The Asymmetric Synthesis of (2S,3R)-Capreomycidine and the Total Synthesis of Capreomycin IB.

Duane E. DeMong and Robert M. Williams*
Department of Chemistry, Colorado State University
Fort Collins, Colorado 80523
e-mail: rmw@chem.colostate.edu

SUPPORTING INFORMATION

Effect of enolate on diastereoselectivity.

CONDITIONS	YIELD	dr $(\mathbf{A}: \mathbf{B})^{\boldsymbol{a}}$
1. $\mathrm{LHMDS}, 2 . \mathrm{Me}_{2} \mathrm{AlCl}$	57%	$3.2: 1$
1. $\mathrm{LHMDS}, 2 . \mathrm{Et}_{2} \mathrm{AlCl}$	$\sim 50 \%$	$3.5: 1$
LDA	N.R.	N / A
1. $\mathrm{TiCl}_{4}, 2 . \mathrm{Et}_{3} \mathrm{~N}$	$<20 \%$	nd^{b}
1. $\mathrm{LDA}, 2 . \mathrm{Cp}_{2} \mathrm{ZrCl}_{3}$	N.R.	N / A

${ }^{a}$ determined by ${ }^{1} \mathrm{H}-\mathrm{NMR} .{ }^{b}$ dr not determined

3-(tert-butyldimethylsiloxy)- N-benzyl-propanaldimine (4). To benzylamine ($663 \mathrm{mg}, 6.19$ mmol, 1 eq.) and alumina (3.8 g), was added a solution of 3-(tert-butyldimethylsiloxy)-propanal $\left(1.17 \mathrm{~g}, 6.19 \mathrm{mmol}, 1\right.$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The heterogeneous mixture was stirred for 25 min . at $0^{\circ} \mathrm{C}$ then filtered and evaporated (in vacuo). The product (4), isolated as a pale oil, was used crude for next step.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right) \square \mathrm{CHCl}_{3}: 0.11(6 \mathrm{H}, \mathrm{s}) ; 0.95(9 \mathrm{H}, \mathrm{s}) ; 2.59(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.2 \mathrm{~Hz}) ; 3.94$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}) ; 4.63(2 \mathrm{H}, \mathrm{s}) ; 7.26-7.40(5 \mathrm{H}, \mathrm{m}) ; 7.90(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right) \square \mathrm{CDCl}_{3}:-5.0,18.5,26.1,39.4,60.7,65.4,127.0,128.0,128.5,139.2,164.5$. IR (NaCl , neat) $3087,3064,3029,2955,2928,2885,2856,1669,1495,1472,1463,1387,1255,1100,837$ cm^{-1}.

Mannich product (6). Under argon atmosphere, compound (-) 5 ($755 \mathrm{mg}, 1.95 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in dry tetrahydrofuran $(42 \mathrm{~mL})$. The resulting solution was cooled to $-78^{\circ} \mathrm{C}$. LHMDS ($3.3 \mathrm{~mL}, 2.0 \mathrm{mmol}, 1.03$ eq., 0.61 M in THF) was added, and the reaction stirred 15 min . Dimethylaluminum chloride ($2.0 \mathrm{~mL}, 2.0 \mathrm{mmol}$., 1.03 eq ., 1 M in hexanes) was added dropwise, and the mixture stirred 15 min . In a separate flask, compound 4 was dissolved in 4 mL dry THF under argon atmosphere, and added via canula to the awaiting aluminum enolate. The reaction was stirred 2 h at $-78^{\circ} \mathrm{C}$. Saturated aqueous sodium bicarbonate was added and the quenched reaction was warmed to room temp. After filtering the resulting suspension through celite, the mother liquor was extracted 3 x with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated (in vacuo). This resulted in a pale orange oil that was purified by silica gel chromatography (eluted with 9:1 hexanes:ethyl acetate) to yield $704 \mathrm{mg}(54 \%)$ of 6 as an inseparable $3.3: 1$ mixture of diastereomers $\left({ }^{1} \mathrm{H}-\mathrm{NMR}\right)$. Both diastereomers were taken on to the next step.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right.$, 393K) (major diastereomer) $\square \mathrm{DMSO}: 0.07(6 \mathrm{H}, \mathrm{s}) ; 0.90(9 \mathrm{H}$, s); $1.70(1 \mathrm{H}$, dddd, J=14.3, $9.2,5.9,5.9 \mathrm{~Hz}) ; 2.09(1 \mathrm{H}$, dddd, J=11.0, 6.6, 4.4, 4.4 Hz$) ; 3.50(1 \mathrm{H}$, sym. m); $3.83(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, \mathrm{J}=5.5 \mathrm{~Hz}) ; 3.85(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, \mathrm{J}=5.5 \mathrm{~Hz}) ; 3.93(2 \mathrm{H}, \mathrm{s}) ; 4.88(1 \mathrm{H}$, $1 / 2 \mathrm{ABq}, \mathrm{J}=12.5 \mathrm{~Hz}) ; 4.96(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, \mathrm{J}=12.5 \mathrm{~Hz}) ; 5.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.9 \mathrm{~Hz}) ; 5.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.3$ $\mathrm{Hz}) ; 6.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.3 \mathrm{~Hz}) ; 6.60(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}) ; 6.93-7.35(18 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (100 MHz) $\left(\mathrm{CDCl}_{3}\right)$ (major diastereomer) $]-5.1,18.5,26.2,36.2,52.5,58.9,60.2,60.3,61.4,68.0,79.1$, $126.6,126.7,127.2,127.5,127.6,127.8,127.9,127.9,128.1,128.1,128.4,128.6,128.6,128.8$, $129.0,134.6,135.6,136.5,140.9,156.0,169.3$. IR $\left(\mathrm{NaCl}\right.$, deposited from $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3032$, 2928, $2855,1752,1708,1497,1454,1398,1250,1102,836,775 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. for $\mathrm{C}_{40} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 665.3411$; found 665.3417 .

