	12	H		1	3.396	-0.186	-0.558
HETATM	13	H		1	1.236	-0.444	3.129
HETATM	14	N		1	-2.431	0.339	1.945
HETATM	15	H		1	-1.866	-0.681	-2.685
HETATM	16	C		1	-0.984	0.568	3.759
HETATM	17	C		1	-3.059	0.315	0.784
HETATM	18	\bigcirc		1	-3.313	0.205	-1.523
HETATM	19	H		1	-0.466	0.388	-2.824
HETATM	20	H		1	-0.225	-1.291	-2.288
HETATM	21	H		1	3.368	-0.602	1.936
HETATM	22	C		1	-1.967	0.142	4.684
HETATM	23	C		1	0.064	1.359	4.288
HETATM	24	C		1	-4.565	0.508	0.832
HETATM	25	C		1	0.130	1.684	5.642
HETATM	26	C		1	-1.898	0.462	6.035
HETATM	27	H		1	-2.799	-0.439	4.300
HETATM	28	H		1	0.826	1.746	3.618
HETATM	29	H		1	-5.114	-0.341	0.399
HETATM	30	H		1	-4.894	1.394	0.269
HETATM	31	H		1	-4.864	0.625	1.878
HETATM	32	C		1	-0.844	1.235	6.536
HETATM	33	H		1	0.949	2.309	5.998
HETATM	34	H		1	-2.674	0.101	6.709
HETATM	35	H		1	-0.787	1.483	7.594
CONECT	1	2	3	4			
CONECT	2	1	6	8			
CONECT	3	1	5	7			
CONECT	4	1	9	10			
CONECT	5	3	11	12			
CONECT	6	2	11	13			
CONECT	7	3					
CONECT	8	2	14	16			
CONECT	9	4	15	19	20		
CONECT	10	4	17	18			
CONECT	11	5	6	21			
CONECT	12	5					
CONECT	13	6					
CONECT	14	8	17				
CONECT	15	9					
CONECT	16	8	22	23			
CONECT	17	10	14	24			
CONECT	18	10					
CONECT	19	9					
CONECT	20	9					
CONECT	21	11					
CONECT	22	16	26	27			
CONECT	23	16	25	28			
CONECT	24	17	29	30	31		
CONECT	25	23	32	33			
CONECT	26	22	32	34			

CONECT	27	22		
CONECT	28	23		
CONECT	29	24		
CONECT	30	24		
CONECT	31	24		
CONECT	32	25	26	35
CONECT	33	25		
CONECT	34	26		
CONECT	35	32		
END				

Coordinates for 13c (B3LYP/6-31G* equilibrium geometry)
HEADER

REMARK	13C	B3LYP/6-31G*	equilibrium geometry			
HETATM	1	C	1	0.000	0.000	0.000
HETATM	2	C	1	0.000	0.000	1.414
HETATM	3	C	1	1.210	0.000	-0.712
HETATM	4	N	1	-1.273	-0.022	-0.664
HETATM	5	C	1	2.431	-0.106	-0.050
HETATM	6	C	1	1.255	-0.097	2.061
HETATM	7	H	1	1.182	0.045	-1.798
HETATM	8	C	1	-1.431	-0.837	-1.880
HETATM	9	C	1	-1.233	0.314	2.154
HETATM	10	C	1	-1.824	1.314	-0.705
HETATM	11	C	1	2.447	-0.166	1.349
HETATM	12	H	1	3.359	-0.142	-0.617
HETATM	13	H	1	1.281	-0.092	3.147
HETATM	14	H	1	-0.922	-0.369	-2.742
HETATM	15	N	1	-2.056	1.290	1.766
HETATM	16	C	1	-1.479	-0.242	3.495
HETATM	17	C	1	-2.162	1.883	0.580
HETATM	18	O	1	-2.104	1.854	-1.790
HETATM	19	C	1	-2.922	-0.953	-2.235
HETATM	20	C	1	-0.863	-2.247	-1.664
HETATM	21	H	1	3.392	-0.242	1.884
HETATM	22	C	1	-2.372	0.390	4.395
HETATM	23	C	1	-0.901	-1.458	3.932
HETATM	24	H	1	-3.471	-1.408	-1.401
HETATM	25	H	1	-3.046	-1.591	-3.120
HETATM	26	H	1	-3.345	0.029	-2.446
HETATM	27	H	1	-1.356	-2.722	-0.807
HETATM	28	H	1	0.213	-2.249	-1.474
HETATM	29	H	C	1	-1.053	-2.860
HETATM	30	C	-2.554			
HETATM	31	C	1	-2.938	3.183	0.527
HETATM	32	C	1	-1.171	-1.986	5.194
HETATM	33	H	1	-2.637	-0.139	5.652
HETATM	34	H	1	-2.846	1.308	4.065
HETATM	35	H	1	-0.244	-2.001	3.260
HETATM	36	H	1	-2.305	4.026	0.209
HETATM	37	H	1	-3.330	3.406	1.524
HETATM	38	C	1	-3.769	3.141	-0.191
HETATM	39	H	1	-2.038	-1.334	6.073
HETATM	40	H	-0.706	-2.927	5.487	
HETATM	41	H	1	-3.322	0.386	6.317
	-2.251	-1.748	7.056			
	1					

