Supporting Information

Chemistry

General procedures. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}(300 \mathrm{MHz}, 400 \mathrm{MHz}$, or 600 MHz$) \mathrm{NMR}$ spectra were recorded on a Varian VXR 300, Unity Inova 400, or Unity Inova 600 spectrometer. The chemical shifts are reported in $\delta(\mathrm{ppm})$ using the $\delta 0.00$ signal of $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. LC/MS data were obtained on a Waters 2690 Separations Module and Micromass ZMD. High Resolution MS (HRMS) data were obtained on a Bruker 3T or 7T FTICR MS with either electrospray ionization or APCI. HPLC spectra were recorded on a Hewlett-Packard 1100 with a Vydac C-18 column or Atlantis dC_{18} column with a $5 \%-95 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ gradient at 215 nm . Chiral HPLC spectra were recorded on a Hewlett-Packard 1100 with a ChiralPak AD column utilizing 40% hexanes (containing 0.1% diethylamine) and $60 \% \mathrm{EtOH}$ as eluant at 230 nm .

Experimental Procedures for the Preparation of Compound $\mathbf{1 1}$ in Table 1

11

To a solution of dimethyl D-aspartate, $\mathbf{I}(18 \mathrm{~g}, 111.7 \mathrm{mmol})$ in $\mathrm{MeOH}(500 \mathrm{~mL})$ was added 2 -fluoronitrobenzene $(17.33 \mathrm{~g}, 122.86 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(9.38 \mathrm{~g}, 111.7$ $\mathrm{mmol})$. The reaction mixture was refluxed under N_{2} for approximately 2 days. The solvent was removed under reduced pressure and the residue was azeotropically dried with benzene ($2 \times 100 \mathrm{~mL}$). Crude material was then redissolved in 200 mL of MeOH $(200 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$ and the pH of the reaction mixture was adjusted to 4 with $\mathrm{HCl}(\mathrm{g})$. The reaction mixture was stirred overnight at room temperature and concentrated under reduced pressure. The residue was taken up in EtOAc and washed with a saturated $\mathrm{NaHCO}_{3} / 10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (9:1) ($2 \times 500 \mathrm{~mL}$) and brine (1×300 mL). The organic layer was dried over sodium sulfate, filtered, and concentrated to give dimethyl (2R)-2-(2-nitrophenylamino)butanedioate, II ($25.54 \mathrm{~g}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 8.51(\mathrm{~d}, J=7.81 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=8.54,1.46 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{td}, J=7.81,0.90 \mathrm{~Hz}$, $1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.54,1 \mathrm{H}), 6.75(\mathrm{td}, J=7.81,1.22 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=14.04,5.98 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~d}, J=5.86,2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 171.30, 170.50, 143.72, 136.48, 133.36, 127.30, 116.93, 113.89, 53.22, 52.53, 52.49, 37.20. HRMS (ES) calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}: 283.0925$, found: 283.0920.

To a solution of II ($954 \mathrm{mg}, 3.38 \mathrm{mmol}$) in EtOH (200 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}$ ($36 \mathrm{mg}, 3.38 \mathrm{mmol}$) and the suspension was placed on the Parr Hydrogenator (approximately 55 psi) for two days. The reaction mixture was filtered through a pad of celite and concentrated in vacuo to give methyl \{(2R)-3-oxo-1,2,3,4-tetrahydroquinoxalin-2-yl\} acetate, III ($727 \mathrm{mg}, 98 \%$) which was used without further purification. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{td}, J=7.54,1.53 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.79$ (m, 3H), 4.35 (dd, $J=10.51,2.65 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ (s, 3 H), 3.15 (dd, $J=17.37,2.65 \mathrm{~Hz}$, $1 \mathrm{H}), 2.75$ (dd, $J=17.27,10.51 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 173.02$, 169.32, 134.96, 126.93, 124.84, 120.16, 116.33, 115.30, 54.38, 52.45, 37.30. HRMS (ES) calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 221.0921$, found: 221.0925 .