Guanidine 7. To a solution of $6(510 \mathrm{mg}, 0.77 \mathrm{mmol} ., 1$ eq.) and N, N '-bis-tert-butoxycarbonyl-S-methylisothiourea ($290 \mathrm{mg}, 1.00 \mathrm{mmol}$., 1.3 eq.) under an argon atmosphere in DMF (3.9 Ml), is added triethylamine ($322 _1,2.31 \mathrm{mmol} ., 3.0$ eq.). After dissolution, silver triflate (277 mg , $1.08 \mathrm{mmol} ., 1.4$ eq.) was added and the heterogeneous reaction stirred 3 h . Dilution of the reaction with ethyl acetate was followed by filtration through celite to remove any solids. The resulting organic layer was washed twice with brine and dried over anhydrous sodium sulfate. Filtration, followed by removal of the solvent under reduced pressure resulted in an orange oil that was subjected to silica gel chromatography (eluted with 7:1 hexanes:ethyl acetate), providing 518 mg (74%) of 7 as a white foam.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ (unresolvable rotamers) spectrum appears as follows: $\square \mathrm{CHCl}_{3}$: 0.04 and $0.01(6 \mathrm{H}, \mathrm{s}) ; 0.83(9 \mathrm{H}, \mathrm{s}) ; 1.40(9 \mathrm{H}, \mathrm{s}) ; 1.58(9 \mathrm{H}, \mathrm{s}) ; 1.81-1.98(1 \mathrm{H}$, broad m$) ; 2.04-$ $2.22(1 \mathrm{H}$, broad m$) ; 3.41-3.55(1 \mathrm{H}, \mathrm{m}) ; 3.55-3.68(1 \mathrm{H}, \mathrm{m}) ; 4.59(1 \mathrm{H}$, broad d, J=18.7 Hz); 4.77 $(1 \mathrm{H}$, broad d, J=12.1 Hz); 4.83-4.99 ($2 \mathrm{H}, \mathrm{m}$); $5.31(1 \mathrm{H}$, broad d, J=11.0 Hz); $5.38(1 \mathrm{H}$, broad s); 5.74-5.91 (1H, broad m); $6.58(2 \mathrm{H}$, broad d, J=7.3 Hz); $6.67(2 \mathrm{H}$, broad d, J=7.0 Hz); $6.87(1 \mathrm{H}$, broad s); 7.02-7.48 (16H, m). ${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \square-5.2,18.3,26.1,28.3,28.6,32.1$,
$49.0,54.8,59.0,59.7,62.3,68.0,78.7,79.2,81.7,125.9,127.1,127.2,127.5,127.7,128.0$, $128.1,129.2,134.6,135.8,137.3,149.8,153.4,155.5,160.7,168.1$. IR $(\mathrm{NaCl}$, depos. from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 3403, 3064, 3033, 2955, 2930, 1760, 1701, 1600, 1489, 1455, 1393, 1367, 1297, 1252, 1146, 1123, $837 \mathrm{~cm}^{-1}$. HRMS (FAB) calc. for $\mathrm{C}_{51} \mathrm{H}_{67} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{Si}\left(\mathrm{MH}^{+}\right)$907.4677; found 907.4671. $[\square]_{\mathrm{D}}{ }^{25}=+15.6\left(c=0.55, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Alcohol 8. Compound 7 ($198 \mathrm{mg}, 0.22 \mathrm{mmol} ., 1$ eq.) was dissolved in 14.5 mL acetonitrile. Upon addition of 5% aqueous HF in acetonitrile (7.3 mL) the mixture was stirred until the starting material was consumed (2.5 h). At that point, solid sodium bicarbonate was added and the mixture stirred until the bubbling ceased (30 min .). After filtration to remove the remaining bicarbonate and evaporation of the solvent under reduced pressure, the crude product was subjected to flash silica gel chromatography (Whatman brand silica gel (230-400 mesh), eluted with 4:1 dichloromethane:ethyl acetate). This resulted in the isolation of $141 \mathrm{mg}(81 \%)$ of $\mathbf{8}$ as a pale foam. It is necessary to use $\mathbf{8}$ immediately for the next step as it is unstable.
${ }^{1} \mathrm{H}$ NMR (unresolvable rotamers). ${ }^{13} \mathrm{C}$ NMR (unresolvable rotamers). IR (NaCl , neat) 3393, 3064, 3032, 2978, 1757, 1700, 1653, 1635, 1601, 1497, 1394, 1287, $1147 \mathrm{~cm}^{-1}$. HRMS (FAB) calc. for $\mathrm{C}_{45} \mathrm{H}_{53} \mathrm{~N}_{4} \mathrm{O}_{9}\left(\mathrm{MH}^{+}\right)$793.3812; found 793.3807.

Cyclic guanidine 9. Diisopropylazodicarboxylate ($45 \mathrm{~mL}, 0.23 \mathrm{mmol}$., 1.5 eq.) was added to a solution of $\mathbf{8}(122 \mathrm{mg}, 0.15 \mathrm{mmol} ., 1 \mathrm{eq}$.$) and triphenylphosphine (60 \mathrm{mg}, 0.23 \mathrm{mmol} ., 1.5 \mathrm{eq}$.$) in$ THF (5.3 mL) at $0^{\circ} \mathrm{C}$ under argon atmosphere. After stirring 10 minutes at $0^{\circ} \mathrm{C}$, the reaction was allowed to warm to room temperature and stir 30 min . The THF was removed in vacuo, and the crude oil subjected to silica gel chromatography (eluted with 88:12 dichloromethane:ether). This purification provided 102 mg (88%) of 9 as a white amorphous solid. M.p. $199^{\circ} \mathrm{C}$ (recryst. i $\mathrm{PrOH} /$ water).
${ }^{1} \mathrm{H}$ NMR (300 MHz) (DMSO-d $\left.{ }_{6}, 393 \mathrm{~K}\right) \square$ DMSO: $1.42(9 \mathrm{H}, \mathrm{s}) ; 1.47(9 \mathrm{H}, \mathrm{s}) ; 2.08-2.34(2 \mathrm{H}, \mathrm{m})$; $3.40(1 \mathrm{H}$, ddd, $\mathrm{J}=12.8,7.7,5.1 \mathrm{~Hz}) ; 4.08(1 \mathrm{H}$, ddd, $\mathrm{J}=12.8,8.4,8.4 \mathrm{~Hz}) ; 4.40(1 \mathrm{H}, \mathrm{m}) ; 4.41(1 \mathrm{H}$, $1 / 2 \mathrm{ABq}, \mathrm{J}=14.7 \mathrm{~Hz})$; 4.92-5.09 (2 H , sym. m); $5.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.3 \mathrm{~Hz}) ; 5.18(1 \mathrm{H}, 1 / 2 \mathrm{ABq}$, $\mathrm{J}=14.7 \mathrm{~Hz}) ; 5.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}) ; 6.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.3 \mathrm{~Hz}) ; 6.52(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}) ; 6.96-7.45$ $(18 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (unresolvable rotamers, resonances are reported as observed at 298 K , * denotes minor rotamer) $\square \mathrm{CDCl}_{3}: 21.9,22.2,26.2,27.2,28.4,28.8,42.4$, $53.5, * 53.9, * 55.7,57.4, * 58.7,59.7,61.6, * 61.9,68.7,78.8,79.0,82.8,126.5,127.2,127.8$, $128.2,128.7,129.0,129.3, * 133.7,134.1,134.7,136.0, * 136.6, * 151.2,151.8, * 152.8,154.3$, 156.3, 159.6, *159.9, *167.3, 168.3. IR (NaCl , deposited from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 2976, 1751, 1734, 1717,

1701, 1684, 1676, 1616, 1576, 1456, 1394, 1314, 1247, $1139 \mathrm{~cm}^{-1}$. HRMS (FAB) calc. for $\mathrm{C}_{45} \mathrm{H}_{51} \mathrm{~N}_{4} \mathrm{O}_{8}\left(\mathrm{MH}^{+}\right) 775.3707$; found 775.3707. [$\left.\square\right]_{\mathrm{D}}{ }^{25}=+16.7\left(c=0.55, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Capreomycidine-HCI (2). A solution of 9 ($215 \mathrm{mg}, 0.28 \mathrm{mmol} ., 1 \mathrm{eq}$) in $3: 1 \mathrm{THF}: \mathrm{EtOH}(32.4$ mL) was purged with argon for 5 min . Palladium chloride ($146 \mathrm{mg}, 0.83 \mathrm{mmol} ., 3 \mathrm{eq}$.) was added to the solution in a pressure tube. The tube was then pressurized and evacuated five times with hydrogen gas. Pressurization of the tube to 100 psi with hydrogen gas was followed by stirring of the reaction for 4 days at room temperature. Release of the hydrogen pressure was followed by purging with argon. The solution was filtered through Celite and evaporated in vacuo. The off-white residue was triturated with ether and dried under vacuum. This residue was then taken up in 2.5 mL 0.5 M HCl (prepared with dd $\mathrm{H}_{2} \mathrm{O}$) and refluxed for 1.5 h . Lyophilization of this reaction mixture provided crude ($2 S, 3 R$)-capreomycidine $\mathbf{2}$ as its dihydrochloride salt. Dissolution of the crude product in MeOH was followed by addition of pyridine to $\sim \mathrm{pH} 5$. Addition of absolute EtOH resulted in the precipitation of $28 \mathrm{mg}(48 \%)$ capreomycidine monohydrochloride as a white amorphous solid. The synthetic $\mathbf{2}$ agreed with the natural product by spectroscopic methods and molar optical rotation (synthetic: $[\mathrm{M}]_{\mathrm{D}}{ }^{20}=+28.2$, natural: $\left.[\mathrm{M}]_{\mathrm{D}}{ }^{20}=+32.5\right)$. Molar optical rotation is defined as $[\mathrm{M}]_{\mathrm{D}}{ }^{20}=[\square]_{\mathrm{D}}{ }^{20} \mathrm{x}$ MW / 100 .

For analytical purposes, the monohydrobromide salt was formed in the following manner: The dihydrochloride salt was taken up in deionized water, treated with 2 drops of 28% aqueous HBr , and lyophilized overnight. The resulting off-white residue was dissolved in a minimal amount of methanol, and the solution neutralized with pyridine. Absolute ethanol was added until capreomycidine mono- $\mathrm{HBr}(\mathbf{2} \cdot \mathbf{H B r})$ began to precipitate as a white solid which was recovered by filtration and dried.