CONECT	4	1	8	10	
CONECT	5	3	11	12	
CONECT	6	2	11	13	
CONECT	7	3			
CONECT	8	4	14	19	20
CONECT	9	2	15	16	
CONECT	10	4	17	18	
CONECT	11	5	6	21	
CONECT	12	5			
CONECT	13	6			
CONECT	14	8			
CONECT	15	9	17		
CONECT	16	9	22	23	
CONECT	17	10	15	30	
CONECT	18	10			26
CONECT	19	8	24	25	26
CONECT	20	8	27	28	29
CONECT	21	11			
CONECT	22	16	32	33	
CONECT	23	16	31	34	
CONECT	24	19			
CONECT	25	19			
CONECT	26	19			
CONECT	27	20			
CONECT	28	20			
CONECT	29	20		37	
CONECT	30	17	35	36	37
CONECT	31	23	38	39	
CONECT	32	22	38	40	
CONECT	33	22			
CONECT	34	23			
CONECT	35	30			
CONECT	36	30			
CONECT	37	30		41	
CONECT	38	31	32	41	
CONECT	39	31			
CONECT	40	32			
CONECT	41	38			
END					
COND					

Coordinates for 13c (B3LYP/6-31G* ring inversion transition structure) HEADER
REMARK 13c B3LYP/6-31G*

REMARK	ring	inversion	transition	structure			
HETATM	1	C	1	0.000	0.000	0.000	
HETATM	2	C	1	0.000	0.000	2.860	
HETATM	3	C	1	1.254	0.000	0.713	
HETATM	4	C	1	-1.154	-0.229	0.774	
HETATM	5	C	1	-1.178	-0.236	2.172	
HETATM	6	C	1	1.175	0.107	2.120	
HETATM	7	H	1	-2.095	-0.388	0.275	
HETATM	8	H	1	-2.122	-0.400	2.689	
HETATM	9	H	1	2.108	0.248	2.654	
HETATM	10	H	1	0.026	0.074	3.945	
HETATM	11	N	1	-0.192	0.233	-1.400	
HETATM	12	C	1	2.608	-0.105	0.128	
HETATM	13	N	1	2.947	0.150	-1.119	
HETATM	14	C	1	-1.558	0.510	-1.924	