To a solution of III ($727 \mathrm{mg}, 3.3 \mathrm{mmol}$) in pyridine (5 mL), at room temperature, was added 3 , 4 -dichlorobenzenesulfonyl chloride ($1.03 \mathrm{~mL}, 6.6 \mathrm{mmol}$). The resulting solution was stirred at room temperature overnight. Pyridine was removed in vacuo and the crude material was purified by flash chromatography on silica gel $(25-50 \%$ EtOAc:hexanes gradient) to give methyl \{(2R)-1-[(3,4-dichlorophenyl)sulfonyl]-3-oxo-1,2,3,4-tetrahydroquinoxalin-2-yl \}acetate, IV ($698 \mathrm{mg}, 49 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{t}, J=8.87 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 2 \mathrm{H}$ overlapping with CDCl_{3}), $7.20-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=7.91,1.32 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.66$ $(\mathrm{dd}, J=15.08,4.75 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.53(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 168.81, 166.35, 138.75, 136.65, 133.92, 131.58, 131.25, 129.24, 129.16, 129.08, 126.25, 124.82, 121.52, 116.05, 56.42, 52.62, 35.92. HRMS (ES) calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ (M $+\mathrm{H})^{+}: 429.0073$, found: 429.0054 .

A solution of IV ($698 \mathrm{mg}, 1.63 \mathrm{mmol}$) in $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$ was refluxed overnight. The reaction mixture was concentrated under reduced pressure and dried under high vacuum to give $561 \mathrm{mg}(82 \%)$ of $\{(2 R)-1-[(3,4$-dichlorophenyl)sulfonyl]-3-oxo-1,2,3,4-tetrahydroquinoxalin-2-yl\} acetic acid, \mathbf{V} which was taken on to the next step without purification. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 12.68(\mathrm{~s}, 1 \mathrm{H}), 10.52(\mathrm{~s}, 1 \mathrm{H}), 7.81$
(d, $J=8.51 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 1 \mathrm{H}) .7 .32-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{dd}, J=8.36$, $2.05 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.67 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.87 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J=10.29$, $4.25 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=15.27,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ (dd, $J=15.22,10.38 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (400 MHz, DMSO) $\delta 170.37$, 165.73, 137.94, 136.55, 133.63, 132.97, 132.39, $129.79,128.90,128.77,127.33,123.98,121.04,116.89,56.79,35.83$. HRMS (ES) calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 415.9917$, found: 415.9915 .

To a solution of $\mathbf{V}(1.3 \mathrm{~g}, 3.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at room temperature was added $\mathrm{Et}_{3} \mathrm{~N}$ ($1.31 \mathrm{~mL}, 9.39 \mathrm{mmol}$) followed by 1-[3-(dimethylamino)propyl]-3ethylcarbodiimide hydrochloride ($1.2 \mathrm{~g}, 6.26 \mathrm{mmol}$), 1-hydroxy-7-azabenzotriazole (852 $\mathrm{mg}, 6.26 \mathrm{mmol}$), and 4-(2-aminoethyl)benzonitrile ($915 \mathrm{mg}, 6.26 \mathrm{mmol}$). After stirring overnight at room temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$ and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic extracts were dried over sodium sulfate, filtered, and concentrated under reduced pressure. The crude residue was subjected to silica gel chromatography $(5 \% \mathrm{MeOH}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give 985 mg (58\%) of N -[2-(4-cyanophenyl)ethyl]-2-\{(2R)-1-[(3,4-dichlorophenyl)sulfonyl]-3-oxo-1,2,3,4-tetrahydroquinoxalin-2-yl\}acetamide, VI. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~d}, J=8.05 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.05,1 \mathrm{H}), 7.46(\mathrm{~d}, J=$ $8.32 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.22 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 2 \mathrm{H})$, $7.18(\mathrm{t}, J=7.73 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.95 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{bt}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=9.97,4.39$ $\mathrm{Hz}, 1 \mathrm{H}), 3.56$ (dd, $J=13.71,6.22 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=7.04 \mathrm{~Hz}, 2 \mathrm{H}), 2.53$ (dd, $J=15.36$, $4.48,1 \mathrm{H}$), 2.34 (dd, $J=15.50,9.92 \mathrm{~Hz}, 1 \mathrm{H}$); LCMS (ES) $m / z 543.1$.