To compare to natural 2, synthetic 2 was passed down a column of Dowex 50WX2-100 $\left(\mathrm{H}^{+}\right.$form), washed with dd $\mathrm{H}_{2} \mathrm{O}$ and eluted with $1.5 \% \mathrm{NH}_{4} \mathrm{OH}$. The eluent was evaporated, dissolved in a minimal amount of dd $\mathrm{H}_{2} \mathrm{O}$ containing several equivalents of $\mathrm{NH}_{4} \mathrm{Oac}$, and lyophilized overnight. The resulting residue (capreomycidine-2HOAc) was found to be identical to natural 2 by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR.
${ }^{1} \mathrm{H}$ NMR (monohydrobromide) $(400 \mathrm{MHz})\left(\mathrm{D}_{2} \mathrm{O}\right) \square 1.94-2.02(1 \mathrm{H}, \mathrm{m}) ; 2.12-2.20(1 \mathrm{H}, \mathrm{m}) ; 3.38-$ $3.49(2 \mathrm{H}, \mathrm{m}) ; 3.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.7 \mathrm{~Hz}) ; 4.11(1 \mathrm{H}$, ddd, $\mathrm{J}=8.6,4.3,4.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 MHz) $\left(\mathrm{D}_{2} \mathrm{O}\right): \square 22.0,36.4,48.9,56.8,154.7$, 171.1. IR (1\% KBr): 3566, 3397, 3066, 2927, 1669, 1663, 1646, 1617, 1576, 1569, 1533, 1448, 1418, 1374, 1339, 1113.
${ }^{1} \mathrm{H}$-NMR of capreomycidine monohydrobromide. ${ }^{4.5}{ }^{4.5}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of capreomycidine monohydrobromide.

${ }^{1} \mathrm{H}$-NMR of synthetic capreomycidine acetate salt.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of natural capreomycidine acetate salt.

Diethylacetal 10. A solution of (+) $5\left(500 \mathrm{mg}, 1.29 \mathrm{mmol}, 1 \mathrm{eq}\right.$.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ mL) and cooled to $-78^{\circ} \mathrm{C}$. While stirring, $\mathrm{TiCl}_{4}(280 \square \mathrm{~L}, 2.58 \mathrm{mmol}$., 2 eq.) was added, followed by triethylamine ($360 \square \mathrm{~L}, 2.58 \mathrm{mmol} ., 2 \mathrm{eq}$.) to provide a dark blue enolate solution. After stirring for 15 min ., triethyl orthoformate ($1.3 \mathrm{~mL}, 7.74 \mathrm{mmol}, 6 \mathrm{eq}$.) was added, and the solution warmed slowly to $0^{\circ} \mathrm{C}$. After stirring 45 min . at $0^{\circ} \mathrm{C}, 0.025 \mathrm{M} \mathrm{pH} 7$ phosphate buffer was added, and the mixture stirred 15 min . The quenched reaction was partitioned between sat. aq. NaHCO_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was removed and washed twice with water. Upon drying the organic layer over anhydrous sodium sulfate, the solution was filtered and evaporated to provide an off white solid. Silica gel chromatography (eluted with 6:4:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexanes:EtOAc) provided $539 \mathrm{mg}(85 \%)$ of pure $\mathbf{1 0}$ as a white solid. Recrstalization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / hexanes provided heavy white needles (m.p. $151^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (300MHz) (DMSO-d $\left.{ }_{6}, 373 \mathrm{~K}\right) \square \mathrm{DMSO}: 1.21(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) ; 3.70(2 \mathrm{H}, \mathrm{m}) ; 3.81(2 \mathrm{H}$, m); $5.00(2 \mathrm{H}, \mathrm{m}) ; 5.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.8 \mathrm{~Hz}) ; 5.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.1 \mathrm{~Hz}) ; 6.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.1 \mathrm{~Hz}) ; 6.61$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}) ; 7.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.6 \mathrm{~Hz}) ; 7.01-7.27(13 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ (unresolvable rotamers, resonances reported as observed at 298 K , *denotes minor rotamer) \square $\mathrm{CDCl}_{3}: 15.3,60.0,60.7,60.9, * 64.5,64.6,65.1,65.2,67.8, * 68.4,79.0, * 79.3,102.8, * 103.5$, $126.4,126.5,127.4,127.4,127.5,127.6,127.8,128.0,128.2,128.3,128.6,128.7,134.7,135.4$, $135.5,136.1, * 153.7,155.0, * 166.0,166.3$. IR (NaCl , deposited from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 3031, 2975, 2894, 1754, 1705, 1497, 1454, 1402, 1372, 1344, 1319, 1302, 1268, 1245, 1107, 1070, 1031, 980. HRMS $\left(\mathrm{FAB}^{+}\right)$calc. for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{NO}_{6}\left(\mathrm{MH}^{+}\right) 490.2229$; found 490.2213. [$\mathrm{D}_{\mathrm{D}}{ }^{25}=-20.6$ ($c=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

\boldsymbol{R} - C -formylglycine diethylacetal (11). A solution of 10 ($370 \mathrm{mg}, 0.76 \mathrm{mmol} ., 1 \mathrm{eq}$.) and 20% $\mathrm{Pd}(\mathrm{OH})_{2}$ on activated carbon ($106 \mathrm{mg}, 0.15 \mathrm{mmol}$., 0.2 eq.) in $3: 1 \mathrm{THF}: \mathrm{EtOH}(23.5 \mathrm{~mL}$) was purged with argon for 10 min . The tube was then filled with hydrogen gas to 85 psi . The pressure was released, and the tube refilled. This was repeated 3 times more. The pressurized tube was then stirred for 2 days at room temperature. After the 2 days, the pressure was released, the solution purged with argon, and the solution diluted with 15 mL MeOH . The $20 \% \mathrm{Pd}(\mathrm{OH})_{2}$ on activated carbon was removed by filtration through celite. Evaporation of the filtrate and trituration of the residue with ether provided $134 \mathrm{mg}(99 \%)$ of 11 as a white solid (m.p. 160$165^{\circ} \mathrm{C}$ (decomp), recryst. $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$).
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})\left(\mathrm{CD}_{3} \mathrm{OD}\right) \square \mathrm{CD}_{2} \mathrm{HOD}: 1.20(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) ; 1.25(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) ; 3.59-$ $3.83(5 \mathrm{H}, \mathrm{m}) ; 5.00\left(1 \mathrm{H}\right.$, broad s). ${ }^{13} \mathrm{C}$ NMR (100 MHz) $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \square \mathrm{CD}_{3} \mathrm{OD}: 15.6,15.6,58.8$, 65.0, 66.7, 102.0, 171.1. IR (NaCl , depos. from MeOH): 3233, 2974, 2908, 1671, 1652, 1567, 1498, 1392, 1338, 1296, 1266, 1157, 1114, 1091, 1057, $1027 \mathrm{~cm}^{-1} . \mathrm{HRMS}\left(\mathrm{FAB}^{+}\right)$calc. for $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right)$178.1079; found 178.1082. [$\mathrm{C}_{\mathrm{D}}{ }^{25}=+14.4(c=0.55, \mathrm{MeOH})$.
N^{\square}-CBz-DAPA- $N^{\square}-(N, N$-di-Boc- \square-Lys)-OMe (15): To a suspension of $\mathbf{1 3}$ ($130 \mathrm{mg}, 0.45$ mmol., 1 eq.) and 14 ($200 \mathrm{mg}, 0.45 \mathrm{mmol} ., 1$ eq.) in methylene chloride (8 mL) was added N methylmorpholine ($99 \square \mathrm{~L}, 0.90 \mathrm{mmol}, 2$ eq.) at $0^{\circ} \mathrm{C}$ under argon. This mixture was stirred 1 h . at $0^{\circ} \mathrm{C}$ and overnight at room temperature. The reaction mixture was then evaporated and taken up in EtOAc with a small amount of methylene chloride and methanol. The organic solution was washed with 0.5 M citric acid, saturated aqueous sodium bicarbonate, and twice with brine. The organic layer was dried over anhydrous sodium sulfate, filtered, and evaporated to provide 240 $\mathrm{mg}(92 \%)$ of $\mathbf{1 5}$ as a white amorphous solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz) ($\mathrm{DMSO}_{-1} \mathrm{~d}_{6}, \mathrm{D}_{2} \mathrm{O}$ exchange) $\square \mathrm{CD} 2 \mathrm{HSOCD}_{3}: 1.16-1.40(4 \mathrm{H}, \mathrm{m}) ; 1.34(18 \mathrm{H}$, s); $2.10(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,14.5 \mathrm{~Hz}) ; 2.19(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.0,14.5 \mathrm{~Hz}) ; 2.83(2 \mathrm{H}$, broad t.); $3.32(1 \mathrm{H}$, dd, J=7.0, 13.5 Hz); $3.38(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.5,13.5) ; 3.60(3 \mathrm{H}, \mathrm{s}) ; 3.65(1 \mathrm{H}, \mathrm{m}) ; 4.15(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.0$, $6.0 \mathrm{~Hz}) ; 5.02(2 \mathrm{H}, \mathrm{s}) ; 7.22-7.40(5 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \square \mathrm{CDCl}_{3}: 26.8,28.5,28.6$, $31.9,40.3,41.1,48.0,52.8,54.6,67.1,79.1,79.4,128.2,128.5,136.1,155.8,156.2,171.0$, 172.0. IR (NaCl , depos. from CHCl_{3}): $3345,3064,3035,2981,2939,1748,1685,1651,1530$, 1449, 1391, 1366, 1329, 1276, 1169, 1109, 1062, 1028, 1014, 970. HRMS (FAB ${ }^{+}$) calc. for $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{9}\left(\mathrm{MH}^{+}\right) 581.3187$, found 581.3179. [$\left.\mathrm{\square}\right]_{\mathrm{D}}{ }^{25}=+14.5\left(c=0.55, \mathrm{CHCl}_{3}\right)$.