HETATM	15	H		1		-1.339	0.859	-2.931
HETATM	16	C		1		3.758	-0.569	0.949
HETATM	17	C		1		6.068	-1.518	2.345
HETATM	18	C		1		5.059	-0.083	0.669
HETATM	19	C		1		3.672	-1.564	1.952
HETATM	20	C		1		4.799	-2.027	2.630
HETATM	21	C		1		6.181	-0.541	1.349
HETATM	22	H		1		5.158	0.659	-0.117
HETATM	23	H		1		2.704	-1.995	2.189
HETATM	24	H		1		4.681	-2.804	3.385
HETATM	25	H		1		7.159	-0.126	1.104
HETATM	26	C		1		0.818	0.412	-2.427
HETATM	27	C		1		2.244	0.410	-2.209
HETATM	28	0		1		0.408	0.579	-3.593
HETATM	29	C		1		-2.419	-0.747	-2.160
HETATM	30	H		1		-2.745	-1.271	-1.257
HETATM	31	H		1		-1.849	-1.455	-2.771
HETATM	32	H		1		-3.321	-0.467	-2.722
HETATM	33	C		1		-2.291	1.688	-1.253
HETATM	34	H		1		-2.680	1.493	-0.251
HETATM	35	H		1		-3.138	1.977	-1.890
HETATM	36	H		1		-1.616	2.549	-1.184
HETATM	37	H		1		6.946	-1.875	2.880
HETATM	38	C		1		3.052	0.635	-3.476
HETATM	39	H		1		2.836	1.605	-3.947
HETATM	40	H		1		2.851	-0.123	-4.248
HETATM	41	H		1		4.115	0.598	-3.217
CONECT	1	3	4	11				
CONECT	2	5	6	10				
CONECT	3	1	6	12				
CONECT	4	1	5	7				
CONECT	5	2	4	8				
CONECT	6	2	3	9				
CONECT	7	4						
CONECT	8	5						
CONECT	9	6						
CONECT	10	2						
CONECT	11	1	14	26				
CONECT	12	3	13	16				
CONECT	13	12	27					
CONECT	14	11	15	29	33			
CONECT	15	14						
CONECT	16	12	18	19				
CONECT	17	20	21	37				
CONECT	18	16	21	22				
CONECT	19	16	20	23				
CONECT	20	17	19	24				
CONECT	21	17	18	25				
CONECT	22	18						
CONECT	23	19						
CONECT	24	20						
CONECT	25	21						
CONECT	26	11	27	28				
CONECT	27	13	26	38				
CONECT	28	26						
CONECT	29	14	30	31	32			
CONECT	30	29						
CONECT	31	29						

```
CONECT 32 29
CONECT }\begin{array}{llllll}{33}&{14}&{34}&{35}&{36}
CONECT 34 33
CONECT 35 33
CONECT 36 33
CONECT 37 17
CONECT }38\quad27 39 40 41 
CONECT 39 38
CONECT 40 38
CONECT 41 38
END
```

[1] Sternbach, L. H.; Fryer, R. I.; Metlesics, W.; Reeder, E.; Sach, G.; Saucy, G.; Stempel, A. J. Org. Chem. 1962, 27, 3788-3796.
[2] Hart, B. R.; Rush, D. J.; Shea, K. J. J. Am. Chem. Soc. 2000, 122, 460-465.
[3] Beard, C. D.; Baum, K.; Grakauskas, V. J. Org. Chem. 1973, 38, 3673-3677.
[4] Sunjic, V.; Kajfez, F.; Stromar, I.; Blazevic, N.; Kolbah, D. J. Heterocyclic Chem. 1973, 10, 591-599.
[5] Linscheid, P.; Lehn, J.-M. Bull. Chim. Soc. Fr. 1967, 992-997.
[6] Perrin, C. L.; Dwyer, T. J. Chem. Rev. 1990, 90, 935-967.

Project Name: HONGWU
Reported by User: JOE

	S A MPLE		IN F OR M A T I O N
Sample Name:	HWZ-HPP137	Acquired By:	HongWu
Sample Type:	Unknown	Date Acquired:	3/5/03 1:14:04 PM
Vial:	1	Acq. Method:	10\%B lsopropanol
Injection \#:	1	Date Processed:	$3 / 5 / 03$ 1:44:16 PM
Injection Volume:	10.00 ul	Channel Name:	2487Channel 1
Run Time:	25.00 Mnutes	Sample Set Name:	Hongw u

	RT (min)	Area $\left(\mu \mathrm{V}^{\star} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	11.004	1399071	50.06	84693	55.67
2	13.935	1395552	49.94	67429	44.33

Project Name:
HONGWU
Reported by User: JOE

SAMPLE INFORMATION			
Sample Name:	HWZ-IIT-P15	Acquired By:	HongWu
Sample Type:	Unknown	Date Acquired:	3/5/03 2:04:42 PM
Vial:	1	Acq. Method:	10\%B Isopropanol
Injection \#:	1	Date Processed:	3/5/03 2:30:59 PM
Injection Volume:	10.00 ul	Channel Name:	2487Channel 1
Run Time:	25.00 Mnutes	Sample Set Name:	Hongwu

