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Part 1.  Structure determination of C1, C3 and T isomers. 

 

 The key to solving the structure of the C1 isomer was the 

identification of six CH groups interconnected in a six-membered 

ring (Table S1).  Only one such combination was found:  

A2-K39-A3-K38-A4-K43, and only one placement was possible in the 

C60 framework (Figure S1a).  The discovery of this key fragment 

allows for step-by-step structure solution.  Next was the 

identification of three CH-CH-CH(CH)2 fragments attached to K39, 

K38 and K43 (all meta) positions of the six member ring.  Again, 

only one possible placement of these three fragments was 

possible due to the fact that there was no additional inter-

correlation between CH groups in these three fragments as well 

as between them and the A2-K39-A3-K38-A4-K43 fragment.  This 

unique placement unveils three benzene rings in the structure.  

This was later confirmed by the structural analysis of the C3 

isomer (see discussion below). 

 



2 

 

 

Table S1.  Signal correlations in the three C60H36 isomers 

Signal  COSY-HSQC 
correlations 

TOCSY-HSQC 
correlationsa 

Signal COSY-HSQC 
correlations 

TOCSY-HSQC 
correlationsa 

C1 isomer 
A2 K39, K43 H25, H26 G22 H26, J47 F7, C15 
A3 K38, K39 H21, H25 G29 H21, J37 F9a, C18, K38 
A4 K38, K43 H21, H26 H21 G29, K38 A3, A4 
B40 L8, C14 E10, D27, J45; D16 H25 G20, K39 A3, J45 
B41 C15, L17 E6, D28, D27 H26 G22, K43  
C14 B40, J45 L8, G20 I30 F11, E19 J45; D16, D27 
C15 B41, J47 F7, L17, G22 31 D16, D28 L17, C18 
C18 J37 F9a, 31, I34 I34 E6, F9a L17, J37; C18, L33 
D16 31, L33 E19, I30, B40 I36 F7, E10 J47; D27, D28 
D27 L8 B40, E10; I30, I36, B41 J37 F9a, C18, G29 H21, I34 
D28 L17, 31 E6, B41; I36 J45 F11, C14, G20 H25, I30 
E6 L17, I34 D28 J47 F7, C15, G22  
E10 L8, I36 D27, B40 K38 A3, A4, H21 G29 
E19 I30, L33 D16 K39 A2, A3, H25 G20, K43 
F7 I36, J47 G22 K43 A2, A4, H26 K38 

F9a I34, J37 E6, C18 L8 E10, D27, B40 C14, I36 
F11 I30, J45 E19, G20 L17 E6, D28, B41 I34, 31 
G20 H25, J45 F11, C14 L33 D16, E19 31, I34 

� � � � � �

C3 isomer 
A1 K44 H24 G23 H24, J46 F5, C13, K44 
B42 L9b, C13 E12, J46, D32 H24 G23, K44 A1, J46 
C13 B42, J46 F5, L9b, G23 I35 F5 L9b, J46, D32 
D32 L9b I35, B42 J46 F5, C13, G23 H24, I35, B42 
E12 L9b D32, B42 K44 A1, H24  
F5 I35, J46 C13, G23 L9b E12, D32, B42  

� � �    

T isomer 
A K H � � �

H K  � � �

K A, H  � � �

   � � �

aOnly 5J, 4J and/or relay peaks are shown 
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Figure S1.  Structure elucidation of C1 isomer. 

 

 At this stage complete analysis of all the possible 

locations of the remaining CH groups and the three double bonds 

(gray area, Figure S1b) become feasible.  The task was further 

simplified by identification of two CH(CH)3 fragments: 

L17(E6,D28,B41) and L8(E10,D27,B40) leading to only twoS1 

possible structures (Figure S2).  From these two structures only 

one structure fit the connectivity data pattern (Figure S2a). 

 Final confirmation of this unique assignment has been made 

by evaluation of the results of the TOCSY experiments showing 

relayed and long-range (4J, 5J,)S2 correlations (Table S1).  