 eq) in THF (1.8 mL) and $\mathrm{MeOH}(1.8 \mathrm{~mL})$ was added $2 \mathrm{~N} \mathrm{NaOH}(217 \mathrm{~mL}, 0.43 \mathrm{mmol}, 2.6 \mathrm{eq})$ dropwise. After the starting material was consumed by TLC (1h), the reaction was diluted with water and acidified to pH 3 with aq. HCl . The solution was then extracted three times with EtOAc, and then the combined extracts were washed twice with brine. Drying of the organic layer over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was followed by filtration and evaporation to provide 96 mg (quant) of $\mathbf{1 6}$ as a clear oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz) $\left(\mathrm{DMSO}_{\mathrm{d}}\right.$) \square DMSO: 1.20-1.40 $(4 \mathrm{H}, \mathrm{m}) ; 1.36(18 \mathrm{H}, \mathrm{s}) ; 2.12(1 \mathrm{H}$, dd, $\mathrm{J}=7.9,14.3 \mathrm{~Hz}) ; 2.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.5,13.9 \mathrm{~Hz}) ; 2.84(2 \mathrm{H}$, broad m$) ; 3.27(1 \mathrm{H}, \mathrm{m}) ; 3.40-3.50(1 \mathrm{H}$, $\mathrm{m}) ; 3.67(1 \mathrm{H}$, broad s); $4.07(1 \mathrm{H}, \mathrm{m}) ; 5.02(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, \mathrm{J}=13.2 \mathrm{~Hz}) ; 5.04(1 \mathrm{H}, 1 / 2 \mathrm{Abq}, \mathrm{J}=13.2$ $\mathrm{Hz}) ; 6.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}) ; 6.73(1 \mathrm{H}$, broad t); 7.30-7.36 (5H, m); $7.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}) ; 7.93$ $\left(1 \mathrm{H}\right.$, broad t). ${ }^{13} \mathrm{C}$ NMR (100MHz) (DMSO-d ${ }_{6}$) DMSO: 26.3, 28.3, 28.3, 31.3, 41.2, 47.5, $54.0,65.5,77.3,77.4,127.8,127.8,128.3,136.9,155.0,155.5,155.9,170.7,172.0 . \mathrm{IR}(\mathrm{NaCl}$, depos. from CHCl_{3}): $3334,3066,3035,2977,2934,1693,1526,1454,1411,1393,1367,1342$, 1291, 1251, 1170, 1064, 1028. HRMS $\left(\mathrm{FAB}^{+}\right)$calc. for $\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{9}\left(\mathrm{MH}^{+}\right) 567.3030$, found 567.3033. $[\square]_{\mathrm{D}}{ }^{25}=-3.3\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

\boldsymbol{N}^{\square}-CBz-DAPA- \boldsymbol{N}^{\square}-($\boldsymbol{N}, \boldsymbol{N}^{\prime}$-di-Boc- - -Lys)-DEA-OEt (17):A stirred solution of EtOH (10 mL) at $0^{\circ} \mathrm{C}$ was treated with acetyl chloride ($2 \mathrm{~mL}, 30 \mathrm{mmol}$.). This mixture was warmed to room
temperature and stirred for 30 min . The resulting ethanolic HCl solution was added to a round bottomed flask containing 11 ($109 \mathrm{mg}, 0.62 \mathrm{mmol}$., 1 eq.). After stirring the reaction at reflux for 2.5 h , the solvent was removed in vacuo to provide $144 \mathrm{mg}(96 \%)$ of $\mathbf{1 2}$ as a yellow solid which was used crude in the next step.
A solution of $\mathbf{1 6}(50 \mathrm{mg}, 0.088 \mathrm{mmol}, 1 \mathrm{eq})$ and $\mathbf{1 2}(21 \mathrm{mg}, 0.088 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8$ mL) was cooled to $0^{\circ} \mathrm{C}$. Dropwise addition of N-methylmorpholine ($20 \square \mathrm{~L}, 0.18 \mathrm{mmol}, 2.05 \mathrm{eq}$) to the solution was followed by the addition of $\mathrm{HOBt}(18 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.5 \mathrm{eq})$ and EDCI (18 $\mathrm{mg}, 0.092 \mathrm{mmol}, 1.05 \mathrm{eq}$). The reaction was stirred for 1 h at $0^{\circ} \mathrm{C}$, diluted with EtOAc and washed with sat. aq. NaHCO_{3}, dilute aq. HCl , and brine twice. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to provide a crude yellow solid which was purified by silica gel chromatography (gradient elution from $25: 1 \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $20: 1 \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide $60 \mathrm{mg}(91 \%)$ of $\mathbf{1 7}$ as an amorphous white solid that is an $\sim 2.6: 1$ mixture of inseparable epimers (${ }^{1} \mathrm{H}$ NMR).
${ }^{1} \mathrm{H}$ NMR (400 MHz) (DMSO- d_{6}) (mixture of epimers, ${ }^{*}$ denotes minor epimer) \square DMSO: 1.07 $(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) ; 1.07(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) ; 1.18(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) ;{ }^{*} 1.17(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) ; 2.12$ (1 H , dd, J=7.5, 13.9 Hz); 2.21 (1 H , dd, J=5.8, 14.1 Hz); $2.84(2 \mathrm{H}$, symm. M); 3.15-3.40 ($2 \mathrm{H}, \mathrm{m}$); 3.42-3.52 ($2 \mathrm{H}, \mathrm{m}$); 3.53-3.73 (3H, m); 4.03-4.16 (2 H , symm. m); $4.22(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.9 \mathrm{~Hz}) ; 4.44-$ $4.49(1 \mathrm{H}, \mathrm{m}) ; 4.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.8 \mathrm{~Hz}) ; * 4.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.9 \mathrm{~Hz}) ; 5.00(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, \mathrm{J}=12.6 \mathrm{~Hz})$; *5.01 ($1 \mathrm{H}, 1 / 2 \mathrm{ABq}, \mathrm{J}=12.6 \mathrm{~Hz}$); $5.04(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, \mathrm{J}=12.6 \mathrm{~Hz}) ;{ }^{2} 5.04(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, \mathrm{J}=12.6$ $\mathrm{Hz}) ; 6.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}) ; 6.72(1 \mathrm{H}, \mathrm{t}, 5.7 \mathrm{~Hz}) ; 7.28-7.39(6 \mathrm{H}, \mathrm{m}) ; 7.74(1 \mathrm{H}, \mathrm{m}) ;$ *8.18 (1H, d, $\mathrm{J}=8.1 \mathrm{~Hz}) ; 8.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (5:1 $\left.\mathrm{CD}_{3} \mathrm{OD}: \mathrm{CDCl}_{3}\right) ~ \square \mathrm{CD}_{3} \mathrm{OD} 14.6$, $15.6,15.6,27.6,29.0,29.0,32.9,41.1,42.3,42.8,56.1,56.3,56.4,62.6,64.4,64.6,64.7,67.9$, $79.8,80.1, * 102.1,102.2,129.0,129.1,129.5,137.9,157.7,158.2,158.4,170.3,172.5,174.1$. IR (NaCl , depos. from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 3304, 2977, 2933, 2481, 2422, 1743, 1680, 1662, 1534, 1421, 1393, 1367, 1327, 1299, 1253, 1176, 1116, 1071, 1029, $1002 \mathrm{~cm}-1 . \operatorname{HRMS}\left(\mathrm{FAB}^{+}\right)$calc. for $\mathrm{C}_{36} \mathrm{H}_{60} \mathrm{~N}_{5} \mathrm{O}_{12}\left(\mathrm{MH}^{+}\right) 754.4238$; found 754.4251.