	RT (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	\% Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	13.917	7930531	100.00	387021	100.00

Project Name: HONGWU
Reported by User: JOE

	S A M PLE		IN F OR M A T IO N
Sample Name:	HWZ-IHP143	Acquired By:	HongWu
Sample Type:	Unknown	Date Acquired:	3/13/03 12:04:49 PM
Vial:	1	Acq. Method:	5\%B Isopropanol
Injection \#:	1	Date Processed:	3/13/03 2:00:01 PM
hnjection Volume:	10.00 ul	Channel Name:	2487Channel 1
Run Time:	30.00 Mnutes	Sample Set Name:	Hongwu

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	$\%$ Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	14.663	8608993	50.02	432337	52.28
2	16.547	8603447	49.98	394697	47.72

Project Name: HONGWU
Reported by User: JOE

SAMPLE INFORMATION

Sample Name:	HWZ-III-P121	Acquired By:	HongWu
Sample Type:	Unknown	Date Acquired:	$3 / 13 / 03$ 1:00:03 PM
Vial:	1	Acq. Method:	5% B sopropanol
Injection \#:	1	Date Processed:	$3 / 13 / 03$ 1:58:04 PM
Injection Volume:	10.00 ul	Channel Name:	2487 Channel 1
Run Time:	30.00 Mnutes	Sample Set Name:	Hongwu

	RT (min)	Area $(\mu \mathrm{V}$ *ec $)$	\% Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	16.507	7107896	100.00	325693	100.00

Project Name: HONGWU
Reported by User: JOE

	S A M P LE		IN F O R M A T I O N
Sample Name:	HWZ-IIP161	Acquired By:	HongWu
Sample Type:	Unknown	Date Acquired:	$2 / 26 / 03$ 12:23:29 PM
Vial:	1	Acq. Method:	1% B
Injection \#:	1	Date Processed:	$2 / 26 / 03$ 12:48:43 PM
Injection Volume:	10.00 ul	Channel Name:	2487Channel 1
Run Time:	25.00 Mnutes	Sample Set Name:	Hongwu

	$R T$ $(\mathrm{~min})$	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	16.444	6947419	49.90	289950	52.36
2	18.207	6975494	50.10	263840	47.64

Project Name: HONGWU
Reported by User: JOE

	S A MPLE		IN F OR M A T I O N
Sample Name:	HWZ-II-P109	Acquired By:	HongWu
Sample Type:	Unknown	Date Acquired:	$2 / 26 / 03$ 11:32:02 AM
Vial:	1	Acq. Method:	$1 \% B$
Injection \#:	1	Date Processed:	$2 / 26 / 03$ 11:57:16 AM
Injection Volume:	10.00 ul	Channel Name:	2487Channel 1
Run Time:	25.00 Mnutes	Sample Set Name:	Hongw u

	RT (min)	Area $\left(\mu \mathrm{N}^{*} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	18.346	1849662	100.00	68272	100.00

SAMPLE INFORMATION

Sample Name:	JCD-H73	Acquired By:	JOE
Sample Type:	Unknown	Date Acquired:	$2 / 7 / 03$ 4:21:48 PM
Vial:	1	Acq. Method:	3% B
Injection \#:	1	Date Processed:	$2 / / 03$ 5:44:12 PM
Injection Volume:	10.00 ul	Channel Name:	2487Channel 1
Run Time:	40.00 Mnutes	Sample Set Name:	JOE

	RT (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	$\%$ Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	27.205	9158208	49.86	193589	53.77
2	31.198	9209905	50.14	166470	46.23

Project Name: Joe_Chiral
Reported by User: JOE

SAMPLE INFORMATION

Sample Name:	JCD-III-120(6-10)	Acquired By:	JOE
Sample Type:	Unknown	Date Acquired:	$2 / 7 / 035: 02: 03$ PM
Vial:	$\mathbf{1}$	Acq. Method:	3% B
Injection \#:	$\mathbf{1}$	Date Pocessed:	$2 / 7 / 035: 42: 20$ PM
Injection Volume:	10.00 ul	Channel Name:	2487 Channel 1
Run Time:	40.00 Minutes	Sample Set Name:	JOE

	RT (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	31.374	5110168	100.00	89533	100.00