Into a solution of VI $(985 \mathrm{mg}, 1.81 \mathrm{mmol})$ in $\mathrm{EtOH}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was bubbled $\mathrm{HCl}(\mathrm{g})$ for ~ 10 minutes. The reaction mixture was then capped and allowed to slowly warm to room temperature. After overnight stirring, the reaction mixture was concentrated in vacuo. The residue was dissolved in EtOH and to this solution was added ethylene diamine $(0.13 \mathrm{~mL}, 2.00 \mathrm{mmol})$. After overnight stirring, the solvent was removed in vacuo. The residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The combined organic phases were washed with brine ($1 \times 200 \mathrm{~mL}$), dried over sodium sulfate, filtered, and concentrated. The reaction product was subjected to silica gel chromatography eluting first with 20% MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then with $20 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing $1 \% \mathrm{NH}_{4} \mathrm{OH}$ to yield 541 mg of title compound, 11 (51% overall yield for two steps). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.79(\mathrm{~d}, J=34.07 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.41 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=7.96,1.28$ $\mathrm{Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.23 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=2.10 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{td}$, $J=7.68,1.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.13,1.46 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{q}, J=4.94 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ $(\mathrm{s}, 4 \mathrm{H}), 3.47-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.87-1.92(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{dd}, J=14.36$, $4.67 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=14.45,4.30 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 170.03$, $168.09,167.79,148.69,139.48,137.89,134.49,134.26,132.58,131.22,130.26,130.02$, 129.90 , 129.61, $127.77,124.89,122.63,121.68,117.42,58.14,45.97,41.25,37.79$, 36.55. Purity: 96.36% by HPLC. 63.52% ee by chiral HPLC. HRMS (ES) calcd. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 586.1073$, found: 586.1039.

Compound 3:

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~d}, J=8.06 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.87 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-$ $7.26\left(1 \mathrm{H}\right.$ overlapping with $\left.\mathrm{CDCl}_{3}\right), 7.06(\mathrm{dd}, J=13.10,7.79 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=7.79$ $\mathrm{Hz}, 1 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 2 \mathrm{H}), 4.94(\mathrm{dd}, J=10.35,4.13 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}$, 3 H), 2.69 (dd, $J=14.47,4.03 \mathrm{~Hz}, 1 \mathrm{H}) 2.47$ (td, $J=14.65,4.21 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ (s, 6H), $2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, obtained from HMQC and gHMBC studies) δ 167.1, 165.1, 147.7, 143.8, 141.1, 132.7, 132.3, 130.2, 128.8, 128.4, 127.4, 124.0, 123.9, $122.1,120.9,119.9,116.0,109.8,55.6,55.5,38.4,23.0,21.1$. Purity: 97.10% by HPLC. 75.01% ee by chiral HPLC. HRMS (ES) calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 494.1744$, found: 494.1752.

Compound 4

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24(\mathrm{dd}, J=8.09,1.37 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.63 \mathrm{~Hz}$, 1 H), 7.27 (dd, overlapped with $\mathrm{CDCl}_{3}, 1 \mathrm{H}$), $7.07(\mathrm{td}, J=7.94,1.53 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=$ $7.33 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (td, $J=8.09,1.22 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{dd}, J=10.38,4.27 \mathrm{~Hz}$, $1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{dd}, J=14.35,4.28 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (td, overlapped with singlet at $2.44,1 \mathrm{H}), 2.44(\mathrm{~s}, 6 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.56,165.24$, $147.76,143.85,141.11,132.70,132.33,130.26,128.69,128.39,127.33,123.98,123.87$, 122.07, 120.94, 119.98, 119.91, 116.25, 116.17, 109.81, 55.56, 55.46, 38.40, 23.03, 21.05. Purity: 96.48% by HPLC. 88.91% ee by chiral HPLC. HRMS (ES) calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 494.1744$, found: 494.1739.