Compound 18. A solution of $17(50 \mathrm{mg}, 0.066 \mathrm{mmol}, 1 \mathrm{eq})$ and $\mathrm{Pd}(\mathrm{OH})_{2}(23 \mathrm{mg}, 0.033 \mathrm{mmol}$, $0.5 \mathrm{eq})$ in absolute ethanol (2 mL) was purged with argon for 10 min . Hydrogen was then bubbled through the solution and a balloon of hydrogen fixed to the top of the flask. After stirring for 1 h , the starting material was shown to be consumed by TLC. The reaction was then purged with argon, filtered through celite and evaporated to provide 41 mg (quant) of $\mathbf{1 8}$ as a clear oil and an $\sim 2: 1$ mixture of insepaprable epimers. The deprotected compound was used immediately in the subsequent coupling reaction in order to avoid intramolecular N, N^{\prime} 'acyl migration.
${ }^{1} \mathrm{H}$ NMR (400 MHz) ($\mathrm{DMSO}_{\mathrm{d}}^{6}$, * denotes minor diastereomer) $\square: 1.09(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) ; 1.09$ $(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) ; 1.19(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) ; 1.21-1.38(4 \mathrm{H}, \mathrm{m}) ; 1.36(18 \mathrm{H}$, broad s); $1.97(2 \mathrm{H}$, broad s); $2.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.2,14.1 \mathrm{~Hz}) ; 2.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.8,14.3 \mathrm{~Hz}) ; 2.85(2 \mathrm{H}, \mathrm{m}) ; 3.02(2 \mathrm{H}$, $\mathrm{m}) ; 3.30(1 \mathrm{H}, \mathrm{m},) ; 3.49(2 \mathrm{H}, \mathrm{m}) ; 3.62(2 \mathrm{H}, \mathrm{m}) ; 3.69(1 \mathrm{H}$, broad s); $4.11(2 \mathrm{H}, \mathrm{m}) ; 4.48(1 \mathrm{H}, \mathrm{m})$; *4.74 (1H, d, J=4.3 Hz); $4.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.0 \mathrm{~Hz}) ; 6.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}) ; 6.75(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz})$; $7.74(1 \mathrm{H}, \mathrm{m}) ; 8.23(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CD}_{3} \mathrm{OD}\right) \square \mathrm{CD}_{3} \mathrm{OD}: 14.7,15.7,27.8,29.0$, $29.0,33.5,41.2,43.3,44.8,55.8,56.3,62.7,64.9,79.9,80.1,102.5,157.8,158.4,170.4,174.0$,
175.7. IR (NaCl , deposited from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 3330, 2977, 2933, 1734, 1690, 1520, 1451, 1415, 1392, 1366, 1344, 1271, 1251, 1171, 1112, 1068, $1025 \mathrm{~cm}^{-1} . \mathrm{HRMS}^{\left(\mathrm{FAB}^{+}\right) \text {calc. for }}$ $\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{~N}_{5} \mathrm{O}_{10}\left(\mathrm{MH}^{+}\right) 620.3871$; found 620.3853 .

Boc-Asn-Ala-OBn: A round bottomed flask was charged with N-Boc-Asn-OH (464mg, 2 mmol , 1 eq.) and alanine benzyl ester hydrochloride ($431 \mathrm{mg}, 2 \mathrm{mmol} ., 1 \mathrm{eq}$.) under argon. Methylene chloride (40 mL) was added and the resulting suspension was cooled to $0^{\circ} \mathrm{C}$. Triethylamine (558 $\square \mathrm{L}, 4 \mathrm{mmol}, 2$ eq.) was added and the suspension became clear. EDCI ($403 \mathrm{mg}, 2.1 \mathrm{mmol}, 1.05$ eq.) and HOBt ($405 \mathrm{mg}, 3 \mathrm{mmol}$., 1.5 eq.) were added at $0^{\circ} \mathrm{C}$, and the reaction was allowed to warm to room temperature with stirring overnight. The reaction mixture was diluted with ethyl acetate, washed with sat. aq. sodium bicarbonate, dilute aqueous HCl , and brine three times. The organic layer was dried over sodium sulfate, filtered, and evaporated to provide 646 mg (82%) of Boc-Asn-Ala-OBn as a white solid (m.p. $144^{\circ} \mathrm{C}$, recryst. EtOAc).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \square \mathrm{DMSO}: 1.29(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}) ; 1.36(9 \mathrm{H}, \mathrm{s}) ; 2.32(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=15.0,8.8 \mathrm{~Hz}) ; 2.38(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.0,4.8 \mathrm{~Hz}) ; 4.23-4.36(2 \mathrm{H}, \mathrm{m}) ; 5.1(2 \mathrm{H}, \mathrm{s}) ; 6.86(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=8.1 \mathrm{~Hz}) ; 6.89(1 \mathrm{H}, \mathrm{s}) ; 7.19(1 \mathrm{H}, \mathrm{s}) ; 7.30-7.40(5 \mathrm{H}, \mathrm{m}) ; 8.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \square \mathrm{CDCl}_{3}: 18.2,28.6,37.3,48.6,51.1,67.3,80.5,128.3,128.5,128.7,135.4$, $155.8,171.1,172.4,173.6$. IR (NaCl , depos. from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 3400, 3329, 3206, 2982, 1740, 1692, 1654, 1526, 1456, 1410, 1391, 1368, 1325, 1254, 1169, $1053 \mathrm{~cm}-1$. HRMS (FAB ${ }^{+}$) calc. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{6}\left(\mathrm{MH}^{+}\right) 394.1978$; found 394.1967. [[]$_{\mathrm{D}}{ }^{25}:+5.8\left(c=0.55, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Boc-Asn-Ala-OH (19). A solution of $2 S$-(2S-tert-Butoxycarbonylamino-3-carbamoyl-propionylamino)-propionic acid, benzyl ester ($386 \mathrm{mg}, 0.98 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{MeOH}(18 \mathrm{~mL})$ was purged with argon. To this solution was added 10% palladium on carbon ($103 \mathrm{mg}, 0.097 \mathrm{mmol}$, $0.1 \mathrm{eq})$. Hydrogen gas was bubbled through the mixture and a balloon of hydrogen attached to the flask. After stirring for 3 h , the starting material was shown to be consumed by TLC (75:20:5 $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOAc}: i-\mathrm{PrOH}\right)$. Argon was bubbled through the reaction and the palladium on carbon removed by filtration through celite. Evaporation of the solvent provided 19 ($291 \mathrm{mg}, 98 \%$ yield) as a white crystalline solid (m.p. $=195-197^{\circ} \mathrm{C}$, recryst. $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$).
${ }^{1} \mathrm{H}$ NMR (400 MHz) (DMSO- $\mathrm{d}_{6}, \mathrm{D}_{2} \mathrm{O}$ exchange) $\square: 1.24(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}) ; 1.35(9 \mathrm{H}, \mathrm{s}) ; 2.32$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0,15.0 \mathrm{~Hz}) ; 2.42(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.5,15.0 \mathrm{~Hz}) ; 4.16(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}) ; 4.23(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=4.5,9.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 MHz) ($\mathrm{DMSO}-\mathrm{d}_{6}, \mathrm{D}_{2} \mathrm{O}$ exchange) $\square: 17.5,28.5,37.5,47.9,51.4$, $78.9,155.6,171.9,172.1,174.3$. IR (NaCl , depos. from MeOH): 3584, 3320, 3210, 2980, 2936, $1717,1662,1615,1558,1539,1507,1456,1393,1367,1318,1296,1238,1162,1054,1022$. HRMS (FAB^{+}) calc. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{6}\left(\mathrm{MH}^{+}\right)$304.1509; found 304.1502. [$\left.\square\right]_{\mathrm{D}}{ }^{25}=-14.7(c=0.6$, MeOH).

