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SUPPORTING INFORMATION 

Dimeric protein structures that are ready for catenation 

 A large number of dimeric proteins have intertwined interfaces similar to that of the 

M340E/L344K dimer mutant of the p53 tetramerization domain.  Two such structures are shown here.  

Figure S1A shows the H-NS dimerization domain (Protein Data Bank entry 1ni8), and Figure S1B 

shows the dimerization domain of hepatocyte nuclear factor-1α (PDB entry 1g39). 

 

 

 

 

 

 

 

Figure S1 

Theory for the Effective Concentration Ccat 

Here eqs 2-4 of the main text are formally derived.  This derivation follows closely the 

development of an earlier theory for the effect of backbone cyclization.  First, the folding equilibrium of 

a linear dimeric protein is studied.  Then the effect of catenation is examined. 

Folding stability of a linear dimeric protein.  First consider the linear variant of the first subunit.  Let 

the vector from the N-terminal to the C-terminal be rA and the remaining degrees of freedom be 
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collectively represented by XA (see Figure 1A of main text).  If the energy function of the molecule is 

EA(XA, rA), then the partition function in the unfolded state is 
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where the subscript “u” signifies that the integration is restricted to the phase space of the unfolded state.  

The partition function Zu, B for the linear variant of the second subunit in the unfolded state can be 

similarly written.  If the energy function of the linear dimeric protein in the folded state is E(XA, XB, rA, 

rB), then the corresponding partition function is 
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The folding equilibrium constant is then 
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where V is the volume of the bulk solution. 

 Later use will be made of the probability densities for the end-to-end vectors rA and rB.  In the 

unfolded state, 
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Rearrangement leads to 
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In the folded state, in principle the distributions of rA and rB are coupled.  In analogy to eq S2, one has 
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In practice, rA and rB fluctuate around well-defined mean displacements (d1 and d2 in Figure 1A).  To a 

good approximation, their distributions can be represented by delta functions: 
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Effect of catenation.  Now consider the situation where the N- and C-terminals of each linear subunit 

are connected by a peptide linker (see Figure 1B, upper branch).  For the folded state, in the simplest 

case, the linkers and the linear dimeric protein do not interfere with each other, except that the end-to-
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end distances of the linkers are restricted to those between the N- and C-terminals.  Then the partition 

function for the catenated protein in the folded state can be written as 
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where pA(r) and pB(r) are the probability densities for the end-to-end vectors of the two peptide 

linkers. 

 A primary effect of catenation in the unfolded state is to keep the two circularized chains 

interlocked so they cannot move away from each other.  The Boltzmann factor for the unfolded state 

can be approximated by 
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where H is 1 if the dimer of circularized chains has the catenane topology and 0 otherwise.  The 

partition function in the unfolded state is thus 
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The folding equilibrium constant is 
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Treatment of the unfolded catenane.  The collective degrees of freedom, X, of a subunit can be 

further divided into a vector R representing the position, a vector ω representing the orientation, and X' 

representing internal degrees of freedom.  The energy functions EA(XA, rA) and EB(XB, rB) do not 

depend on the position and orientation vectors.  To simplify, it may be further assumed that the H 

function only depends on the position and orientation vectors of the two unfolded chains: 
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where RBA = RB – RA.  Then eq S4 becomes 
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Inserting eqs S3 and S6 into eq S5, one finds 
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where qcycl, A and qcycl, B are the enhancements in folding stability by the backbone cyclization of the 

subunits, 
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and Cil is the effective concentration due to the interlocking of the two unfolded chains, 
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Eq 2 is essentially eqs S8a and S8b while eq 4 is equivalent to eq S7.  When eq S9 is specialized to 

two interlocked rigid circular rings, eq 3 is obtained. 