 Pulse Sequence: s2pul
Solvent: Archive directory: /export/home/robot/unmrsys/data
Sample directory: jed-iii-17-5_loc1_2003-05-08

$$
\begin{aligned}
& \text { File: CARBON-01 } \\
& \text { INOVA-400 "inova400" }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Relax. delay } 1.000 \text { sec } \\
& \text { Pulse } 45.0 \text { degrees }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Acq. time } 1.199 \text { sec } \\
& \text { Width } 2514144 \mathrm{~Hz} \\
& 10000 \text { repetitions }
\end{aligned}
$$

$$
\begin{aligned}
& \text { OBSERVE C13, } 100.5654514 \mathrm{MHz} \\
& \text { OECOUPLE H1, } 399.9438386 \mathrm{MHz} \\
& \text { Power 45 dB } \\
& \text { Continuously on } \\
& \text { WA1TV-16 monulated }
\end{aligned}
$$

pad=2.5 run with findzo before acquisition

\qquad

SAMPLE INFORMATION

Sample Name:	JCD-III-159-175AD	Acquired By:	JOE
Sample Type:	Unknown	Date Acquired:	$4 / 24 / 03$ 12:35:25 PM
Vial:	1	Acq. Method:	5% B
Injection \#:	1	Date Processed:	4/24/03 1:25:06 PM
Injection Volume:	10.00 ul	Channel Name:	2487Channel 1
Run Time:	30.00 Mnutes	Sample Set Name:	JOE

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	6.975	54925	0.64	5048	1.34
2	8.654	2833	0.03	294	0.08
3	9.970	35070	0.41	2307	0.61
4	10.527	11620	0.14	532	0.14
5	10.911	5919	0.07	402	0.11
6	11.433	6398	0.07	342	0.09
7	14.659	2340778	27.43	113126	30.00
8	16.181	6046821	70.86	253754	67.30
9	19.229	29593	0.35	1270	0.34

SAMPLE INFORMATION

Sample Name:	JCD-III-159AD	Acquired By:	JOE
Sample Type:	Unknown	Date Acquired:	3/28/03 1:28:14 PM
Vial:	2	Acq. Method:	5% B
Injection \#:	1	Date Processed:	6/9/03 1:38:58 PM
Injection Volume:	10.00 ul	Channel Name:	2487Channel 1
Run Time:	30.00 Minutes	Sample Set Name:	JOE

	RT (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	$\%$ Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	6.977	20358	0.31	1870	0.67
2	10.215	33601	0.51	2252	0.81
3	10.605	13001	0.20	823	0.30
4	10.844	15064	0.23	843	0.30
5	16.255	6325619	95.80	266783	96.02
6	19.216	29933	0.45	1234	0.44
7	20.567	57192	0.87	1643	0.59
8	21.073	108410	1.64	2400	0.86

Project Name: HONGW
Reported by User: JOE

SAMPLE INFORMATION

Sample Name:	HWZ-II-P147-AD-H	Acquired By:	HongWu
Sample Type:	Unknown	Date Acquired:	$5 / 2 / 03$ 2:25:30 PM
Vial:	1	Acq. Method:	$2 \% B$
Injection \#:	1	Date Processed:	6/6/03 5:45:34 PM
Injection Volume:	10.00 ul	Channel Name:	2487 Channel 1
Run Time:	40.00 Mnutes	Sample Set Name:	Hongw u

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	19.439	4373175	50.23	135999	79.50
2	24.373	4332324	49.77	35069	20.50

Project Name: HONGW
Reported by User: HongWu

SAMPLE INFORMATION

Sample Name:	HNZ-N-P18-AD-H	Acquired By:	HongWu
Sample Type:	Unknown	Date Acquired:	$5 / 2 / 03$ 5:46:07 PM
Vial:	1	Acq. Method:	2% B
hnjection \#:	1	Date Processed:	$5 / 2 / 03$ 6:32:28 PM
hjection Volume:	10.00 ul	Channel Name:	2487 Channel 1
Run Time:	35.00 Mnutes	Sample Set Name:	Hongwu

	RT (min)	Area $(\mu \mathrm{V} \mathrm{sec})$	$\%$ Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	20.150	7971859	51.69	213123	79.83
2	24.995	7450687	48.31	53841	20.17