N^{\square}-(Boc-Asn-Ala-)-DAPA- N^{\square}-(N, N^{\prime}-di-Boc- $[-L y s)$-DEA-OEt (20): A solution of 19 (22 mg, $0.072 \mathrm{mmol}, 1 \mathrm{eq}), 18(45 \mathrm{mg}, 0.072 \mathrm{mmol}, 1 \mathrm{eq})$, and $\operatorname{HOBt}(14 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5 \mathrm{eq})$ in THF $(2.3 \mathrm{~mL})$ and DMF $(1.3 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. Diisopropylcarbodiimide ($17 \square \mathrm{~L}, 0.11 \mathrm{mmol}$, 1.5 eq) was added dropwise and the reaction stirred 5 h , allowing to warm to room temp. The reaction mixture was then treated with two drops of water, and the solvent removed in vacuo. The crude residue was purified by silica gel chromatography (gradient elution from 5% to 15% MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide the desired dipeptide with some HOBt contamination. A second silica gel purification using the same solvent conditions provided 57 mg (88%) of $\mathbf{2 0}$ (2.5:1 mixture of inseparable epimers) as a white amorphous solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz) (DMSO-d ${ }_{6}$, *denotes minor epimer) $\square: 1.07(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}) ; 1.08(3 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=7.0 \mathrm{~Hz}) ; 1.17(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) ; 1.21(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}) ; 1.20-1.49(4 \mathrm{H}, \mathrm{m}$, partially buried); $1.36(18 \mathrm{H}, \mathrm{s}) ; 1.37(9 \mathrm{H}, \mathrm{s}) ; 2.17(2 \mathrm{H}, \mathrm{m}) ; 2.41(1 \mathrm{H}, \mathrm{m}) ; 2.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.8,14.9 \mathrm{~Hz}$, partially buried); $2.84(2 \mathrm{H}, \mathrm{m})$; *3.15 ($1 \mathrm{H}, \mathrm{m}$); $3.25(1 \mathrm{H}, \mathrm{m}) ; 3.37(1 \mathrm{H}, \mathrm{m}$, partially buried); $3.48(2 \mathrm{H}, \mathrm{m})$; $3.59(2 \mathrm{H}, \mathrm{m}) ; 3.67(1 \mathrm{H}$, broad m, partially buried); $4.09(2 \mathrm{H}, \mathrm{m}) ; 4.20(1 \mathrm{H}, \mathrm{m}$, partially buried); $4.24(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}$, partially buried); $4.41(1 \mathrm{H}, \mathrm{m}$, partially buried); $4.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.0,8.1$ Hz partially buried); $4.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}) ; 6.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}) ; 6.73(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}) ; 6.93$ ($2 \mathrm{H}, \mathrm{m}$); *7.36 (1H, broad s); $7.37(1 \mathrm{H}, \operatorname{broad} \mathrm{s}) ;$ *7.55 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}$); 7.64 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}$); *7.95 (1H, d, J=6.8 Hz); $8.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}) ; * 8.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}) ; 8.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz})$; $8.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}) ; * 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 MHz) (DMSO-d ${ }_{6}$, *denotes minor epimer) $\square: 14.0,15.0,15.0,17.9, * 18.2,26.4,28.2,28.3,28.3,31.6,37.2,40.3,41.2,47.5$, $48.7,51.1,52.4,54.8,60.6,62.3,62.5,62.7,77.3,77.4,78.3,100.3,155.1,155.1,155.5,168.9$, $169.8,170.5,171.4,171.9,172.1$. IR $\left(\mathrm{NaCl}\right.$, depos. from $10 \% \mathrm{MeOH}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3461,3285$, 3077, 2978, 2932, 1744, 1691, 1665, 1641, 1547, 1529, 1449, 1392, 1367, 1326, 1272, 1253, 1174, 1121, 1068, 1028. HRMS (FAB $)$ calc. for $\mathrm{C}_{40} \mathrm{H}_{73} \mathrm{~N}_{8} \mathrm{O}_{15}\left(\mathrm{MH}^{+}\right) 905.5195$; found 905.5199.

 $(57 \mathrm{mg}, 0.063 \mathrm{mmol}, 1 \mathrm{eq})$ in acetonitrile $(1.15 \mathrm{~mL})$ and water $(1.15 \mathrm{~mL})$, bis(trifluoroacetoxy)iodosobenzene ($41 \mathrm{mg}, 0.094 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added followed by dimethylformamide $(1.15 \mathrm{~mL})$. After stirring the reaction for 15 min , pyridine $(15 \mathrm{~mL}, 0.19$ $\mathrm{mmol}, 3 \mathrm{eq}$) was added, and the resulting solution stirred for an additional 2.5 h . The reaction
was then reduced to ca. $1 / 2$ its volume by rotary evaporation, diluted with EtOAc, and partitioned with brine. Removal of the organic layer was followed by extraction of the aqueous layer with EtOAc. Upon drying of the combined organic extracts over anhydrous $\mathrm{Na}_{2} \mathrm{SO} 4$, the solids were removed by filtration and the filtrate concentrated to dryness. Silica gel chromatography (gradient elution from 5% to $15 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) provided $48 \mathrm{mg}(87 \%)$ of 21 as a clear glass that was an $\sim 2.6: 1$ mixture of epimers. The product was used immediately for the subsequent coupling reaction in order to avoid N, N^{\prime}-acyl migration.
${ }^{1} \mathrm{H}$ NMR (300 MHz) (DMSO_{6} - $\mathrm{d}_{6} 353 \mathrm{~K}, \mathrm{D}_{2} \mathrm{O}$ exchange, $*$ denotes minor diastereomer) \square DMSO: $1.10(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) ; 1.10(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) ;{ }^{*} 1.19(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}) ; 1.20(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1$ $\mathrm{Hz})$; *1.27 (3H, d, J=7.2 Hz); $1.27(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}) ; 1.29-1.46(4 \mathrm{H}, \mathrm{m}$, partially buried); 1.37 $(18 \mathrm{H}, \mathrm{s}) ; 1.39(9 \mathrm{H}, \mathrm{s}) ; 2.22(2 \mathrm{H}, \mathrm{m}) ; 2.86(2 \mathrm{H}, \mathrm{m}$, partially buried); $2.89(2 \mathrm{H}, \mathrm{m}$, partially buried); $3.29(1 \mathrm{H}$, dd, $\mathrm{J}=7.9,13.6) ; 3.37(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.7,13.6) ; 3.52(2 \mathrm{H}, \mathrm{m}$, partially buried); $3.61(2 \mathrm{H}, \mathrm{m}$, partially buried); $3.69(1 \mathrm{H}$, broad m, partially buried); $4.01(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}) ; 4.11$ $(2 \mathrm{H}, \mathrm{m}) ; 4.25(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}) ; * 4.26(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}) ; 4.43(1 \mathrm{H}, \mathrm{m}$, partially buried); 4.45 $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.3 \mathrm{~Hz}) ; 4.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.3 \mathrm{~Hz}) ;{ }^{*} 4.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 MHz) $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \square \mathrm{CD}_{3} \mathrm{OD}: 14.7,15.6,15.6,15.6,17.7,27.8,28.8,29.0,29.0,33.1,41.3,42.1,43.1$, $44.5,51.3,51.4,54.9,56.6,62.7,64.6,64.8,80.0,80.2,81.0,102.4,158.0,158.1,158.7,170.8$, $172.0,173.8,174.5,175.3$. IR (NaCl , depos. from CHCl_{3}): $3306,3061,2978,2934,1683,1668$, 1523, 1454, 1392, 1367, 1345, 1250, 1202, 1170, 1113, 1065, 1024. HRMS (FAB ${ }^{+}$) calc. for $\mathrm{C}_{39} \mathrm{H}_{73} \mathrm{~N}_{8} \mathrm{O}_{14}\left(\mathrm{MH}^{+}\right) 877.5246$, found 877.5236.