Compound 5

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26(\mathrm{dd}, J=7.93,1.53 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{bs}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J$ $=7.94 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{td}, J=8.54,1.52 \mathrm{~Hz}$, $1 \mathrm{H}), 7.06$ (dd, $J=7.63,1.53 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=7.78 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.24,1.22$ $\mathrm{Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.93 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=9.77,4.58 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.73$ (dd, $J=14.80,4.42 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dt}, J=14.80,4.88 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(600 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD}$, obtained from HMQC and gHMBC studies) $\delta 168.5,168.3,151.7,139.4,138.1$, $134.5,134.4,132.5,130.2,130.1,130.0,127.9,126.6,124.9,123.8,122.7,121.4,117.4$, 111.9, 58.2, 56.2, 38.5. Purity: 97.37% by HPLC. 84.15% ee by chiral HPLC. HRMS (ES) calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 520.0495$, found: 520.0488 .

Compound 6

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~d}, J=8.05 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{bs}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.81$ $\mathrm{Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.05 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{t}, J=7.69 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}$, $J=7.81 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.97(\mathrm{~m}, 3 \mathrm{H}), 5.29(\mathrm{dd}, J=10.37,3.78 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (s, 3H), $2.83(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{dd}, J=15.01,3.54 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{t}, J=12.94 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.04,164.98,147.93,138.42,136.03,135.16,133.52,130.85$, 129.43, 129.42, 128.95, 127.21, 126.40, 124.29, 124.11, 121.06, 120.22, 115.30, 109.92, $56.79,55.63,37.98$, 28.71. Purity: 98.70% by HPLC. 59.98% ee by chiral HPLC. HRMS (ES) calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 534.0652$, found: 534.0664.

Compound 7

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{dd}, J=5.86,1.71 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=9.03 \mathrm{~Hz}$, $1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.33 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{tt}, J=7.57,1.71 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=12.70,1.96$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=13.42,1.47 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{td}, J=7.82,1.22 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=$ $6.83 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=9.04 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=9.65,4.52 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{dd}, J=14.90,4.64 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{td}, J=14.65,4.89 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.20,165.21,150.39,143.17,141.73,138.73$,
136.54, 133.84, 132.06, 131.22, 129.38, 128.79, 126.45, 124.88, 124.69, 121.56, 116.62, 115.62 , $107.10,61.51,61.15,56.65,56.36,38.63,38.54$. Purity: $>99 \%$ by HPLC. HRMS (ES) calcd. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 580.0707$, found: 580.0700 .

Compound 8

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.63(\mathrm{~d}, J=8.41 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=8.04,1.28 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.51 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=2.10,1 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.42 \mathrm{~Hz}$, $2 \mathrm{H}), 7.19$ (td, $J=7.77,1.33 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.05,1.28 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{q}, J=4.97$ $\mathrm{Hz}, 1 \mathrm{H}), 3.18(\mathrm{t}, J=7.54 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=7.54 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{dd}, J=14.40,4.90 \mathrm{~Hz}$, 1H) 2.49 (td, $J=14.35,4.29 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$, obtained from HMQC and gHMBC studies) $\delta 168.4,168.1,139.4,138.6,138.0,134.5,134.2,133.9$, $132.6,130.20,130.19,130.0,129.8,127.8,125.0,122.7,122.2,117.4,58.1,42.0,38.7$, 34.1. Purity: 98.80% by HPLC. 81.82% ee by chiral HPLC. HRMS (ES) calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: 533.0812, found: 533.0777.

