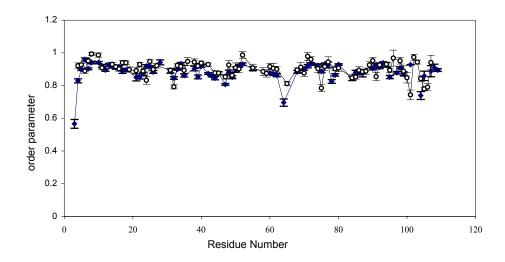
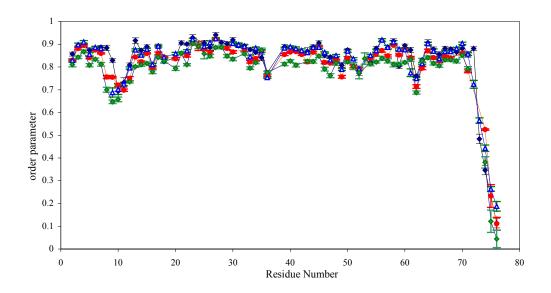

TEMPERATURE DEPENDENCE OF ANISOTROPIC PROTEIN BACKBONE

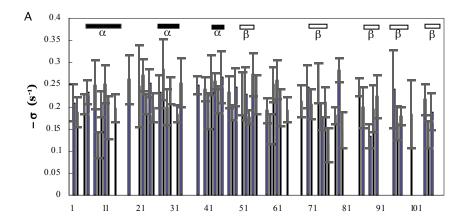
DYNAMICS

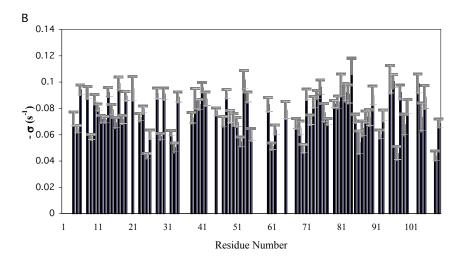

Tianzhi Wang, Sheng Cai and Erik R.P. Zuiderweg

Supplementary Material.



S1


Pulse sequence for the determination of ^{13}CO CSA / ^{13}CO - $^{13}\text{C}_{\alpha}$ DD cross-correlation rate. Narrow and wide bars denote 90° and 180° hard pulses, respectively. Pulse phases are along the x-axis unless indicated otherwise. 90° and 180° square soft pulses with duration 65 and 130 µs are used for both ^{13}CO and $^{13}\text{C}_{\alpha}$. The half-sine-shaped field gradient pulses of 1ms duration have strengths at the center g1=30G/cm, g2=18G/cm, g3=18G/cm, g4=24G/cm and g5=24G/cm. Constant time periods 4T and 2*d3 are used as ^{13}CO and ^{15}N chemical shift evolution periods, respectively. Delays (in milliseconds) are as follows: d1=2.5, d2=5.55, d3=14 and T=9. Phase cycling is: ϕ 1=x, -x; ϕ 2=x, x, -x, -x; ϕ 3=4(x), 4(-x), 4(y), 4(-y); ϕ 4=4(x); receiver=x, 2(-x), 2(x), 2(-x), x, -x, 2(x), 2(-x), 2(x), -x. Phase ϕ 2 and ϕ 4 are incremented for States-TPPI quadrature detection. The 3D data are recorded with 36*50*1024 complex points (t1*t2*t3).



 $\frac{S2}{The}$ The ^{15}N order parameters for $^{15}N/^{13}C$ labeled Binase (12.3 kDa), pH 7.0 in 90% H₂O/10 D₂O, at 278 and 303 K are presented with open circles and diamonds respectively. The data was obtained with a Bruker Avance 500 MHz spectrometer.

 $\frac{\text{S 3}}{\text{The}}$ The ^{15}N order parameters for 1 mM $^{15}\text{N}/^{13}\text{C}$ labeled Ubiquitin in 90% H₂O/10 D₂O, deuterated acetic acid buffer, pH 4.7, at 278, 293, 303 and 318 K are presented with black, blue, red and green color, respectively.

 \underline{S} 4 The 13 CO- 13 C $_{\alpha}$ cross relaxation rates for Binase at 278 and 303 K are shown in panel A and B, respectively. The approximate locations of secondary structure elements are indicated above. The data was recorded using a 500 MHz spectrometer.