\boldsymbol{N}^{\square}-CBz-capreomycidine (22). A solution of $2(19 \mathrm{mg}, 0.08 \mathrm{mmol}, 1 \mathrm{eq})$ in dd $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ and $2 \mathrm{~N} \mathrm{NaOH}\left(50 \square \mathrm{~L}\right.$, prepared from dd $\mathrm{H}_{2} \mathrm{O}$) was treated with benzyl chloroformate ($23 \square \mathrm{~L}$, $0.16 \mathrm{mmol}, 2 \mathrm{eq})$ and stirred at room temp for 1 h . At that point, and additional $100 \square \mathrm{~L}$ of 2 N NaOH was added and the reaction stirred an additional 1 h . The mixture was diluted with dd $\mathrm{H}_{2} \mathrm{O}$ and extracted 2 x with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Adjustment of the cloudy aqueous layer to pH 3 with aq. HCl (prepared from dd $\mathrm{H}_{2} \mathrm{O}$), was followed by evaporation to dryness. The residue was then dissolved with dd $\mathrm{H}_{2} \mathrm{O}$ and loaded onto a Waters $\mathrm{C} 18 \mathrm{Sep-Pak}$ cartridge (prepared by washing with $3 \times 5 \mathrm{~mL} \mathrm{MeCN}$ followed by $3 \times 5 \mathrm{~mL}$ dd $\mathrm{H}_{2} \mathrm{O}$). Any water insoluble material was kept in the flask. After washing the loaded Sep-Pak cartridge with dd $\mathrm{H}_{2} \mathrm{O}(\sim 7 \mathrm{~mL})$ the product was eluted back into the flask containing the water insoluble material with $3 \times 5 \mathrm{~mL} \mathrm{MeCN}$ and 3×5 mL MeOH . The solvent was removed in vacuo to provide 15 mg (56%) of crude 22 as a white solid. This material was used crude in the subsequent coupling reaction.

Compound 23. A solution of $21(20 \mathrm{mg}, 0.023 \mathrm{mmol}, 1 \mathrm{eq}), 22(8 \mathrm{mg}, 0.023 \mathrm{mmol}, 1 \mathrm{eq})$, and HOBt ($5 \mathrm{mg}, 0.035 \mathrm{mmol}, 1.5 \mathrm{eq}$) in DMF (1 mL) and THF (0.6 mL) was cooled to $0^{\circ} \mathrm{C}$ and stirred. EDCI ($7 \mathrm{mg}, 0.035 \mathrm{mmol}, 1 \mathrm{eq}$) was then added, and the reaction stirred for 5 h , at which point the starting material appeared to be consumed by TLC. The solvent was then removed in vacuo and the resulting residue was subjected to silica gel chromatography (gradient elution from 15% to $25 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide a partially pure product which was chromatographed again under the same conditions to provide $25 \mathrm{mg}(89 \%)$ of $\mathbf{2 3}$ as a glass. The product was isolated as an inseparable 2.6:1 mixture of epimers.
${ }^{1} \mathrm{H}$ NMR (400 MHz) (DMSO_{6}, $338 \mathrm{~K}, \mathrm{D}_{2} \mathrm{O}$ exchange, * denotes minor diastereomer) \square DMSO: $1.08(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}) ; 1.08(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) ; 1.17(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) ;{ }^{*} 1.24(3 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=7.3 \mathrm{~Hz}) ; 1.24(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}) ; 1.25-1.42(4 \mathrm{H}, \mathrm{m}$, partially buried); $1.35(18 \mathrm{H}, \mathrm{s}) ; 1.38(9 \mathrm{H}$, s); $1.68(1 \mathrm{H}, \mathrm{m}) ; 1.87(1 \mathrm{H}, \mathrm{m}) ; 2.20(2 \mathrm{H}, \mathrm{m}) ; 2.87(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}) ; 3.20(1 \mathrm{H}, \mathrm{m}) ; 3.23-3.35$ $(2 \mathrm{H}, \mathrm{m}$, partially buried); 3.40-3.53 (3H, m); $3.59(2 \mathrm{H}, \mathrm{m}) ; 3.69(2 \mathrm{H}, \mathrm{m}) ; 4.09(3 \mathrm{H}, \mathrm{m}) ; 4.16(1 \mathrm{H}$, d, J=6.8 Hz); $4.26(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}) ; 4.44(1 \mathrm{H}, \mathrm{m}) ; 4.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.3 \mathrm{~Hz}) ; 4.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.3$
 denotes minor diastereomer) $\square \mathrm{CD}_{3} \mathrm{OD}: 14.7$, 15.6, 15.7, 17.8, 23.9, 27.8, 28.9, 29.0, 29.0, 33.3, $37.9,41.3,42.2,42.6,43.0,43.3,51.3,51.4,54.3,54.9,55.2,56.5,59.4,62.8,64.7,64.8,64.9$, $68.4,80.0,80.3,81.1, * 102.3,102.5,129.4,129.5,129.7,138.0,156.0,157.6, * 158.1,158.7$, $158.8,170.5,172.3,172.9,173.4,174.3,175.4$. IR (NaCl , deposited from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$): 3302, 3064, 2977, 2934, 1669, 1522, 1455, 1392, 1367, 1249, 1169, 1064. HRMS (FAB ${ }^{+}$) calc. for $\mathrm{C}_{53} \mathrm{H}_{89} \mathrm{~N}_{12} \mathrm{O}_{17}\left(\mathrm{MH}^{+}\right) 1165.6469$; found 1165.6459 .

Macrocycle 24: A solution of $\mathbf{2 3}(24 \mathrm{mg}, 0.020 \mathrm{mmol}, 1 \mathrm{eq})$) in ethanol (3 mL) was purged with argon for 10 min . Addition of $10 \% \mathrm{Pd} / \mathrm{C}(15 \mathrm{mg}, 0.014 \mathrm{mmol}, 0.7 \mathrm{eq})$ was followed by careful bubbling of hydrogen gas through the solution. After fixing a hydrogen balloon to the flask, the reaction was stirred for 2 h then purged with argon. The $10 \% \mathrm{Pd} / \mathrm{C}$ was removed by filtration through celite and the filter cake was washed with absolute ethanol. The filtrate was concentrated to dryness. Dissolution of the crude hydrogenation product in absolute ethanol (1.3 mL) was followed by addition of $1 \mathrm{~N} \mathrm{LiOH}(80 \square \mathrm{~L}, 0.080 \mathrm{mmol}, 4 \mathrm{eq})$. At 1 h , and additional amount of