$\mathfrak{s} \mathcal{S}$

	S A M PLE		IN F OR M A T IO N
Sample Name:	HWZ-III-53	Acquired By:	JOE
Sample Type:	Unknown	Date Acquired:	3/3/03 2:13:25 PM
Vial:	1	Acq. Method:	1\% B
Injection \#:	1	Date Processed:	3/3/03 4:29:55 PM
Injection Volume:	10.00 ul	Channel Name:	2487Channel 1
Run Time:	120.00 Minutes	Sample Set Name:	JOE

	RT (min)	Area $(\mu \mathrm{V}$ *sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	20.246	23102924	49.98	544191	47.29
2	22.571	23117471	50.02	606565	52.71

Project Name: Joe_Chiral
Reported by User: JOE

	SA M P LE		IN F OR M AT IO N
Sample Name:	HNZ-III-P89	Acquired By:	JOE
Sample Type:	Unknown	Date Acquired:	3/3/03 6:28:46 PM
Vial:	1	Aq. Method:	1% B
Injection \#:	1	Date Processed:	3/4/03 8:34:58 AM
Injection Volume:	10.00 ul	Channel Name:	2487Channel 1
Run Time:	30.00 Minutes	Sample Set Name:	Hong u

	RT (min)	Area $(\mu \mathrm{V} \mathrm{sec})$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	20.064	41119	1.37	1045	1.26
2	21.829	2958167	98.63	81767	98.74

Project Name: HONGWU
Reported by User: HongWu

	SAMPLE		INFORMATION
Sample Name:	HWZ-N-P13-AD-H	Acquired By:	HongWu
Sample Type:	Unknown	Date Acquired:	4/25/03 4:49:49 PM
Vial:	1	Acq. Method:	1\%B
Injection \#:	1	Date Processed:	4/25/03 5:20:04 PM
Injection Volume:	10.00 ul	Channel Name:	2487Channel 1
Run Time:	30.00 Mnutes	Sample Set Name:	Hongw u

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	12.844	3154779	50.48	125890	75.08
2	18.235	3095214	49.52	41793	24.92

SAMPLE INFORMATION

Sample Name:	HWZ-N-P15-AD-H	Acquired By:	HongWu
Sample Type:	Unknown	Date Acquired:	$4 / 25 / 034: 00: 47$ PM
Vial:	1	Acq. Method:	1% B
Injection \#:	1	Date Processed:	$4 / 25 / 03$ 4:32:16 PM
njection Votume:	10.00 ul	Channel Name:	2487 Channel 1
Run Time:	30.00 Minutes	Sample Set Name:	Hongw u

	$R T$ $(\mathrm{~min})$	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	12.830	5520068	97.59	217745	99.08
2	18.329	136467	2.41	2026	0.92

Project Name:
HONGWU
Reported by User: HongWu

	S A M PLE				IN F OR M A T I O N
Sample Name:	HNZ-N-PT-AD-H	Acquired By:	HongWu		
Sample Type:	Unknown	Date Acquired:	4/23/03 3:21:18 PM		
Vial:	1	Acq. Method:	1% B		
Injection \#:	1	Date Processed:	4/23/03 8:08:08 PM		
Injection Volume:	10.00 ul	Channel Name:	2487Channel 1		
Run Time:	30.00 Minutes	Sample Set Name:	Hongw u		

	RT (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	\% Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	13.646	1291065	51.68	43049	71.93
2	16.350	1207204	48.32	16797	28.07

	S A M P L E		IN F OR M A T I O N
Sample Name:	HWZ-N-P11-AD-H	Acquired By:	HongWu
Sample Type:	Unknown	Date Acquired:	4/23/03 5:22:57 PM
Vial:	1	Acq. Method:	1\%B
Injection \#:	1	Date Processed:	4/23/03 6:11:50 PM
Injection Volume:	10.00 ul	Channel Name:	2487Channel 1
Run Time:	$\mathbf{2 5 . 0 0}$ Mnutes	Sample Set Name:	Hongwu

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	13.677	6756582	99.59	230796	99.25
2	15.691	27898	0.41	1755	0.75