Compound 9

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.60(\mathrm{dd}, J=8.28,1.42 \mathrm{~Hz}, 2 \mathrm{H}) .7 .42(\mathrm{t}, J=1.97 \mathrm{~Hz}$, $1 . \mathrm{H}$), 7.41 (dd, $J=8.68,1.73 \mathrm{~Hz}, 2 \mathrm{H}$), $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{dt}, J=8.04$, $1.281 \mathrm{H}), 5.23(\mathrm{q}, J=5.00 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{t}, J=7.77,2 \mathrm{H}), 2.68(\mathrm{t}, J=7.68 \mathrm{~Hz}, 2 \mathrm{H}), 2.62$ (dd, $J=14.35,4.84 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{td}, J=10.24,4.11 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 168.26,168.21,139.46,138.03,137.91,137.86,134.52,134.30$, $132.59,130.25,130.08,129.87,129.74,127.84,124.99$, 122.79, 121.92, 117.46, 58.18, 40.28, $38.74,32.95,30.40$. Purity: 100% by HPLC. 68.64% ee by chiral HPLC. HRMS (ES) calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 547.0968$, found: 547.0934.

Compound 10

${ }^{1} \mathrm{H}$ NMR (300 MHz, CD $\left.{ }_{3} \mathrm{OD}\right), \delta 7.81(\mathrm{~s}, 4 \mathrm{H}), 7.63(\mathrm{~d}, J=8.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=$ $7.08,1.47 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=1.96 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{td}, J=7.81,1.47 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.06,1.61 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{q}, J=4.80 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 4 \mathrm{H}), 2.72(\mathrm{dd}, J$ $=14.65,4.88 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{td}, J=14.65,4.64 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{Mhz}, \mathrm{DMSO}$) δ 167.51, 166.02, 164.76, 144.84, 144.71, 137.93, 136.72, 133.69, 132.99, 132.43, 130.48, $129.69,128.95,128.81,127.36,128.97$, 121.23, 119.46, 119.38, 117.12, 116.87, 56.54, $44.90,38.08$. Purity: 93.40% by HPLC. HRMS (ES) calcd. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+$ $\mathrm{H}^{+}: 558.0764$, found: 558.0746.

Pharmacology

Receptor Binding Assays.

Radioligand binding assays were performed using membranes from CHO cells that stably express the human or rat bradykinin B_{1} receptors or CHO cells that express the human bradykinin B_{2} receptor. For all receptor types, cells were harvested from culture flasks in PBS $/ 1 \mathrm{mM}$ EDTA and centrifuged at 1000 xg for 10 minutes. The cell pellets were homogenized with a polytron in ice-cold 20 mM HEPES, pH 7.4 and 1mM EDTA (lysis buffer) and centrifuged at $50,000 \mathrm{xg}$ for 20 minutes. The membrane pellets were rehomogenized in lysis buffer, centrifuged again at $50,000 \mathrm{xg}$ and the final pellets are resuspended at 5 mg protein $/ \mathrm{mL}$ in assay buffer (20 mM HEPES, $\mathrm{pH} 7.4,120 \mathrm{mM} \mathrm{NaCl}$, $5 \mathrm{mM} \mathrm{KCl})$ supplemented with 1% BSA and frozen at $-80^{\circ} \mathrm{C}$.

On the day of assay, membranes were centrifuged at $14,000 \mathrm{xg}$ for 5 minutes and resuspended to the desired protein concentration in assay buffer containing 100 nM enaliprilat, $140 \mu \mathrm{~g} / \mathrm{mL}$ bacitracin and 0.1% BSA. $\left[{ }^{3} \mathrm{H}\right]$-des- Arg^{10}, Leu^{9}-kallidin was the radioligand used for the human bradykinin B_{1} receptors; $\left[{ }^{3} \mathrm{H}\right]$-des- Arg^{10}-kallidin was used for the rat bradykinin B_{1} receptors; and $\left[{ }^{3} \mathrm{H}\right]$-bradykinin was used to label the human bradykinin B_{2} receptor.