1 N LiOH ($40 \mathrm{~mL}, 0.040 \mathrm{mmol}, 2 \mathrm{eq}$) was added. After 1.5 h total reaction time, the reaction mixture was diluted with dd $\mathrm{H}_{2} \mathrm{O}$ and adjusted to $\sim \mathrm{pH} 6$ with aqueous HCl and evaporated to provide an off-white residue. Dissolution of the residue in dd $\mathrm{H}_{2} \mathrm{O}$ was followed by loading onto a Waters C18 sep-pak cartridge (prepared by washing with $3 \times 5 \mathrm{~mL}$ acetonitrile followed by $3 \times$ 5 mL dd $\mathrm{H}_{2} \mathrm{O}$). The cartridge was washed with $2 \times 2 \mathrm{~mL} \mathrm{dd} \mathrm{H}_{2} \mathrm{O}$ which was subsequently discarded. Isolation of the amino acid was accomplished by elution from the Sep-Pak cartridge with $3 \times 5 \mathrm{~mL}$ acetonitrile and $3 \times 5 \mathrm{~mL}$ methanol followed by evaporation of the solvent. The crude amino acid was then dissolved in DMF (4 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ followed by the addition of EDCI ($30 \mathrm{mg}, 0.16 \mathrm{mmol}, 7.8 \mathrm{eq}$) and HOAt ($20 \mathrm{mg}, 0.15 \mathrm{mmol}, 7.3 \mathrm{eq}$). After stirring the reaction at room temperature for 36 h , the solvent was removed in vacuo to provide a yellow oily residue. The residue was chromatographed on silica gel (gradient elution from 15\% to $30 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide 24 with some HOAt contaminant present. After dissolution of the residue in $10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and partitioning with brine, the organic layer was removed, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The resulting residue was triturated with $10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solvent evaporated to provide 4 mg (20%, opaque glass) of pure 24 as a single diastereomer.
${ }^{1} \mathrm{H}$ NMR (400 MHz$)\left(\mathrm{CD}_{3} \mathrm{OD}\right) \square: 1.22(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) ; 1.23(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}) ; 1.37(3 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=7.3 \mathrm{~Hz}) ; 1.40-1.61(4 \mathrm{H}, \mathrm{m}) ; 1.43(27 \mathrm{H}$, broad s); $1.81(1 \mathrm{H}, \mathrm{m}) ; 2.04(1 \mathrm{H}, \mathrm{m}) ; 2.29(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=6.4,14.3 \mathrm{~Hz}) ; 2.36(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.0,14.3 \mathrm{~Hz}) ; 3.03(2 \mathrm{H}$, broad t); 3.27-3.41$(2 \mathrm{H}, \mathrm{m}$, partially obscured); 3.54-3.86 (9H, m); $4.06(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.9,9.2 \mathrm{~Hz}) ; 4.28(2 \mathrm{H}, \mathrm{m}) ; 4.35(1 \mathrm{H}, \mathrm{m}) ; 4.59$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.6 \mathrm{~Hz}) ; 4.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.2 \mathrm{~Hz}) ; 5.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \square \mathrm{CD}_{3} \mathrm{OD}: 15.7,15.7,18.0,24.2,27.9,28.8,29.0,29.0,33.3,37.7,40.1,41.3,42.3$, $43.2,50.4,51.2,54.2,55.0,56.4,58.0,65.1,65.3,65.3,80.1,80.3,81.1,102.0,156.2,157.4$, $158.1,158.7,171.1,171.9,172.2,172.5,174.4,177.1$. IR $\left(\mathrm{NaCl}\right.$, depos. from $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3583$, 3287, 3070, 2976, 2931, 1667, 1518, 1454, 1392, 1366, 1303, 1249, 1169, 1107, 1065. HRMS $\left(\mathrm{FAB}^{+}\right)$calc. for $\mathrm{C}_{43} \mathrm{H}_{77} \mathrm{~N}_{12} \mathrm{O}_{14}\left(\mathrm{MH}^{+}\right) 985.5682$; found 985.5678. [$\left.\square\right]_{\mathrm{D}}{ }^{25}=-47(c=0.1, \mathrm{MeOH})$.

Capreomycin IB•4HCl (1b). Macrocycle 24 ($5 \mathrm{mg}, 0.0049 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in 99% formic acid ($500 \square \mathrm{~L}$, distilled from phthallic anhydride) and stirred at room temperature for 1.25 h . The formic acid was removed in vacuo, and the resulting residue dissolved in acetone ($400 \square \mathrm{~L}$) and $2 \mathrm{~N} \mathrm{HCl}(400 \square \mathrm{~L})$. After refluxing the resulting solution under argon for 10 min , the solution was cooled to room temperature and urea ($35 \mathrm{mg}, 0.58 \mathrm{mmol}, 119 \mathrm{eq}$) was added. After stirring for 14 h , the solvent was removed in vacuo, and the resulting residue was triturated with absolute ethanol to provide $2 \mathrm{mg}(50 \%)$ of capreomycin $\mathrm{IB} \cdot 4 \mathrm{HCl}(\mathbf{1 b})$ as a white precipitate. The synthetic product matched the natural product by ${ }^{1} \mathrm{H}$ NMR, optical rotation, and TLC (30:10:1 phenol : $\mathrm{H}_{2} \mathrm{O}: 28 \%$ aqueous ammonia, $\mathrm{R}_{\mathrm{f}}=0.29$).
Synthetic 1b was then combined with a mixture of natural capreomycin IA and IB (1a,b) in water, 2 drops of concentrated sulfuric acid were added and the solution evaporated. Absolute
ethanol was added to the residue, and the precipitate collected. Spectral analysis of the mixture of synthetic and natural material (${ }^{1} \mathrm{H}$ NMR) showed that all peaks corresponding to $\mathbf{1 b}$ increased in intensity compared to $\mathbf{1 a}$.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})\left(\mathrm{D}_{2} \mathrm{O}\right) \square \mathrm{EtOH}: 1.38(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}) ; 1.72(1 \mathrm{H}, \mathrm{m}$, partially buried); 1.75 (2 H , broad s); 1.77 (2 H , broad s); 2.07 (1 H , dddd, J=5.1, $5.1,5.1,13.6 \mathrm{~Hz}$); 2.64 (1 H , dd, J=8.3, 16.4 Hz); $2.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.7,16.2 \mathrm{~Hz}) ; 3.03(2 \mathrm{H}$, broad s); $3.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.7,14.5 \mathrm{~Hz}$, partially buried); $3.31(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}) ; 3.65(1 \mathrm{H}, \mathrm{m}$, partially buried); $3.68(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.3,14.1$ Hz , partially buried); $3.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.6,14.1 \mathrm{~Hz}) ; 3.68(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.9,14.1 \mathrm{~Hz}) ; 4.27-4.34$ $(2 \mathrm{H}, \mathrm{m}$, partially buried); $4.36(1 \mathrm{H}$, ddd, $\mathrm{J}=2.8,5.3,8.1 \mathrm{~Hz}$, partially buried); $4.59(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0$ $\mathrm{Hz}) ; 4.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.8 \mathrm{~Hz}) ; 8.02(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{dd} \mathrm{H}_{2} \mathrm{O} \mathrm{w} / 10 \% \mathrm{D}_{2} \mathrm{O}\right)(125 \mathrm{MHz}) \square: 19.6$, $24.3,24.6,30.7,37.8,38.2,39.5,40.7,41.2,50.1,50.3,50.8,52.8,54.8,56.5,106.5,136.7$, $156.1,158.2,168.3,168.7,172.7,173.5,1735 ., 177.2$. [$\square]_{\mathrm{D}}{ }^{25}$, synthetic: $-48\left(c=0.05\right.$, dd $\left.\mathrm{H}_{2} \mathrm{O}\right)$, natural: -44.6 $\left(c=0.5, \mathrm{dd} \mathrm{H}_{2} \mathrm{O}\right)$. Electrospray MS $\left(\mathrm{ES}^{+}\right)\left(\mathrm{M}+\mathrm{H}^{+}\right)$: calc.: 653.35 , found 653.40.

$300 \mathrm{MHz}{ }^{\frac{8}{1}} \mathrm{H} \mathrm{nmr}$ spectrum synthetic capreomycin ${ }^{\frac{7}{6}}{ }^{5} \cdot 4 \mathrm{HCl}$

$300 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum of natural capreomycin IB.

Synthetic capreomycin IB (${ }^{13} \mathrm{C} \mathrm{nmr} 125 \mathrm{MHz}$)

Natural capreomycin IB $\left({ }^{13} \mathrm{C} \mathrm{nmr} 75 \mathrm{MHz}\right)$.