Reported by User: HongWu

	SAMPLE		IN F OR M A T ION
Sample Name:	HWZ-N-P3-OD	Acquired By:	HongWu
Sample Type:	Unknown	Date Acquired:	4/17/03 6:28:37 PM
Vial:	1	Acq. Method:	O\%B isopropanol
Injection \#:	1	Date Processed:	4/17/03 6:58:51 PM
Injection Volume:	10.00 ul	Channel Name:	2487Channel 1
Run Time:	30.00 Minutes	Sample Set Name:	Hongwu

	RT (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	$\%$ Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	17.962	3889478	49.94	169555	46.32
2	19.154	3898105	50.06	196479	53.68

SAMPLE INFORMATION			
Sample Name:	HWZ-N-P5-OD	Acquired By:	HongWu
Sample Type:	Unknown	Date Acquired:	4/17/03 7:22:17 PM
Vial:	1	Acq. Method:	0\%B isopropanol
Injection \#:	1	Date Processed:	4/17/03 7:52:31 PM
Injection Volume:	10.00 ul	Channel Name:	2487Channel 1
Run Time:	30.00 Minutes	Sample Set Name:	Hongwu

	RT (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	$\%$ Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	18.234	333203	2.66	15034	3.41
2	19.424	12187607	97.34	425717	96.59

SAMPLE INFORMATION

Sample Name:	HWZ-III-P169-AD	Acquired By:	HongWu
Sample Type:	Unknown	Date Acquired:	4/3/03 11:57:03 PM
Vial:	1	Acq. Method:	1\%B
Injection \#:	1	Date Processed:	5/29/03 10:02:58 AM
Injection Volume:	10.00 ul	Channel Name:	2487Channel 1
Run Time:	25.00 Mnutes	Sample Set Name:	Hognw u

	RT (min)	Area $(\mu \mathrm{V}$ *ec $)$	\% Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	15.832	1770834	49.35	71374	52.58
2	16.986	1817580	50.65	64361	47.42

Project Name: HONGW
Reported by User: HongWu

SAMPLE INFORMATION			
Sample Name:	HWZ-III-P175-AD	Acquired By:	HongWu
Sample Type:	Unknown	Date Acquired:	4/3/03 10:14:39 PM
Vial:	1	Acq. Method:	1\%B
Injection \#:	1	Date Processed:	4/3/03 10:48:07 PM
Injection Volume:	10.00 ul	Channel Name:	2487Channel 1
Run Time:	25.00 Minutes	Sample Set Name:	Hongw u

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	$\%$ Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	15.887	8982	0.37	388	0.49
2	17.132	2402732	99.63	78919	99.51

SAMPLE INFORMATION

Sample Name:	JCD-III-177-III-179AD-H	Acquired By:	JOE
Sample Type:	Unknown	Date Acquired:	$4 / 30 / 034: 22: 52$ PM
Vial:	1	Acq. Method:	1% B
Injection \#:	1	Date Processed:	$4 / 30 / 035: 37: 49$ PM
Injection Volume:	10.00 ul	Channel Name:	2487 Channel 1
Run Time:	25.00 Minutes	Sample Set Name:	JOE

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	$\%$ Area	Height $(\mu \mathrm{V})$	\% Height
1	9.135	10899	0.58	520	0.79
2	13.272	708235	37.75	30407	46.21
3	14.280	1157119	61.67	34874	53.00

SAMPLE INFORMATION

Sample Name:	JCD-III-179AD-H	Acquired By:	JOE
Sample Type:	Unknown	Date Acquired:	$4 / 30 / 03$ 5:21:44 PM
Vial:	2	Acq. Method:	1% B
Injection \#:	1	Date Processed:	$4 / 30 / 035: 52: 05 \mathrm{PM}$
Injection Volume:	10.00 ul	Channel Name:	2487Channel 1
Run Time:	25.00 Minutes	Sample Set Name:	JOE

	$\begin{aligned} & \mathrm{RT} \\ & (\mathrm{~min}) \end{aligned}$	Area ($\mu \mathrm{V} *$ sec)	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	6.004	24358	1.85	3767	8.87
2	9.088	14706	1.12	1173	2.76
3	12.439	43734	3.32	1657	3.90
4	13.778	1197978	91.00	35261	83.05
5	15.736	35738	2.71	598	1.41

(Millions)

1.2346
1.1714

(Millions)