 

________________________ 

s1A. A. Tuinman, personal communication. 

s2Spielmann, H. P.; Weedon, B. R.; Meier, M. S. J. Org. Chem. 2000, 65, 

2755-2756, and references 12, 13 and 15 therein. 
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Figure S2.  The only two possible structures of C1 isomer 

having two additional CH(CH)3 fragments (centers of these 

two fragments are in solid black).  One of these structures 

(left) corresponds to the actual structure of the C1 isomer 

(see Figure S1c); the other was rejected on the basis of 

incompatibility with the COSY-HSQC spectrum. 

 

 

 Structure analysis of the C3 isomer can be initiated by the 

identification of the signals of three identical 

CH-CH-CH-CH-CH(CH)2 fragments as A1-K44-H24-G23-J46(C13,F5) using 

the COSY-HSQC connectivity (Table S1, Figure S3).  Due to C3 

symmetry there is only one possible placement of these three 

fragments in the C60 framework (Figure S4a). 
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Figure S3.  1H-13C COSY-HSQC specta, expanded region of G, H, J and 

K signals.  The diagonal resonances (one-bond 1H-13C correlations) 

are phases absorptive in both dimensions; cross-peaks are 

antiphase in the 1H dimension but are 90° out of phase, creating 

the appearance of narrow absorptive resonances when only positive 

contours are displayed.  One-bond 1H-13C connectivities are marked 

in regular font.  Cross peaks are marked in italic.  Blank regions 

in the 13C dimension of the spectrum have been deleted for clarity, 

and the 13C scale is therefore highly non-linear. 
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 The unique placement confirms the similarity between the C1 

and C3 structures: type A, K, J, H and G signals were found 

within the same areas of the 2D  (1H, 13C) spectrum for both 

isomers (Figure 1).  It also narrows the placement of the CH 

groups remaining within the gray area of Figure S4a.  The final 

assignment (Figure S4b) was made after complete analysis of all 

the possible candidates to fit both the COSY-HSQC connectivity 

pattern and the C3 symmetry requirements.
s1  The structure was 

confirmed by the TOCSY-HSQC experiment (Table S1).s3 

 

 

Figure S4.  Structure elucidation of the C3 isomer. 

__________________________ 

S3The C3 isomer has particularly strong COSY cross peaks associated 

with the CH groups surrounding the double bonds (such as D and I; D 

and B).  A plausible explanation can be found in the unique symmetry-

related structural features of the C3 isomer: D groups are in both cis- 

and trans- positions relative to groups I and B, thus multiplying 

usually weak J5 constants across a double bond π electron system.  The 

same correlations across the isolated double bonds were found in the C1 

isomer, but they are much weaker.  More details regarding long-range 
1H-1H constants (J5-J7) in hydro[60]fullerenes can be found in 

references 7 and S2. 
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 The structural elucidation of the elusive5 T C60H36 isomer 

was made by using the results of 2D NMR experiments and computer 

analysis.  First, all the possible structures of T C60H36 isomers 

(the only two) were identified (Figure S5).s1  Both T isomers 

were found to be consistent with the COSY connectivity data 

(Table S1).  The selection was made on the basis of the 

HSQC 1H, 13C chemical shift analysis (Figure 1), and was further 

supported by calculations of relative thermodynamic stabilities 

(the T isomer a is almost 50 kcal/mol less thermodynamically 

stable than the selected one, b).  Similar computational results 

have been reported previously.13 

 

 

 

Figure S5.  Structure elucidation of the T isomer. 
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Part 2.  Compatibility studies of C1, C3, and T isomers of C60H36 

and C3v isomer of C60H18. 

 

 

 

 

Figure S6.  Compatibility/Incompatibility study of C3v C60H18 

versus T, C3 and C1, isomers of C60H36.  Compatible 

hydrogenated fragments of T C60H36 and C3v C60H18 are 

presented as black dotes (S6a).  No compatible hydrogenated 

fragments were found for the other isomers (S6b, S6c). 
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