For all assays, compounds were diluted from DMSO stock solutions with $4 \mu \mathrm{~L}$ added to assay tubes for a final DMSO concentration of 2%. This was followed by the addition of $100 \mu \mathrm{~L}$ of the radioligand and $100 \mu \mathrm{~L}$ of the membrane suspension. Nonspecific binding for the bradykinin B_{1} receptor binding assays was determined using $1 \mu \mathrm{M}$ des- Arg^{10}-kallidin, while nonspecific binding for the bradykinin B_{2} receptor was determined with $1 \mu \mathrm{M}$ bradykinin. Tubes were incubated at room temperature $\left(22^{\circ} \mathrm{C}\right)$ for 60 minutes followed by filtration using a Tomtec 96 -well harvesting system. Radioactivity retained by the filter was counted using a Wallac beta-plate scintillation counter.

CHO Human and Rat Bradykinin B1 FLIPR Protocol.

CHO cells engineered to stably express the human or rat bradykinin B_{1} receptor were seeded at a density of 25,000 cells per well in a 96 -well plate in $200 \mu \mathrm{~L}$ cell culture media (Iscove's modified DMEM containing $1 \mathrm{mg} / \mathrm{mL}$ G418 and 10% heat inactivated fetal calf serum). After overnight incubation at $37^{\circ} \mathrm{C}$, the cell plates were washed twice with Hank's buffered salt solution and the cells were incubated for 60 minutes at $37{ }^{\circ} \mathrm{C}$ with Hank's solution containing $4 \mu \mathrm{M}$ of FLUO-3 acetoxymethyl ester and 1 mM probenecid. The cells were then washed four times with dye-free salt solution containing probenecid and then $100 \mu \mathrm{~L}$ of salt solution with 1 mM probenecid was added to each well. des-Arg ${ }^{10}$-kallidin-induced elevation of cytosolic calcium was determined using a Fluorescence Imaging Plate Reader (FLIPR, Molecular Devices Corp., Sunnyvale, CA). All assays were conducted at $37^{\circ} \mathrm{C}$. Antagonist was added to the appropriate wells in a volume of $50 \mu \mathrm{~L}$ of Hank's solution two minutes prior to the addition of 3 nM of des-Arg^{10}-kallidin in a $50 \mu \mathrm{~L}$ volume. Changes in cellular fluorescence due to increased cytosolic calcium ion concentrations in response to agonist were determined using an excitation wavelength of 488 nm and a 510-570 nm bandwidth emission filter. Curve fitting and IC_{50} calculations were performed using GraphPad Prism software. At least eight concentrations of antagonist were used to generate each inhibition curve.

Rabbit Inflammatory Hyperalgesia Assay Protocol:

Male New Zealand Rabbits ($2.5-3.2 \mathrm{~kg}$) were anesthetized with an i.v. injection of Saffan. Cannulae were placed into the left carotid artery to monitor blood pressure, the femoral vein for drug administration, and the trachea to allow artificial respiration. The animal's core body temperature was maintained via a thermostatically controlled heating blanket. Rabbits were spinalized at C 2 and decerebrated at the level of the colliculli. Complete Freund's adjuvant (0.5 ml of $1 \mathrm{mg} / \mathrm{ml}$ mycobacterium tuberculosis) was injected
intra-plantar into the paw and inflammation allowed to develop for a period of at least 1 hour.

A bipolar electrode was placed into the semitendinous/femoris muscle to record muscle single motor unit activity and the appropriate receptive field was determined by mechanical stimulation of the foot. A pinch stimulator was used to apply force to the receptive field to elicit motor unit firing. Two intensities were used; a low intensity which was the least force sufficient to produce a measurable response (threshold) and a higher intensity (5 x threshold) that produced a more substantial response. Single motor unit recordings were made and consequently care was taken to ensure that with high intensity stimuli no other motor unit recordings were sampled.

Following three cycles of consistent and stable responses to low and high intensity stimuli, vehicle was given intravenously ($1 \mathrm{ml} / \mathrm{kg}$) and the effects on motor unit firing rate were measured. Thereafter, a cumulative dose-response curve was constructed for compound $11(1-300 \mu \mathrm{~g} / \mathrm{kg})$.

Rabbit Inflammatory Hyperalgesia Assay Results:

Effect of $\mathrm{BK} \mathrm{B}_{1}$ receptor antagonist compound 11 and morphine, in a rabbit inflammatory hyperalgesia assay.

